
CDI

Application Program Interface Guide

March 1999

Copyright © GCOM, Inc.
All rights reserved.

© 1997-1999 GCOM, Inc. All rights reserved.

Non-proprietary—Provided that this notice of copyright is included, this document may be copied in
its entirety without alteration. Permission to publish excerpts should be obtained from GCOM, Inc.

Rsystem is a registered trademark of GCOM, Inc. UNIX is a registered trademark of UNIX Systems
Laboratories, Inc. in the U.S. and other countries. SCO is a trademark of the Santa Cruz Operation, Inc.
All other brand product names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Any provision of this product and its manual to the U.S Government is with “Restricted Rights”: Use,
duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013 of the DOD
FAR Supplement.

This manual was written and produced by Technical Writer Geoffrey Gerrietts using Framemaker 5.01
and Microsoft Word 97 on a Microsoft Windows platform with the help of subject matter specialists
Dave Grothe, Mikel Matthews, and Dave Healy.

This manual was printed in the U.S.A.

FOR FURTHER INFORMATION

If you want more information about GCOM products, contact us at:

GCOM, Inc.
1800 Woodfield
Savoy, IL 61874
(217) 337-4471
FAX: (217) 337-4470
e-mail: support@gcom.com
homepage: http://gcom.com

C O N T E N T S
SECTION 1 The CDI API 7
Introduction 8
Using the CDI API 9
Preparing STREAMS 9
Manipulating the Device 10
Data Communications 12
Utility Routines 14
Global Variables 15
Decoding Control Messages from the CDI Provider 15

SECTION 2 API Reference 17
cdi_allow_input_req() 19
cdi_attach_req() 20
cdi_decode_ctl() 21
cdi_decode_modem_sigs() 22
cdi_detach_req() 23
cdi_disable_req() 24
cdi_enable_req() 25
cdi_get_a_msg 26
cdi_get_modem_sigs 27
cdi_init() 28
cdi_init_FILE() 29
cdi_modem_sig_poll 30
cdi_modem_sig_req() 31
cdi_open_data() 32
cdi_perror() 33
cdi_printf() 34
cdi_print_msg() 35
cdi_put_allow_input_req() 36
cdi_put_attach_req() 37
cdi_put_both() 38
cdi_put_data() 39
cdi_put_detach_req() 40
cdi_put_disable_req() 41
cdi_put_enable_req() 42
cdi_put_frame() 43
cdi_put_proto() 44
cdi_rcv_msg() 45
cdi_read_data() 46
cdi_set_log_size() 47
APRIL 1999 CDI API GUIDE 5

GCOM, INC.
cdi_wait_ack() 48
cdi_write_data() 49
cdi_xray_req() 50

APPENDIX A Sample Decoder 67
6 CDI API GUIDE APRIL 1999

and
tions
1

The CDI API
This section of the manual identifies the components of the CDI API
describes how an application can use the API to create communica
applications.
MAY 1998 CDI API GUIDE 7

GCOM, INC.

the
e.
.
 the

eed
es

s.

Introduction
The original AT&T specification for the STREAMS facility included
three well-defined interfaces: TLI, the transport layer interface; NPI,
network provider interface; and DLPI, the data-link provider interfac
These three interfaces covered the OSI model’s layers 4 down to 2
DLPI was assumed to be the lowest level software interface, leaving
‘physical’ layer functions completely in the hands of the hardware.

While this works well with many popular networking strategies, it
doesn’t work with all of them. Some communications environments
require an additional layer of control. NCR Comten answered this n
by creating CDI, the Communications Device Interface. CDI provid
connectionless, software-driven control over a communications
interface. Much like NPI provides network communications without
guarantee of end-to-end continuity, CDI provides point-to-point
communications without any preconceptions of frame formats or
end-to-end integrity assurances beyond the CCITT CRC checksum

Gcom’s CDI API provides access to this CDI interface, allowing an
application to transmit raw data over the hardware. This extremely
low-level interface can be useful in constructing specialized
communications applications, or in dealing with unusual data-link
protocols.
MAY 1998 CDI API GUIDE 8

GCOM, INC.

t be
nsfer.

am.

set

the

.

en
Using the CDI API
Applications which employ CDI functionality have three phases.
Initially the data stream must be opened and the API’s facilities mus
initialized. The second phase prepares the data stream for data tra
Data transfer occurs in the third phase.

Preparing STREAMS

The first phase conditions the CDI facility and opens a CDI datastre
The routines designed to support this include the following:

cdi_init(), cdi_init_FILE()

Both these routines will initialize the global variables in the API and
the logging options.

cdi_set_log_size()

This will set the maximum length of the logfile in bytes. If exceeded,
API will continue writing log information at the beginning of the file,
overwriting old data with new as it cycles through the allotted space

cdi_open_data()

This routine will open a data stream to the CDI driver.

Setting the log size and calling either cdi_init_FILE() or cdi_init()
prepares the CDI interface for use; a call to cdi_open_data() will th
provide a file descriptor (fid) for further operations.
MAY 1998 CDI API GUIDE 9

GCOM, INC.

he
ice.
g the

. The

must
s

int

ing

e of

n call

 set
Manipulating the Device

The application’s second phase of CDI communications prepares t
opened stream or streams for use with a serial communication dev
This phase involves attaching a stream to a CDI device and enablin
device for data transfer.

cdi_attach_req()

When first opened, a data stream is in a disabled, unattached state
API identifies this state with the CD_UNATTACHED define. To
proceed in preparing the stream for data communication, this state
be advanced to the CD_DISABLED state. Two routines provide thi
functionality: cdi_attach_req() and cdi_put_attach_req(). These
routines will both associate the stream with a particular physical po
of attachment (PPA). The PPA numbers are established in the
configuration file. The numbers in the names of the cdip.* nodes
correspond to the PPA numbers.

cdi_wait_ack()

The difference between cdi_attach_req() and cdi_put_attach_req() is
that routines with “put” in the name are non-blocking in nature, mean
that they will return immediately and not wait on the CDI module’s
response. The cdi_wait_ack() routine provides a fairly straightforward
mechanism for checking the CDI module’s response after calling on
these non-blocking routines.

cdi_detach_req()

Once the stream has been successfully attached, the application ca
cdi_detach_req() to detach the PPA. The cdi_put_detach_req() can also
be employed, and cdi_put_detach_req() will not wait for CDI to return
an ACK or NACK response. Upon successful completion, the state is
to CD_UNATTACHED.
MAY 1998 CDI API GUIDE 10

GCOM, INC.

ion.

g

d.

ing

ion. In

ate
cdi_enable_req()

An attached stream must be enabled to be used for data transmiss
The cdi_enable_req() and cdi_put_enable_req() routines prepare the
stream for data transmission. This moves the stream’s state to
CD_ENABLED upon successful completion. If using the non-blockin
version of the routine, cdi_put_enable_req(), the stream will remain in
the CD_ENABLE_PENDING state until the request is acknowledge

cdi_disable_req()

Once enabled, a stream can be disabled again with either
cdi_disable_req() or cdi_put_disable_req(). Both routines will return a
stream’s state to CD_DISABLED upon successful completion. If us
the non-blocking version of the routine, cdi_put_disable_req(), the
stream will remain in the CD_DISABLE_PENDING state until the
request is acknowledged.

cdi_allow_input_req()

When a stream has been enabled, it can be used for data transmiss
order to allow receiving data, the application must call
cdi_allow_input_req() or cdi_put_allow_input_req(). This sets the st
to CD_INPUT_ALLOWED. This indicates that the stream is in
full-duplex operating mode. The routine should not be called for
half-duplex operation.
MAY 1998 CDI API GUIDE 11

GCOM, INC.

 and
ata

fer
Data Communications

The third phase of communications with CDI is data transfer. After
connecting to the stream, and connecting the stream to the device,
enabling input, the application can use the device to communicate. D
communications is implemented primarily in the first three of the
following routines:

cdi_write_data()

The bulk of data communications can be done using calls to
cdi_write_data().

cdi_read_data()

Incoming data can be read with cdi_read_data(). Control information
will be placed in the global variable cdi_ctl_buf and the global
cdi_ctl_cnt will be set to indicate the size of the data in cdi_ctl_buf.

cdi_rcv_msg()

Like cdi_read_data(), cdi_rcv_msg() retrieves data from a stream.
cdi_rcv_msg() also has an optional ‘flags’ parameter.

Additional routines provide alternative means of handling data trans
for more specialized scenarios:

cdi_put_proto()

Puts the proto message in cdi_ctl_buf onto the line. Does not wait for
CDI’s acknowledgement.
MAY 1998 CDI API GUIDE 12

GCOM, INC.

col
cdi_put_data()

Puts a buffer of data onto the line. Does not wait for the data to be
acknowledged before returning.

cdi_put_both()

Puts both a buffer of data and the contents of cdi_ctl_buf on the line.
Does not wait for the data to be acknowledged before returning.

cdi_put_frame()

This routine provides a simple technique for performing SDLC-style
frame-level communications, albeit without providing the additional
frame-sequencing and error correction that a full data link layer proto
would provide.
MAY 1998 CDI API GUIDE 13

GCOM, INC.

es,
re
se

g.

ion,
city
Utility Routines

An additional set of routines stands apart from the main three phas
being at least marginally useful in multiple states. These routines a
used for analysis and debugging the communications session. The
routines include:

cdi_modem_sig_req()

This routine provides a means of setting modem signals.

cdi_printf()

This routine prints to the CDI API log using standard printf()
conventions.

cdi_decode_modem_sigs()

This routine decodes modem signals and returns a descriptive strin

cdi_decode_ctl()

This routine decodes the contents of cdi_ctl_buf and prints it to the
logfile.

cdi_print_msg()

This routine prints out a CDI message in hexadecimal notation.

cdi_perror()

Much like its namesake perror(3), the cdi_perror() routine prints an
error message. The cdi_perror() routine also prints to the API’s log.

These routines provide some extended capability to a CDI applicat
including multiple printing and decoding routines as well as the capa
to instruct the modem to assert a specific set of modem signals.
MAY 1998 CDI API GUIDE 14

GCOM, INC.

e

Global Variables

The Gcom CDI API uses global variables to provide/get information
to/from the application. These globals are:

int cdi_data_cnt ;
int cdi_ctl_cnt ;
unsigned char cdi_data_buf[CDI_DATA_BUF_SIZE] ;
unsigned char cdi_ctl_buf [CDI_CTL_BUF_SIZE] ;

If an API routine modifies any of these variables, the routine
descriptions below describe what is modified.

Decoding Control Messages from the
CDI Provider

From time to time the CDI provider will send control messages to th
application. These messages should be decoded and if needed,
responded to. The <gcom/cdi.h> file contains the definitions for these
control messages and their data structures. Normally these control
messages are placed in the cdi_ctl_buf global variable. See appendix A
for a sample control message decoder routine.
MAY 1998 CDI API GUIDE 15

GCOM, INC.
MAY 1998 CDI API GUIDE 16

e to
2

API Reference
This section of the manual provides an alphabetical reference guid
each of the API’s functions.
APRIL 1999 CDI API GUIDE 17

GCOM, INC.
APRIL 1999 CDI API GUIDE 18

GCOM, INC.

 if

 a

cdi_allow_input_req()

Prototype: int cdi_allow_input_req(int fid,
 int *state_ptr);

Parameters: fid: file descriptor associated with data stream

state_ptr: will be filled with an integer representing the API state
provided

Return Values: 1: request sent, ACK received

0: request sent, NAK received

<0: error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine sends an CD_ALLOW_INPUT_REQ to fid and waits for a
response. If successful, the CD_ALLOW_INPUT_REQ will result in
transition to the CD_INPUT_ALLOWED state.

If state_ptr is not NULL, the variable to which it points will be modified
to represent the current state.

The values for the state are defined in <gcom/cdi.h>

Table 1 CDI Device States

#define for state description

CD_UNATTACHED No PPA attached

CD_UNUSABLE PPA cannot be used

CD_DISABLED PPA attached

CD_ENABLE_PENDING Waiting ACK of enable req

CD_ENABLED Awaiting use

CD_READ_ACTIVE Input section enabled; disabled after data arrives

CD_INPUT_ALLOWED Input section permanently enabled

CD_DISABLE_PENDING Waiting ACK of disable req

CD_OUTPUT_ACTIVE Output section active only
APRIL 1999 CDI API GUIDE 19

GCOM, INC.

 if

cdi_attach_req()

Prototype: int cdi_attach_req(int fid, long ppa, int *state_ptr);

Parameters: fid: file descriptor associated with data stream

ppa: the ppa to attach to

state_ptr: will be filled with an integer representing the API state
provided

Return Values: 1: request sent, ACK received

0: request sent, NAK received

<0: error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine sends an CD_ATTACH_REQ to fid for ppa and waits for
a response. The CD_ATTACH_REQ uses ppa to select a particular
physical device for the data stream to communicate over.

If state_ptr is not NULL, the variable to which it points will be modified
to represent the current state.

The values for the state are defined in <gcom/cdi.h>

Table 2 CDI Device States

#define for state description

CD_UNATTACHED No PPA attached

CD_UNUSABLE PPA cannot be used

CD_DISABLED PPA attached

CD_ENABLE_PENDING Waiting ACK of enable req

CD_ENABLED Awaiting use

CD_READ_ACTIVE Input section enabled; disabled after data arrives

CD_INPUT_ALLOWED Input section permanently enabled

CD_DISABLE_PENDING Waiting ACK of disable req

CD_OUTPUT_ACTIVE Output section active only
APRIL 1999 CDI API GUIDE 20

GCOM, INC.
cdi_decode_ctl()

Prototype: void cdi_decode_ctl(char *p);

Parameters: p: string to prepend to message

Return Values: NONE

Include File(s): <gcom/cdiapi.h>

Description: Decode the CDI protocol message contained in the global cdi_ctl_buf
and print to the cdi log file pre-pending p to the entry.
APRIL 1999 CDI API GUIDE 21

GCOM, INC.

cdi_decode_modem_sigs()

Prototype: char *cdi_decode_modem_sigs(unsigned sigs);

Parameters: sigs: modem signals

Return Values: A NULL terminated string

Include File(s): <gcom/cdiapi.h>

Description: Decode the modem signals in sigs and return a pointer to a descriptive
string.
APRIL 1999 CDI API GUIDE 22

GCOM, INC.

e

cdi_detach_req()

Prototype: int cdi_detach_req(int fid, int *state_ptr);

Parameters: fid: file descriptor associated with data stream

state_ptr: pointer to an integer to store state data in

Return Values: 1: request sent, ACK received

0: request sent, NAK received

<0: error condition

Include File(s): <gcom/cdiapi.h>

Description: Detaches fid from a particular physical point of attachment. This routin
waits for a response.

If state_ptr is not NULL, the variable to which it points will be modified
to represent the current state.

The values for the state are defined in <gcom/cdi.h>.

Table 3 CDI Device States

#define for state description

CD_UNATTACHED No PPA attached

CD_UNUSABLE PPA cannot be used

CD_DISABLED PPA attached

CD_ENABLE_PENDING Waiting ACK of enable req

CD_ENABLED Awaiting use

CD_READ_ACTIVE Input section enabled; disabled after data arrives

CD_INPUT_ALLOWED Input section permanently enabled

CD_DISABLE_PENDING Waiting ACK of disable req

CD_OUTPUT_ACTIVE Output section active only
APRIL 1999 CDI API GUIDE 23

GCOM, INC.

not
to
ta,

cdi_disable_req()

Prototype: int cdi_disable_req(int fid, unsigned long disposal,
 int *state_ptr);

Parameters: fid: file descriptor associated with data stream

disposal: what to do with queued data

state_ptr: will be filled with an integer representing the API state

Return Values: 1: request sent, ACK received

0: request sent, NAK received

<0: error condition

Include File(s): <gcom/cdiapi.h>

<gcom/cdi.h>

Description: Send a CD_DISABLE_REQ to the CDI provider and wait for a
CD_DISABLE_CON or NAK. Once a disable is accepted, data may
be sent on fid. If data is queued, disposal can be set to CD_FLUSH
discard undelivered data, CD_WAIT to attempt to deliver unsent da
or CD_DELIVER to deliver data prior to disabling the line.

If state_ptr is not NULL, the variable to which it points will be modified
to represent the current state.

Table 4 CDI Device States

#define for state description

CD_UNATTACHED No PPA attached

CD_UNUSABLE PPA cannot be used

CD_DISABLED PPA attached

CD_ENABLE_PENDING Waiting ACK of enable req

CD_ENABLED Awaiting use

CD_READ_ACTIVE Input section enabled; disabled after data arrives

CD_INPUT_ALLOWED Input section permanently enabled

CD_DISABLE_PENDING Waiting ACK of disable req

CD_OUTPUT_ACTIVE Output section active only
APRIL 1999 CDI API GUIDE 24

GCOM, INC.

ta
 is

cdi_enable_req()

Prototype: int cdi_enable_req(int fid, int *state_ptr);

Parameters: fid: file descriptor associated with data stream

state_ptr: pointer to an integer to store state data in

Return Values: 1: request sent, ACK received

0: request sent, NAK received

<0: error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine sends an CD_ENABLE_REQ to the CDI provider and
waits for an CD_ENABLE_CON or NAK. If the CD_AUTO_ALLOW
option has been used (as is the default), the stream is ready for da
transfer once it has been enabled. If the CD_AUTO_ALLOW option
not being used, the application must call cdi_enable_input() to place the
stream into full-duplex operational mode.

If state_ptr is not NULL, the variable to which it points will be modified
to represent the current state.

The values for the state are defined in <gcom/cdi.h>.

Table 5 CDI Device States

#define for state description

CD_UNATTACHED No PPA attached

CD_UNUSABLE PPA cannot be used

CD_DISABLED PPA attached

CD_ENABLE_PENDING Waiting ACK of enable req

CD_ENABLED Awaiting use

CD_READ_ACTIVE Input section enabled; disabled after data arrives

CD_INPUT_ALLOWED Input section permanently enabled

CD_DISABLE_PENDING Waiting ACK of disable req

CD_OUTPUT_ACTIVE Output section active only
APRIL 1999 CDI API GUIDE 25

GCOM, INC.

cdi_get_a_msg

Prototype: int cdi_get_a_msg(int fid,
 char *buf,
 int size);

Parameters: fid: file descriptor associated with data stream

buf: points to a user-supplied buffer

buf_size: length of memory pointed to by buffer

Return Values: >0: return code from the getmsg() call; generally indicates an
undersized buffer

0: success

<0: error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine is primarily used internally, but can be used to get one
message from CDI. Any M_DATA is placed in the caller’s buffer, while
the M_PROTO (if any) is read into the global cdi_ctl_buf. The lengths
of read data and read control information are placed in cdi_data_cnt
and cdi_ctl_cnt respectively.
APRIL 1999 CDI API GUIDE 26

GCOM, INC.

ble

ntil

turn
cdi_get_modem_sigs

Prototype: int cdi_get_modem_sigs(int fid, int flag);

Parameters: fid: file descriptor associated with data stream

flag: passed to cdi_rcv_msg(); user can specify additional
conditions on which the routine should return – see
“cdi_rcv_msg()” on page 45 for valid values; 0 will
return only on modem signal indication.

Return Values: >0: success, low 8 bits are a modem signal bitmask; suita
for passing to cdi_decode_modem_sigs()

0: some other protocol message allowed by flag was
received

<0: error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine sends a modem signal poll to the device, then blocks u
it receives either a CD_MODEM_SIG_IND or some other protocol
message allowed in flag. If the routine is able to retrieve modem sig-
nals, they are returned as the low 8 bits in the return value. If some
other protocol message is responsible for the routine’s return, the re
value will be 0.
APRIL 1999 CDI API GUIDE 27

GCOM, INC.

le
e

ith
cdi_init()

Prototype: int cdi_init(int log_optns, char *log_name);

Parameters: log_optns: a bitwise OR of the logging options (see below)

log_name: a NULL pointer or a pointer to a NULL-terminated
string to use as the logfile name

Return Values: 1: success

Include File(s): <gcom/cdiapi.h>

Description: This routine sets up the initial environment for the API, opening a fi
named by the string at log_name for use as the log file. If log_nam
exists, it will be overwritten. If it doesn’t exist, it will be created.

This procedure is designed so that it may be called multiple times w
a NULL log_name to alter the log options.

Table 6 Logging Options

#define for logging option description

CDI_LOG_FILE log to file

CDI_LOG_STDERR log to stderr

CDI_LOG_RX_PROTOS log received M_PROTOS

CDI_LOG_TX_PROTOS log transmitted M_PROTOS

CDI_LOG_ERRORS log UNIX errors

CDI_LOG_SIGNALS log signal handling

CDI_LOG_RX_DATA log received M_DATA

CDI_LOG_TX_DATA log transmitted M_DATA

CDI_LOG_DISCARDS see cdi_rcv_msg ()

CDI_LOG_VERBOSE debug support

CDI_LOG_DEFAULT (CDI_LOG_FILE | CDI_LOG_STDERR | CDI_LOG_ERRORS)
APRIL 1999 CDI API GUIDE 28

GCOM, INC.

a

t or
 is
cdi_init_FILE()

Prototype: int cdi_init_FILE(int log_optns, FILE *filestream);

Parameters: log_optns: a bitwise OR of the logging options (see below)

filestream: an already-opened filestream to use as the logfile or
NULL pointer

Return Values: 1: success

Include File(s): <gcom/cdiapi.h>

Description: This routine provides a means of passing the CDI API an
already-opened file (filestream) for use as the CDI log file and to se
modify the logging options (log_optns). Other than this, this routine
identical to cdi_init() in that it sets up the initial environment for the
API.

If filestream is NULL, only the logging options will be modified.

Table 7 Logging Options

#define for logging option description

CDI_LOG_FILE log to file

CDI_LOG_STDERR log to stderr

CDI_LOG_RX_PROTOS log received M_PROTOS

CDI_LOG_TX_PROTOS log transmitted M_PROTOS

CDI_LOG_ERRORS log UNIX errors

CDI_LOG_SIGNALS log signal handling

CDI_LOG_RX_DATA log received M_DATA

CDI_LOG_TX_DATA log transmitted M_DATA

CDI_LOG_DISCARDS see cdi_rcv_msg ()

CDI_LOG_VERBOSE debug support

CDI_LOG_DEFAULT (CDI_LOG_FILE | CDI_LOG_STDERR | CDI_LOG_ERRORS)
APRIL 1999 CDI API GUIDE 29

GCOM, INC.

ul

turn
’s
cdi_modem_sig_poll

Prototype: int cdi_modem_sig_poll(int fid);

Parameters: fid: file descriptor associated with data stream

Return Values: 0: request sent successfully

<0: error condition

Include File(s): <gcom/cdiapi.h>, <gcom/cdi.h>

Description: This routine sends a modem signal poll to the device. The user is
responsible for monitoring the stream for the response. A successf
response will be in the form of a CD_MODEM_SIG_IND. The or
some other protocol message allowed in flag. If the routine is able to
retrieve modem signals, they are returned as the low 8 bits in the re
value. If some other protocol message is responsible for the routine
return, the return value will be 0.
APRIL 1999 CDI API GUIDE 30

GCOM, INC.

e
nd a
cdi_modem_sig_req()

Prototype: int cdi_modem_sig_req(int fid, unsigned sigs);

Parameters: fid: file descriptor associated with data stream

sigs: requested modem signals

Return Values: 0: request sent successfully

<0: request failed

Include File(s): <gcom/cdiapi.h>

Description: Send a request to CDI provider on fid to set the modem signal to th
value specified by sigs. When a modem signal changes, CDI will se
control message to the application with the primitive
CD_MODEM_SIG_IND. The control packet is of type
cd_modem_sig_ind_t, which is defined in <gcom/cdi.h>. See Appendix
A for an example of a decoder which can be used to identify and
examine packets like this.

This routine modifies the cdi_ctl_buf global variable.
APRIL 1999 CDI API GUIDE 31

GCOM, INC.
cdi_open_data()

Prototype: int cdi_open_data(void);

Parameters: None

Return Values: <0: error, errno should be appropriately set as for open(2)

>=0: the fid of the new data stream

Include File(s): <gcom/cdiapi.h>

Description: This routine opens a CDI clone device and returns a descriptor
associated with that data stream for the application to use.
APRIL 1999 CDI API GUIDE 32

GCOM, INC.
cdi_perror()

Prototype: void cdi_perror(char *msg);

Parameters: msg: message to print

Return Values: None

Include File(s): <gcom/cdiapi.h>

Description: Similar to the UNIX perror routine, but prints to the CDI log file as
well.
APRIL 1999 CDI API GUIDE 33

GCOM, INC.

ge
cdi_printf()

Prototype: void cdi_printf(char *fmt, ...);

Parameters: fmt: format string

...: additional variable arguments for the format’s
substitutions

Return Values: None

Include File(s): <gcom/cdiapi.h>

Description: Refer to the printf man page for this routine. The length of the messa
to be printed must be less than 2000 bytes.

cdi_printf performs an fprintf() to the log file.
APRIL 1999 CDI API GUIDE 34

GCOM, INC.

cdi_print_msg()

Prototype: void cdi_print_msg(unsigned char *p, unsigned n,
 int indent);

Parameters: p: buffer containing data

n: count of data

indent: number of indent spaces in front of message

Return Values: None

Include File(s): <gcom/cdiapi.h>

Description: Print out a message in hexadecimal notation. This message will be
indented by indent spaces.
APRIL 1999 CDI API GUIDE 35

GCOM, INC.

o

e of
 of
cdi_put_allow_input_req()

Prototype: int cdi_put_allow_input_req(int fid);

Parameters: fid: file descriptor associated with data stream

Return Values: 0: request sent

<0: request NOT sent, error condition

Include File(s): <gcom/cdiapi.h>

Description: Send an CD_ALLOW_INPUT_REQ on fid to the CDI provider and d
not wait for a returned ACK or NAK. This routine modifies the
cdi_ctl_buf global variable.

The application is responsible for determining the success or failur
the operation. See Appendix A starting on page 67 for an example
how to do this.
APRIL 1999 CDI API GUIDE 36

GCOM, INC.

or

cdi_put_attach_req()

Prototype: int cdi_put_attach_req(int fid, long ppa);

Parameters: fid: file descriptor associated with data stream

ppa: the ppa to attach to

Return Values: 0: request successfully sent

<0: request not sent; error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine prepares and sends fid an CD_ATTACH_REQ with a
specified ppa and does not wait for a reply.

This routine modifies the cdi_ctl_buf global variable.

The application becomes responsible for determining the success
failure of the operation. See Appendix A starting on page 67 for an
example of how to do this.
APRIL 1999 CDI API GUIDE 37

GCOM, INC.

e

ths

r

ted
cdi_put_both()

Prototype: int cdi_put_both(int fid, char *header, int hdr_length,
 char *data_ptr, int data_length, int flags);

Parameters: fid: file descriptor associated with data stream

header: is a pointer to the control part of the message. May b
NULL if header_length is <= 0.

hdr_length: is the length of the control part of the message.

data_ptr: is a pointer to the data part of the message. May be
NULL if the data_length is <= 0.

data_length: length of the data part of the message. One of
header_length and data_length must be > 0. Both leng
can be > 0.

flags: determines retry

Return Values: 0: the messages were successfully sent to the CDI drive

<0: the messages were not sent; error condition

Include File(s): <gcom/cdiapi.h>

Description: Send both control and data information on fid. If flags is set to
RetryOnSignal, this routine will attempt to resend the data if interrup
by a signal.

See <gcom/cdi.h> for the message format definitions.
APRIL 1999 CDI API GUIDE 38

GCOM, INC.

nd
cdi_put_data()

Prototype: int cdi_put_data(int fid, char *data_ptr, int length,
 long flags);

Parameters: fid: file descriptor associated with data stream

data_ptr: buffer containing data

length: number of bytes to write

flags: retry flags

Return Values: 0: the message was successfully sent

<0: the message was not sent; error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine writes length bytes from data_ptr to fid. If flags are set to
RetryOnSignal, this routine will attempt to resend the data if the se
failed due to an EINTR error.
APRIL 1999 CDI API GUIDE 39

GCOM, INC.

ical
de,

y the
ow
cdi_put_detach_req()

Prototype: int cdi_put_detach_req(int fid);

Parameters: fid: file descriptor associated with data stream

Return Values: 0: the message was successfully sent

<0: the message was not sent; error condition

Include File(s): <gcom/cdiapi.h>

Description: Like cdi_detach_req, this routine detaches a data stream from a phys
point of attachment (PPA). This routine works in a nonblocking mo
sending the request and returning immediately.

This routine modifies the cdi_ctl_buf global variable.

This routine will not wait for an ACK or NAK before returning. The
success or failure of the actual send operation must be determined b
application. See Appendix A starting on page 67 for an example of h
to do this.
APRIL 1999 CDI API GUIDE 40

GCOM, INC.

 a
card

y the
ow
cdi_put_disable_req()

Prototype: int cdi_put_disable_req(int fid, unsigned long disposal);

Parameters: fid: file descriptor associated with data stream

disposal: what to do with queued data

Return Values: 0: request successfully sent

<0: request NOT successfully sent; error condition

Include File(s): <gcom/cdiapi.h>

<gcom/cdi.h>

Description: Send a CD_DISABLE_REQ to the CDI provider and do not wait for
response. If data is queued, disposal can be set to CD_FLUSH to dis
undelivered data, CD_WAIT to attempt to deliver unsent data, or
CD_DELIVER to deliver data prior to disabling the line.

This routine modifies the cdi_ctl_buf global variable.

This routine will not wait for an ACK or NAK before returning. The
success or failure of the actual send operation must be determined b
application. See Appendix A starting on page 67 for an example of h
to do this.
APRIL 1999 CDI API GUIDE 41

GCOM, INC.

y the
ow
cdi_put_enable_req()

Prototype: int cdi_put_enable_req(int fid);

Parameters: fid: file descriptor associated with data stream

Return Values: 0: request successfully sent

<0: request was NOT sent; error condition

Include File(s): <gcom/cdiapi.h>

Description: Transmits an CD_ENABLE_REQ to the CDI provider using fid. This
routine does not wait for a response.

This routine modifies the cdi_ctl_buf global variable.

This routine will not wait for an ACK or NAK before returning. The
success or failure of the actual send operation must be determined b
application. See Appendix A starting on page 67 for an example of h
to do this.
APRIL 1999 CDI API GUIDE 42

GCOM, INC.
cdi_put_frame()

Prototype: int cdi_put_frame(int fid, unsigned char address,
 unsigned char control, unsigned char *ptr,
 int count);

Parameters: fid: file descriptor associated with data stream

address: address byte

control: control byte

ptr: buffer containing data

count: amount of data to send

Return Values: 0: frame was sent successfully

<0: frame was not sent successfully

Include File(s): <gcom/cdiapi.h>

Description: Send a buffer of data pre-pended with the address and control bytes. The
count can be a maximum of 400.
APRIL 1999 CDI API GUIDE 43

GCOM, INC.

nd
cdi_put_proto()

Prototype: int cdi_put_proto(int fid, int length, long flags);

Parameters: fid: file descriptor associated with data stream

length: number of bytes to write

flags: retry flags

Return Values: 0: the message contained in cdi_ctl_buf was successfully
sent

<0: the message was not sent; error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine writes the proto message built in the global cdi_ctl_buf to
fid. If flags are set to RetryOnSignal, this routine will attempt to rese
the data if the send failed due to an EINTR error.
APRIL 1999 CDI API GUIDE 44

GCOM, INC.

e-

e-

l-

e

d

cdi_rcv_msg()

Prototype: int cdi_rcv_msg(int fid, char *data_ptr, int bfr_len,
 long flags);

Parameters: fid: file descriptor associated with data stream

data_ptr: buffer for the received data

bfr_len: max. amount of data to receive

flags: flags from options listed below

Return Values: >0: number of M_DATA bytes received

0: A CDI control message is present at cdi_ctl_buf

<0: stream is no longer usable

Include File(s): <gcom/cdiapi.h>

Description: Read data from fid and place it into data_ptr. If any control information
is read, it is placed in the global cdi_ctl_buf with the length of the control
information set in the global cdi_ctl_cnt.

Table 8 Flag values suitable for flag parameter to cdi_rcv_msg()

value define meaning

0x001 Return_error_ack Return if an error acknowledgement r
ceived

0x002 Return_info_ack Return if normal data acknowledgement r
ceived

0x004 Return_unidata_ack Return if unnumbered I-frame data acknow
edgement received

0x008 Return_error_ind Return if error indication received

0x010 Return_disable_con Return if disable confirmation received

0x020 Return_enable_con Return if enable confirmation received

0x040 RetryOnSignal Retry operation if interrupted by signal whil
blocking (handle EINTR’s)

0x080 Return_ok_ack Return if OK acknowledgement received

0x100 Return_bad_frame_ind Return if bad frame indication received

0x200 Return_modem_sig_ind Return if modem signal indication receive
APRIL 1999 CDI API GUIDE 45

GCOM, INC.
cdi_read_data()

Prototype: int cdi_read_data(int cdi_data, char *buf, int cnt);

Parameters: cdi_data: file descriptor of the stream to receive the data from

buf: buffer for the received data

cnt: maximum amount of data to receive

Return Values: >0: number of M_DATA bytes received

0: A CDI control message is present at cdi_ctl_buf

<0: stream is no longer usable

Include File(s): <gcom/cdiapi.h>

Description: This routine reads up to cnt bytes of data from cdi_data into buf. If any
control information is read, it is placed in the global cdi_ctl_buf with the
length of the control information set in the global cdi_ctl_cnt.
APRIL 1999 CDI API GUIDE 46

GCOM, INC.

g
ile
”

 a

cdi_set_log_size()

Prototype: int cdi_set_log_size(long nbytes);

Parameters: nbytes: the maximum size of the logfile

Return Values: 0: success

Include File(s): <gcom/cdiapi.h>

Description: This routine sets the maximum length of the log file in bytes. The lo
will be written in a circular fashion, returning to the beginning of the f
and overwriting the oldest portions first. The ASCII string “End-of-log
will be written at the logical end of the log when the file is written in
circular fashion. If nbytes <= 0, the log size will not be limited and the
log will be allowed to grow continuously.
APRIL 1999 CDI API GUIDE 47

GCOM, INC.

.
a

l
cdi_wait_ack()

Prototype: int cdi_wait_ack(int fid, unsigned long primitive,
 int *state_ptr);

Parameters: fid: file descriptor associated with data stream

primitive: primitive to wait for

state_ptr: pointer to an integer to store state data in

Return Values: 1: primitive ACK’d

0: primitive NAK’d

<0: error condition

Include File(s): <gcom/cdiapi.h>

<gcom/cdi.h>

Description: This routine is called after sending a CD_ATTACH_REQ or
CD_ENABLE_REQ on fid to wait for a returned confirmation or NAK
It compares primitive with that received in the message looking for
matching response. Any message received before the proper
ACK/NAK will be discarded.

If state_ptr is not NULL, the variable to which it points will be modified
to represent the current state.

This routine modifies the cdi_data_buf and possibly the cdi_ctl_buf
global variables. Refer to the cdi_get_a_msg() section of this manual as
this routine calls it to get the data and will modify some of the globa
variable.
APRIL 1999 CDI API GUIDE 48

GCOM, INC.
cdi_write_data()

Prototype: int cdi_write_data(int cdi_data, char *buf, int cnt);

Parameters: cdi_data: file descriptor associated with data stream

buf: buffer containing the data

cnt: amount of data to send

Return Values: 0: the data was successfully sent

<0: the data was not sent; error condition

Include File(s): <gcom/cdiapi.h>

Description: This routine will write cnt bytes of data from buf to cdi_data.

This routine modifies the cdi_data_cnt global variable.
APRIL 1999 CDI API GUIDE 49

GCOM, INC.

ray

sed,
ata

eader
the

stem
er.
cdi_xray_req()

Prototype: int cdi_xray_req(int fid,
 int upa,
 int on_off,
 int hi_wat,
 int lo_wat);

Parameters: fid: The file descriptor of the data stream to use as the X-
stream.

upa: The CDI UPA to be X-rayed.

on_off: Non-zero to turn X-ray on, zero to turn X-ray off.

hi_wat: A high-water mark for the stream. Should probably be
relatively large (60000 or so).

lo_wat: A low-water mark for the stream. Should probably be
about 75% of the high-water mark.

Return Values: 0: The request was successfully sent.

<0: The request was not sent; error condition.

Include File(s): <gcom/cdiapi.h>

Description: This routine is used with a newly-opened data stream. When proces
the request sent by this routine links the stream to a CDI UPA. Any d
traffic passing through the UPA will also be presented to this data
stream. When data is presented to the X-ray stream, a descriptive h
is prepended to the data, providing some insight into the nature of
data which follows. This header conforms to the format:
typedef struct
{
 cd_uns8 xr_type ; /* 1 = send, 2 = receive */
 cd_uns8 xr_rsvd1 ; /* reserved */
 cd_uns16 xr_seq ; /* sequence number */
 cd_uns32 xr_timestamp ; /* Rsys time (millisecs) */
 cd_uns16 xr_modid ; /* Rsys process number */
 cd_uns16 xr_upa ; /* CDI UPA number */
} cd_x_ray_hdr_t ;

The Rsys time is the number of elapsed milliseconds since the Rsy
was initialized. The process number is an internal module ID numb
APRIL 1999 CDI API GUIDE 50

GCOM, INC.

low
r

er
tream
ing
 it
 will

tted

nd
re
Sequence numbers can be useful in keeping track of flow control. F
control for X-ray streams works a little differently than flow control fo
other streams. A “normal” stream will queue data until the high wat
mark is reached, then exert backpressure to stop data flow on that s
until the low water mark is reached. An X-ray stream begins discard
data when the high water mark is reached, then begins re-queuing
when the low water mark is reached. Monitoring sequence numbers
allow the user to determine when data was dropped.

The data which follow this header are the raw CDI message, forma
according to the protocol rules, with all the headers included. An
application with some knowledge of the underlying protocols can
decipher pieces of these messages to perform data tracing.

As a practical note, when X-ray streams are going to be used, the
STREAMS configuration must have an extra CDI UPA or two beyo
those needed to support the protocol drivers. These extra UPA’s a
used by the X-ray streams.
APRIL 1999 CDI API GUIDE 51

GCOM, INC.
APRIL 1999 CDI API GUIDE 52

GCOM, INC.
APRIL 1999 CDI API GUIDE 53

GCOM, INC.
APRIL 1999 CDI API GUIDE 54

GCOM, INC.
APRIL 1999 CDI API GUIDE 55

GCOM, INC.
APRIL 1999 CDI API GUIDE 56

GCOM, INC.
APRIL 1999 CDI API GUIDE 57

GCOM, INC.
APRIL 1999 CDI API GUIDE 58

GCOM, INC.
APRIL 1999 CDI API GUIDE 59

GCOM, INC.
APRIL 1999 CDI API GUIDE 60

GCOM, INC.
APRIL 1999 CDI API GUIDE 61

GCOM, INC.
APRIL 1999 CDI API GUIDE 62

GCOM, INC.

APRIL 1999 CDI API GUIDE 63

2 · GCOM, INC.

64 CDI API GUIDE APRIL 1999

GCOM, INC.

APRIL 1999 CDI API GUIDE 65

2 · GCOM, INC.

66 CDI API GUIDE APRIL 1999

r. It is
A

Sample Decoder
The code sample below is a skeleton for a control message decode
not complete, but should be used as a guide.

#include <gcom/cdiapi.h>
#include <gcom/cdi.h>

void
cdi_decode_ctl (prefix)
 char *prefix ;
{
 cd_ok_ack_t *ap; /* for primitive */

 if (prefix != NULL)
 pf(“%s: “, prefix) ;
 ap = (cd_ok_ack_t *) cdi_ctl_buf ; /* proto ptr */

 switch ((int) ap -> cd_primitive)
 {
 case CD_INFO_ACK: /* Information ack */
 {
 cd_info_ack_t *ip;

 ip = (cd_info_ack_t *) ap;
 ...
 break;
 }

 case CD_ERROR_ACK:/* Error acknowledgement */
 {
 cd_error_ack_t *ep;
 ep = (cd_error_ack_t *) ap;
 ...
 break;
 }

 case CD_ENABLE_CON: /* Enable confirmation */
 {
 cd_enable_con_t *ep;
APRIL 1999 CDI API GUIDE 67

GCOM, INC.
 ep = (cd_enable_con_t *) ap;
 ...
 break;
 }

 case CD_DISABLE_CON:/* Disable confirmation */
 {
 cd_disable_con_t *dp;
 dp = (cd_disable_con_t *) ap;
 ...
 break;
 }

 case CD_ERROR_IND: /* Error indication */
 {
 cd_error_ind_t *ep;
 ...
 break;
 }

 case CD_UNITDATA_ACK:/* Data send acknowledgement */
 {
 cd_unitdata_ack_t *up;
 up = (cd_unitdata_ack_t *) ap;
 ...
 break;
 }

 case CD_UNITDATA_IND:/* Data receive indication */
 {
 cd_unitdata_ind_t *ip;
 ip = (cd_unitdata_ind_t *) ap;
 ...
 break;
 }

 case CD_BAD_FRAME_IND: /* Bad Frame */
 {
 cd_bad_frame_ind_t *pp;
 pp = (cd_bad_frame_ind_t *) ap;
 cdi_printf (“cd_bad_frame_ind: state 0x%lx \n”, pp -> cd_state);

 switch (pp->cd_error)
 {
 case CD_FRMTOOLONG:
 cdi_printf (“Frame too long\n”);
 break ;
 case CD_FRMNONOCTET:
 cdi_printf (“Frame not octet aligned\n”);
 break ;
 case CD_EMPTY_BFR:
 cdi_printf (“Empty buffer\n”);
 break ;
 case CD_BAD_CRC:
 cdi_printf (“Bad CRC\n”);
 break ;
 case CD_FRM_ABORTED:
 cdi_printf (“Frame aborted\n”);
 break ;
APRIL 1999 CDI API GUIDE 68

GCOM, INC.
 case CD_RCV_OVERRUN:
 cdi_printf (“Receiver overrun\n”);
 break ;
 default:
 cdi_printf (“cd_error 0x%x\n”, pp -> cd_error);
 break ;
 }
 break;
 }

 case CD_MODEM_SIG_IND: /* rcv modem signals */
 {
 cd_modem_sig_ind_t *p;
 p = (cd_modem_sig_ind_t *) ap;
 if (p->cd_sigs & CD_DTR)
 {
 /* DTR is asserted */
 }
 else
 {
 /* DTR is NOT asserted */
 }
 if (p->cd_sigs & CD_RTS)
 {
 /* RTS is asserted */
 }
 else
 {
 /* RTS is NOT asserted */
 }
 if (p->cd_sigs & CD_DSR)
 {
 /* DSR is asserted */
 }
 else
 {
 /* DSR is NOT asserted */
 }
 if (p->cd_sigs & CD_DCD)
 {
 /* DCD is asserted */
 }
 else
 {
 /* DCD is NOT asserted */
 }
 if (p->cd_sigs & CD_CTS)
 {
 /* CTS is asserted */
 }
 else
 {
 /* CTS is NOT asserted */
 }
 if (p->cd_sigs & CD_RIN)
 {
 /* RING is asserted */
 }
 else
APRIL 1999 CDI API GUIDE 69

GCOM, INC.
 {
 /* RING is NOT asserted */
 }
 cdi_printf (“cd_modem_sig_ind: %s\n”,
 cdi_decode_modem_sigs(p -> cd_sigs));
 break;
 }
 default:
 {
 cdi_printf (“cdi_decode_ctl: unknown primitive 0x%lx\n”,
 ap -> cd_primitive);
 break;
 }
 } /* switch on type */
} /* cdi_decode_ctl */

/*
 * This is an excerpt from a program showing the decoder in use.
 * The example assumes that variables have been declared and initialized,
 * that the stream has been opened, and that communication is already
 * underway.
 * The purpose of the example is primarily to illustrate using
 * cdi_rcv_msg() to handle both normal data and control messages
 */

/* Any protocol message received should cause cdi_rcv_msg() to return
 * so we put all options into flag.
 */
flag = Return_error_ack | Return_info_ack | Return_unidata_ack |
 Return_error_ind | Return_disable_con | Return_enable_con |
 Return_ok_ack | Return_bad_frame_ind | Return_modem_sig_ind;

/* Adds RetryOnSignal so that an EINTR error will result in a retry */
flag |= RetryOnSignal;

/* Calls cdi_rcv_msg to receive incoming messages */
ret = cdi_rcv_msg(stream, buffer, length, flag);

/* In the event of data, process the data according to the application.
 * The routine to do this is not included in this example.
 */
if (ret > 0)
 cdi_process_buffer();

/* In the event of a control message, call our decoder, cdi_decode_ctl().
 * The sample decoder is provided in skeletal form above.
 */
if (ret == 0)
 cdi_decode_ctl(NULL);

/* In the event of a stream failure, call our exception handler.
 * This routine is not presented here, but would likely attempt to open
 * and initialize a new data stream, then begin re-enabling communication.
 */
if (ret < 0)
 cdi_handle_stream_error();
APRIL 1999 CDI API GUIDE 70

	The CDI API
	Introduction
	Using the CDI API
	Preparing STREAMS
	cdi_init(), cdi_init_FILE()
	cdi_set_log_size()
	cdi_open_data()

	Manipulating the Device
	cdi_attach_req()
	cdi_wait_ack()
	cdi_detach_req()
	cdi_enable_req()
	cdi_disable_req()
	cdi_allow_input_req()

	Data Communications
	cdi_write_data()
	cdi_read_data()
	cdi_rcv_msg()
	cdi_put_proto()
	cdi_put_data()
	cdi_put_both()
	cdi_put_frame()

	Utility Routines
	cdi_modem_sig_req()
	cdi_printf()
	cdi_decode_modem_sigs()
	cdi_decode_ctl()
	cdi_print_msg()
	cdi_perror()

	Global Variables
	Decoding Control Messages from the CDI Provider

	API Reference
	cdi_allow_input_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_attach_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_decode_ctl()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_decode_modem_sigs()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_detach_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_disable_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_enable_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_get_a_msg
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_get_modem_sigs
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_init()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_init_FILE()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_modem_sig_poll
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_modem_sig_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_open_data()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_perror()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_printf()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_print_msg()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_allow_input_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_attach_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_both()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_data()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_detach_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_disable_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_enable_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_frame()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_put_proto()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_rcv_msg()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_read_data()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_set_log_size()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_wait_ack()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_write_data()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	cdi_xray_req()
	Prototype:
	Parameters:
	Return Values:
	Include File(s):
	Description:

	Sample Decoder

