Data Link Provider Interface Specification

UNIX International
OSl Work Group
Revision: 2.0.0 (August 20, 1991)

Published by:

UNIX International
Waterview Corporate Center
20 Waterview Boulevard
Parsippany, NJ 07054

for further information, contact:
Vice President of Marketing

Phone: +1 201-263-8400
Fax: +1 201-263-8401

International Offices:

UNIX International UNIX International UNIX International UNIX International

Asian/Pacific Office Australian Office European Office Pacific Basin Office

Shinei Bldg. 1F 22/74 - 76 Monarch St. 25, Avenue de Beaulieu Cintech |1

Kameido Cremorne, NSW 2090 1160 Brussels 75 Science Park Drive

Koto-ku, Tokyo 136 Australia Belgium Singapore Science Park

Japan Singapore 0511
Singapore

Phone:(81) 3-3636-1122 Phone;(61) 2-953-7838 Phone:(32) 2-672-3700 Phone:(65) 776-0313
Fax: (81)3-3636-1121 Fax: (61)2953-3542 Fax: (32)2-672-4415 Fax: (65)776-0421

Copyright [0 1991 UNix International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name UNIx
International not be used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission. UNIX International makes no representations about the suitability of
this documentation for any purpose. It isprovided "asis' without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THISDOCUMENTATION.

NOTICE:

This document is based on the UNIx System Laboratories Data Link Provider Interface (DLPI)
specification which was used with permission by the UNix International OSI Work Group (Ul OSIWG).
Participation in the Ul OSIWG is open to UNIX International members and other interested parties. For
further information contact UNIX International at the addresses above.

UNIX International is making this documentation available as a reference point for the industry. While
UNIX International believes that these interfaces are well defined in this release of the document, minor
changes may be made prior to products conforming to the interfaces being made available from UNix
System Laboratories or UNIX International members.

Trademarks:

UNixO isaregistered trademark of UNIx System Laboratories in the United States and other countries.

Version 2.0.0 (Second Printing) August 20, 1991

0S| Work Group

1. Introduction

This document specifies a STREAMS kernel-level instantiation of the 1ISO Data Link Service Definition
DIS8886!Y and Logical Link Control DIS 8802/2 (LLC)!?. Where the two standards do not conform, DIS
8886 prevails.

The Data Link Provider Interface (DLPI) enables a data link service user to access and use any of a variety
of conforming data link service providers without specia knowledge of the provider's protocol.
Specifically, the interface is intended to support X.25 LAPB, BX.25 level 2, SDLC, ISDN LAPD,
Ethernetl, CSMA/CD, FDDI, token ring, token bus, and Bisync. Among the expected data link service
users are implementations of the OSI network layer and SNA path control.

The interface specifies access to data link service providers, and does not define a specific protocol
implementation. Thus, issues of network management, protocol performance, and performance analysis
tools are beyond the scope of this document and should be addressed by specific implementations of a data
link provider. However, accompanying each provider implementation should be information that
describes the protocol-specific behavior of that provider. Currently, there are plans to come up with a set
of implementor’s agreements/guidelines for common data link providers. These agreements will address
issues such as DLSAP address space, subsequent addresses, ppa access and control, QOS, supported
services etc.

This specification assumes the reader is familiar with OSI Reference Model!¥ terminology, OSI Data Link
Services, and STREAMS.

1.1 Document Organization
This specification is organized as follows:

« Section 2, Model of the Data Link Layer, presents background on the structure of the data link layer of
the OSI Reference Model, and explains the intended architecture in the STREAMS environment. Data
link addressing concepts are also presented.

« Section 3, DLPI Services, presents an overview of the services provided by DLPI.

« Section 4, DLPI Primitives, describes the detailed syntax and semantics of each DLPI primitive that
crosses the data link interface.

« Section 5, Quality of Data Link Service, describes the quality-of-service parameters supported by
DLPI and the rules for negotiating/selecting the values of those parameters.

- Appendix A, Optiona primitives to perform certain essential management functions.

- Appendix B, Allowable Sequence of DLPI Primitives, describes the alowable sequence of DLPI
primitives that may be issued across the interface.

« Appendix C, Precedence of DLPI Primitives, presents a summary of the precedence of DLPI primitives
asthey are queued by the DL S provider and/or DLS user.

« Appendix D presents a Glossary of DLPI Termsand Acronyms.

« Appendix E, Guidelines for Protocol Independent DLS Users, summarizes guidelines a DLS user
implementation must follow to be fully protocol-independent.

- Appendix F, Required Information for DL S Provider-Specific Addenda, presents the information that
should be documented for each DL S provider implementation.

- Appendix G, DLPI Header File, presents the header file containing DLPI structure and constant
definitions needed by a DL S user or provider implemented to use the interface.

Revision: 2.0.0 Page 1 August 20, 1991

Revision: 2.0.0 Page 2 August 20, 1991

0S| Work Group

2. Model of the Data Link Layer

Thedata link layer (layer 2 in the OS| Reference Model) is responsible for the transmission and error-free
delivery of bits of information over aphysica communications medium.

The model of the data link layer is presented here to describe concepts that are used throughout the
specification of DLPI. It isdescribed in terms of an interface architecture, aswell as addressing concepts
needed to identify different components of that architecture. The description of the model assumes
familiarity with the OS| Reference Model.

2.1 Modd of the Service Interface
Each layer of the OS| Reference Model has two standards:
- onethat defines the services provided by the layer, and
- onethat defines the protocol through which layer services are provided.

DLPI isan implementation of the first type of standard. It specifies an interface to the services of the data
link layer. The following figure depicts the abstract view of DLPI.

Data Link
User

Request/Response
Primitives

Indication/Confirmation
Primitives

Data Link
Provider

Figure 1. Abstract View of DLPI

The data link interface is the boundary between the network and data link layers of the OSl Reference
Model. The network layer entity is the user of the services of the data link interface (DLS user), and the
data link layer entity is the provider of those services (DLS provider). This interface consists of a set of
primitives that provide access to the data link layer services, plusthe rules for using those primitives (state
transition rules). A data link interface service primitive might request a particular service or indicate a
pending event.

To provide uniformity among the various UNIX system networking products, an effort is underway to
develop service interfaces that map to the OSl Reference Model. A set of kernel-level interfaces, based on
the STREAMS development environment, constitute a major portion of this effort. The service primitives
that make up these interfaces are defined as STREAMS messages that are transferred between the user and
provider of the service. DLPI is one such kernel-level interface, and is targeted for STREAMS protocol
modules that either use or provide data link services. In addition, user programs that wish to access a
STREAMS-based data link provider directly may do so using the putmsg(2) and getmsg(2) system calls.

Referring to the abstract view of DLPI (Figure 1), the DLS provider is configured as a STREAMS driver,
and the DLS user accesses the provider using open(2) to establish a stream to the DLS provider. The
stream acts as a communication endpoint between a DLS user and the DLS provider. After the stream is
created, the DLS user and DLS provider communicate via the messages presented later in this

Revision: 2.0.0 Page 3 August 20, 1991

Model of the Data Link Layer

specification.

DLPI is intended to free data link users from specific knowledge of the characteristics of the data link
provider. Specifically, the definition of DLPI hopes to achieve the goal of allowing a DLS user to be
implemented independent of a specific communications medium. Any data link provider (supporting any
communications medium) that conforms to the DLPI specification may be substituted beneath the DLS
user to provide the data link services. Support of a new DLS provider should not require any changes to
the implementation of the DLS user.

2.2 Modesof Communication

The data link provider interface supports three modes of communication: connection, connectionless and
acknowledged connectionless. The connection mode is circuit-oriented and enables data to be transferred
over a pre-established connection in a sequenced manner. Data may be lost or corrupted in this service
mode, however, due to provider-initiated resynchronization or connection aborts.

The connectionless mode is message-oriented and supports data transfer in self-contained units with no
logical relationship required between units. Because there is no acknowledgement of each data unit
transmission, this service mode can be unreliable in the most general case. However, a specific DLS
provider can provide assurance that messages will not be lost, duplicated, or reordered.

The acknowledged connectionless mode provides the means by which a data link user can send data and
reguest the return of data at the same time. Although the exchange service is connectionless, in-sequence
delivery is guaranteed for data sent by the initiating station. The data unit transfer is point-to-point.

2.2.1 Connection-mode Service

The connection-mode service is characterized by four phases of communication: local management,
connection establishment, data transfer, and connection release.

2.2.1.1 Local Management

This phase enables a DLS user to initialize a stream for use in communication and establish an identity
with the DLS provider.

2.2.1.2 Connection Establishment

This phase enables two DL S users to establish a data link connection between them to exchange data. One
user (the calling DLS user) initiates the connection establishment procedures, while another user (the
called DLS user) waits for incoming connect requests. The called DLS user is identified by an address
associated with its stream (as will be discussed shortly).

A caled DLS user may either accept or deny a request for a data link connection. If the request is
accepted, aconnection is established between the DL S users and they enter the data transfer phase.

For both the calling and called DL S users, only one connection may be established per stream. Thus, the
stream is the communication endpoint for adata link connection.

The called DLS user may choose to accept a connection on the stream where it received the connect
request, or it may open a new stream to the DLS provider and accept the connection on this new,
responding stream. By accepting the connection on a separate stream, the initial stream can be designated
as a listening stream through which all connect requests will be processed. As each request arrives, a new
stream (communication endpoint) can be opened to handle the connection, enabling subsequent requests to
be queued on asingle stream until they can be processed.

2.2.1.3 Data Transfer

In this phase, the DL S users are considered peers and may exchange data s multaneously in both directions
over an established data link connection. Either DLS user may send data to its peer DL S user at any time.
Data sent by a DL S user is guaranteed to be delivered to the remote user in the order in which it was sent.

Revision: 2.0.0 Page 4 August 20, 1991

0S| Work Group

2.2.1.4 Connection Release

This phase enables either the DLS user, or the DLS provider, to break an established connection. The
release procedure is considered abortive, so any data that has not reached the destination user when the
connection is released may be discarded by the DLS provider.

2.2.2 Connectionless-mode Service

The connectionless mode service does not use the connection establishment and release phases of the
connection-mode service. The loca management phase is till required to initialize a stream. Once
initialized, however, the connectionless data transfer phase is immediately entered. Because there is no
established connection, however, the connectionless data transfer phase requires the DLS user to identify
the destination of each data unit to be transferred. The destination DL S user is identified by the address
associated with that user (aswill be discussed shortly).

Connectionless data transfer does not guarantee that data units will be delivered to the destination user in
the order in which they were sent. Furthermore, it does not guarantee that a given data unit will reach the
destination DL S user, athough a given DL S provider may provide assurance that data will not be lost.

2.2.3 Acknowledged Connectionless-maode Service

The acknowledged connectionless mode service also does not use the connection establishment and
release phases of the connection-mode service. The local management phase is till required to initialize a
stream. Once initialized, the acknowledged connectionless data transfer phase isimmediately entered.

Acknowledged connectionless data transfer guarantees that data units will be delivered to the destination
user in the order in which they were sent. A data link user entity can send a data unit to the destination
DL S User, request a previously prepared data unit from the destination DL S User, or exchange data units.

2.3 DLPI Addressing

Each user of DLPI must establish an identity to communicate with other data link users. This identity
consists of two pieces. First, the DL S user must somehow identify the physical medium over which it will
communicate. This is particularly evident on systems that are attached to multiple physica media
Second, the DLS user must register itself with the DLS provider so that the provider can deliver protocol
data units destined for that user. The following figure illustrates the components of this identification
approach, which are explained below.

DLSUsers

DLSAP

DLS
Provider

PPA

Physical Media

Figure 2. DataLink Addressing Components

Revision: 2.0.0 Page 5 August 20, 1991

Model of the Data Link Layer

2.3.1 Physical Attachment I dentification

The physical point of attachment (PPA in Figure 2) is the point at which a system attaches itself to a
physical communications medium. All communication on that physical medium funnels through the PPA.
On systems where a DL S provider supports more than one physical medium, the DLS user must identify
which medium it will communicate through. A PPA isidentified by a unique PPA identifier. For media
that support physical layer multiplexing of multiple channels over asingle physical medium (such as the B
and D channels of ISDN), the PPA identifier must identify the specific channel over which communication
will occur.

Two styles of DLS provider are defined by DLPI, distinguished by the way they enable a DLS user to
choose a particular PPA. The style 1 provider assigns a PPA based on the major/minor device the DLS
user opened. One possible implementation of a style 1 driver would reserve a major device for each PPA
the data link driver would support. This would alow the STREAMS clone open feature to be used for each
PPA configured. This style of provider is appropriate when few PPAswill be supported.

If the number of PPAs a DLS provider will support is large, a style 2 provider implementation is more
suitable. The style 2 provider requires a DLS user to explicitly identify the desired PPA using a special
attach service primitive. For astyle 2 driver, the open(2) creates a stream between the DLS user and DL S
provider, and the attach primitive then associates a particular PPA with that stream. The format of the
PPA identifier is specific to the DL S provider, and should be described in the provider-specific addendum
documentation.

DLPI provides a mechanism to get and/or modify the physical address. The primitives to handle these
functions are described in Appendix A. The physical address value can be modified in a post-attached
state. This would modify the value for all streams for that provider for a particular PPA. The physical
address cannot be modified if even asingle stream for that PPA isin the bound state.

The DLS User wuses the supported primitives (DL _ATTACH_REQ, DL_BIND_ REQ,
DL_ENABMULTI_REQ, DL_PROMISCON_REQ) to define a set of enabled physical and SAP address
components on a per Sream basis. It isinvalid for aDLS Provider to ever send upstream a data message
for which the DLS User on that stream has not requested. The burden is on the provider to enforce by any
means that it chooses, the isolation of SAP and physical address space effects on a per-stream basis.

2.3.2 DataLink User Identification

A data link user's identity is established by associating it with a data link service access point (DLSAP),
which is the point through which the user will communicate with the data link provider. A DLSAP is
identified by a DLSAP address.

The DLSAP address identifies a particular data link service access point that is associated with a stream
(communication endpoint). A bind service primitive enables a DLS user to either choose a specific
DLSAP by specifying its DLSAP address, or to determine the DLSAP associated with a stream by
retrieving the bound DLSAP address. This DLSAP address can then be used by other DL S users to access
a specific DLS user. The format of the DLSAP address is specific to the DLS provider, and should be
described in the provider-specific addendum documentation. However, DLPI provides a mechanism for
decomposing the DL SAP address into component pieces. The DL_INFO_ACK primitive returns the length
of the SAP component of the DLSAP address, along with the total length of the DLSAP address.

Certain DLS Providers require the capability of binding on multiple DLSAP addresses. This can be
achieved through subsequent binding of DLSAP addresses. DLPI supports peer and hierarchical binding
of DLSAPs. When the User requests peer addressing, the DLSAP specified in a subsequent bind may be
used in lieu of the DLSAP bound in the DL_BIND_REQ. Thiswill alow for a choice to be made between
a number of DLSAPs on a stream when determining traffic based on DLSAP values. An example of this
would be to specify various ether type values as DLSAPs. The DL_BIND_REQ, for example, could be
issued with ether_type value of IP, and a subsequent bind could be issued with ether type value of ARP.
The Provider may now multiplex off of the ether_type field and allow for either IP or ARP traffic to be

Revision: 2.0.0 Page 6 August 20, 1991

0S| Work Group

sent up this stream.

When the DLS User requests hierarchical binding, the subsequent bind will specify a DLSAP that will be
used in addition to the DLSAP bound using a DL_BIND_REQ. This will alow additional information to
be specified, that will be used in a header or used for demultiplexing. An example of this would be to use
hierarchical bind to specify the OUI (Organizationally Unique Identifier) to be used by SNAP.

If a DLS Provider supports peer subsequent bind operations, the first SAP that is bound is used as the
source SAP when there is ambiguity.

DLPI supports the ability to associate several streams with a single DLSAP, where each stream may be a
unique data link connection endpoint. However, not al DLS providers can support such configurations
because some DLS providers may have no mechanism beyond the DLSAP address for distinguishing
multiple connections. In such cases, the provider will restrict the DLS user to one stream per DLSAP.

2.4 The Connection Management Stream

The earlier description of the connection-mode service assumed that a DLS user bound a DLSAP to the
stream it would use to receive connect requests. In some instances, however, it is expected that a given
service may be accessed through any one of severa DLSAPs. To handle this scenario, a separate stream
would be required for each possible destination DLSAP, regardless of whether any DLS user actually
reguested a connection to that DLSAP. Obvious resource problems can result in this scenario.

To obviate the need for tying up system resources for al possible destination DLSAPS, a "connection
management stream’ utility is defined in DLPI. A connection management stream is one that receives any
connect requests that are not destined for currently bound DLSAPs capable of receiving connect
indications. With this mechanism, a specia listener can handle incoming connect requests intended for a
set of DLSAPs by opening a connection management stream to the DLS provider that will retrieve all
connect requests arriving through a particular PPA. In the model, then, there may be a connection
management stream per PPA.

Revision: 2.0.0 Page 7 August 20, 1991

Revision: 2.0.0 Page 8 August 20, 1991

0S| Work Group

3. DLPI Services

The various features of the DLPI interface are defined in terms of the services provided by the DLS
provider, and the individual primitives that may flow between the DLS user and DL S provider.

The data link provider interface supports three modes of service: connection, connectionless and
acknowledged connectionless. The connection mode is circuit-oriented and enables data to be transferred
over an established connection in a sequenced manner. The connectionless mode is message-oriented and
supports data transfer in self-contained units with no logical relationship required between units. The
acknowledged connectionless mode is message-oriented and guarantees that data units will be delivered to
the destination user in the order in which they were sent. This specification also defines a set of loca
management functions that apply to all modes of service.

The XID and TEST services that are supported by DLPI are listed below. The DLS User can issue an XID
or TEST request to the DLS Provider. The Provider will transmit an XID or TEST frame to the peer DLS
Provider. On receiving a response, the DLS Provider sends a confirmation primitive to the DLS User. On
receiving an XID or TEST frame from the peer DL S Provider, the local DL S Provider sends up an XID or
TEST indication primitive to the DLS User. The User must respond with an XID or TEST response frame
to the Provider.

The services are tabulated below and described more fully in the remainder of this section.

Revision: 2.0.0 Page 9 August 20, 1991

DLPI Services

Phase

Service

Primitives

Local Management

Information Reporting

DL_INFO_REQ, DL_INFO_ACK, DL_ERROR_ACK

Attach

DL_ATTACH_REQ, DL_DETACH_REQ, DL_OK_ACK,
DL_ERROR_ACK

Bind DL_BIND_REQ, DL_BIND_ACK, DL_SUBS BIND_REQ,
DL_SUBS BIND_ACK, DL_UNBIND_REQ,
DL_SUBS UNBIND_REQ, DL_OK_ACK,
DL_ERROR_ACK

Other DL_ENABMULTI_REQ, DL_DISABMULTI_REQ,

DL_PROMISCON_REQ, DL_PROMISCOFF_REQ,
DL_OK_ACK, DL_ERROR_ACK

Connection
Establishment

Connection Establishment

DL_CONNECT_REQ, DL_CONNECT _IND,
DL_CONNECT_RES, DL_CONNECT_CON,
DL_DISCONNECT_REQ, DL_DISCONNECT_IND,
DL_TOKEN_REQ, DL_TOKEN_ACK, DL_OK_ACK,

DL_ERROR_ACK

Connection-mode Data
Transfer

Data Transfer

DL_DATA_REQ, DL_DATA_IND

Reset

DL_RESET_REQ,DL_RESET_IND, DL_RESET_RES,
DL_RESET _CON,DL_OK_ACK, DL_ERROR ACK

Connection Release

Connection Release

DL_DISCONNECT_REQ, DL_DISCONNECT_IND,
DL_OK_ACK, DL_ERROR_ACK

Connectionless-mode Data Transfer DL_UNITDATA_REQ, DL_UNITDATA_IND
Data Transfer
QOS Management DL_UDQOS REQ,DL_OK_ACK, DL_ERROR_ACK
Error Reporting DL_UDERROR_IND
XID and TEST services XD DL_XID_REQ, DL_XID_IND, DL_XID_RES,
DL_XID_CON
TEST DL_TEST REQ,DL_TEST_IND,DL_TEST RES,
DL_TEST_CON
Acknowledged Data Transfer DL_DATA_ACK_REQ, DL_DATA_ACK_IND,
ionless DL_DATA_ACK_STATUS_IND, DL_REPLY_REQ,
Connecti Osrr“ mode DL_REPLY_IND, DL_REPLY_STATUS IND,
Data Transfer DL_REPLY_UPDATE_REQ,
DL_REPLY_UPDATE_STATUS IND
QOS Management DL_UDQOS REQ,DL_OK_ACK, DL_ERROR_ACK
Error Reporting DL_UDERROR_IND
TABLE 1. Cross-Reference of DLS Services and Primitives
Revision: 2.0.0 Page 10 August 20, 1991

0S| Work Group

3.1 Local Management Services

The local management services apply to the connection, connectionless and acknowledged connectionless
modes of transmission. These services, which fall outside the scope of standards specifications, define the
method for initializing a stream that is connected to a DLS provider. DLS provider information reporting
services are a so supported by the local management facilities.

3.1.1 Information Reporting Service

This service provides information about the DLPI stream to the DLS user. The message DL_INFO_REQ
reguests the DL S provider to return operating information about the stream. The DL S provider returns the
information inaDL_INFO_ACK message.

DL_INFO
request

DL_INFO
acknowledge

Figure 3. Message Flow: Information Reporting
3.1.2 Attach Service

The attach service assigns a physical point of attachment (PPA) to a stream. This service is required for
style 2 DLS providers (see section 2.3.1, Physical Attachment Identification) to specify the physical
medium over which communication will occur. The DLS provider indicates success with a
DL_OK_ACK; failure with a DL_ERROR_ACK. The normal message sequence is illustrated in the
following figure.

DL_ATTACH
request

DL_OK
acknowledge

Figure 4. Message Flow: Attaching a Stream to aPhysical Line.

A PPA may be disassociated with a stream using the DL_DETACH_REQ. The normal message sequence
isillustrated in the following figure.

DL_DETACH
request

DL_OK
acknowledge

Figure 5. Message Flow: Detaching a Stream from a Physical Line.
3.1.3 Bind Service
The bind service associates a data link service access point (DLSAP) with a stream. The DLSAP is
identified by a DLSAP address.

Revision: 2.0.0 Page 11 August 20, 1991

DLPI Services

DL_BIND_REQ requests that the DLS provider bind a DLSAP to a stream. It also notifies the DLS
provider to make the stream active with respect to the DLSAP for processing connectionless and
acknowledged connectionless data transfer and connection establishment requests. Protocol-specific
actions taken during activation should be described in DL S provider-specific addenda.

The DLS provider indicates successwithaDL_BIND_ACK; failure withaDL_ERROR_ACK.

Certain DLS providers require the capability of binding on multiple DLSAP addresses.
DL_SUBS BIND_REQ provides that added capability. The DLS provider indicates success with a
DL_SUBS BIND_ACK; failure withaDL_ERROR_ACK.

The normal flow of messages isillustrated in the following figure.

DL_BIND
request

DL_BIND
acknowledge

DL_SUBS BIND
request

DL_SUBS BIND
acknowledge

Figure 6. Message Flow: Binding a Stream to a DLSAP.

DL_UNBIND_REQ requests the DLS provider to unbind all DLSAP(s) from a stream. The
DL_UNBIND_REQ also unbinds all the subsequently bound DLSAPs that have not been unbound. The
DL S provider indicates successwithaDL_OK_ACK; failure withaDL_ERROR_ACK.

DL_SUBS UNBIND_REQ requests the DLS Provider to unbind the subsequently bound DLSAP. The
DLS Provider indicates success with aDL_OK_ACK; failure withaDL_ERROR_ACK.

DL_UNBIND
request

DL_OK
acknowledge

DL_SUBS UNBIND
request

DL_OK
acknowledge

Figure 7. Message Flow: Unbinding a Stream from a DLSAP.

DL_ENABMULTI_REQ requests the DLS Provider to enable specific multicast addresses on a per stream
basis. The Provider indicates success with aDL_OK_ACK; failure withaDL_ERROR_ACK.

Revision: 2.0.0 Page 12 August 20, 1991

0S| Work Group

DL_ENABMULTI
request

DL_OK
acknowledge

Figure 8. Message Flow: Enabling a specific multicast address on a Stream.

DL_DISABMULTI_REQ requests the DLS Provider to disable specific multicast addresses on a per
Stream basis. The Provider indicates success with aDL_OK_ACK; failure withaDL_ERROR_ACK.

DL_DISABMULTI
request

DL_OK
acknowledge

Figure 9. Message Flow: Disabling a specific multicast address on a Stream.

DL_PROMISCON_REQ requests the DLS Provider to enable promiscuous mode on a per Stream basis,
either at the physical level or at the SAP level. The Provider indicates success with a DL_OK_ACK;
failure withaDL_ERROR_ACK.

DL_PROMISCON
request

DL_OK
acknowledge

Figure 10. Message Flow: Enabling promiscuous mode on a Stream.

DL_PROMISCOFF_REQ requests the DLS Provider to disable promiscuous mode on a per Stream basis,
either at the physical level or at the SAP level. The Provider indicates success with a DL_OK_ACK;
failure withaDL_ERROR_ACK.

DL_PROMISCOFF
request

DL_OK
acknowledge

Figure 11. Message Flow: Disabling promiscuous mode on a Stream.

Revision: 2.0.0 Page 13 August 20, 1991

DLPI Services

3.2 Connection-mode Services

The connection-mode services enable a DL S user to establish a data link connection, transfer data over
that connection, reset the link, and rel ease the connection when the conversation has terminated.

3.2.1 Connection Establishment Service

The connection establishment service establishes a data link connection between alocal DLS user and a
remote DLS user for the purpose of sending data. Only one data link connection is allowed on each
stream.

3.2.1.1 Normal Connection Establishment

In the connection establishment model, the calling DL S user initiates connection establishment, while the
called DLS user waits for incoming requests. DL_CONNECT_REQ requests that the DLS provider
establish a connection. DL_CONNECT _IND informs the called DLS user of the request, which may be
accepted using DL_CONNECT_RES. DL_CONNECT_CON informs the calling DLS user that the
connection has been established.

The normal sequence of messagesisillustrated in the following figure.

DL_CONNECT
request \
—————— =
T DL_CONNECT
indication
DL_CONNECT
< response
-
DL_CONNECT _— DL_OK
confirm acknowledge

Figure 12. Message Flow: Successful Connection Establishment

Once the connection is established, the DLS users may exchange user data using DL_DATA_REQ and
DL_DATA_IND.

The DLS user may accept an incoming connect regquest on either the stream where the connect indication
arrived or an aternate, responding stream. The responding stream is indicated by a token in the
DL_CONNECT_RES. This token is a value associated with the responding stream, and is obtained by
issuing a DL_TOKEN_REQ on that stream. The DLS provider responds to this request by generating a
token for the stream and returning it to the DLS user in a DL_TOKEN_ACK. The normal sequence of
messages for obtaining atoken isillustrated in the following figure.

DL_TOKEN
request

DL_TOKEN
acknowledge

Figure 13. Message Flow: Token Retrieval

Inthe typical connection establishment scenario, the called DLS user processes one connect indication at a
time, accepting the connection on another stream. Once the user responds to the current connect
indication, the next connect indication (if any) can be processed. DLPI also enables the called DLS user to

Revision: 2.0.0 Page 14 August 20, 1991

0S| Work Group

multi-thread incoming connect indications. The user can receive multiple connect indications before
responding to any of them. This enables the DLS user to establish priority schemes on incoming connect
requests.

3.2.1.2 Connection Establishment Rejections

In certain situations, the connection establishment request cannot be completed. The following paragraphs
describe the occasions under which DL_DISCONNECT_REQ and DL_DISCONNECT _IND primitives
will flow during connection establishment, causing the connect request to be aborted.

The following figure illustrates the situation where the called DLS user chooses to reject the connect
request by issuing DL_DISCONNECT_REQ instead of DL_CONNECT_RES.

DL_CONNECT

request \
777777 - \ DL_CONNECT

indication

DL_DISCONNECT

request
-
DL_DISCONNECT __— | DL_OK

indication acknowledge

Figure 14. Message Flow: Called DLS User Rejection of Connection Establishment Attempt

The following figure illustrates the situation where the DLS provider rejects a connect request for lack of
resources or other reason. The DLS provider sends DL _DISCONNECT _IND in response to
DL_CONNECT_REQ.

DL_CONNECT
request

DL_DISCONNECT
indication

Figure 15. Message Flow: DL S Provider Rejection of a Connection Establishment Attempt

The following figures illustrate the situation where the calling DLS user chooses to abort a previous
connection attempt. The DLS user issues DL_DISCONNECT REQ at some point following a
DL_CONNECT_REQ. The resulting sequence of primitives depends on the relative timing of the
primitives involved, as defined in the following time sequence diagrams.

Revision: 2.0.0 Page 15 August 20, 1991

DLPI Services

DL_CONNECT
request

DL_DISCONNECT
request

DL_OK
acknowledge

Figure 16. Message Flow: Both Primitives are Destroyed by Provider

DL_CONNECT

request

—————— =
DL_DISCONNECT DL_CONNECT

request indication
777777 =

DL_OK DL_DISCONNECT

acknowledge indication

Figure 17. Message Flow: DL_DISCONNECT Indication Arrives before DL_CONNECT Response is
Sent

DL_CONNECT
request
\ ,,,,,, -~
T DL_CONNECT
indication
DL_CONNECT
response
DL_DISCONNECT DL_OK
request acknowledge
777777 =
DL_OK | DL_DISCONNECT
acknowledge indication

Figure 18. Message Flow: DL_DISCONNECT Indication Arrives after DL_CONNECT Response is Sent
3.2.2 DataTransfer Service

The connection-mode data transfer service provides for the exchange of user data in either direction or in
both directions simultaneously between DLS users. Data is transmitted in logical groups called data link
service data units (DLSDUSs). The DLS provider preserves both the sequence and boundaries of DLSDUs
asthey are transmitted.

Normal data transfer is neither acknowledged nor confirmed. It is up to the DLS users, if they so choose,
to implement a confirmation protocol.

Each DL_DATA_REQ primitive conveys a DLSDU from the local DLS user to the DLS provider.
Similarly, each DL_DATA_IND primitive conveys a DLSDU from the DLS provider to the remote DLS
user. Thenormal flow of messagesisillustrated in the figure below.

Revision: 2.0.0 Page 16 August 20, 1991

0S| Work Group

DL_DATA
request ’\
—————— =
DL_DATA
indication

Figure 19. Message Flow: Normal Data Transfer
3.2.3 Connection Release Service

The connection release service provides for the DLS users or the DLS provider to initiate the connection
release. Connection release is an abortive operation, and any data in transit (has not been delivered to the
DL S user) may be discarded.

DL_DISCONNECT_REQ requests that a connection be released. DL_DISCONNECT _IND informs the
DLS user that a connection has been released. Normally, one DLS user requests disconnection and the
DLS provider issues an indication of the ensuing release to the other DLS user, as illustrated by the
message flow in the following figure.

DL_DISCONNECT
request } ’\
—————— =
DL_OK DL_DISCONNECT
acknowledge indication

Figure 20. Message Flow: DL S User-Invoked Connection Release

The next figure illustrates that when two DL S users independently invoke the connection release service,
neither receives aDL_DISCONNECT _IND.

DL_DISCONNECT DL_DISCONNECT
reguest reguest
DL_OK /\/ DL_OK

acknowledge acknowledge

Figure 21. Message Flow: Simultaneous DL S User Invoked Connection Release

The next figure illustrates that when the DLS provider initiates the connection release service, each DLS
user receives aDL_DISCONNECT _IND.

DL_DISCONNECT /\/ DL_DISCONNECT

indication indication

Figure 22. Message Flow: DL S Provider Invoked Connection Release

Revision: 2.0.0 Page 17 August 20, 1991

DLPI Services

The next figure illustrates that when the DLS provider and the local DL S user simultaneously invoke the
connection release service, the remote DLS user receives aDL_DISCONNECT _IND.

DL_DISCONNECT

request
DL_OK /\/ DL_DISCONNECT

acknowledge indication

Figure 23. Message Flow: Simultaneous DL S User & DLS Provider Invoked Connection Release

3.2.4 Reset Service

Thereset service may be used by the DL S user to resynchronize the use of a data link connection, or by the
DL S provider to report detected loss of data unrecoverable within the data link service.

Invocation of the reset service will unblock the flow of DLSDUs if the data link connection is congested;
DLSDUs may be discarded by the DLS provider. The DLS user or users that did not invoke the reset will
be notified that a reset has occurred. A reset may require a recovery procedure to be performed by the
DLSusers.

Theinteraction between each DLS user and the DL S provider will be one of the following:
. aDL_RESET_REQ from the DLS user, followed by aDL_RESET_CON from the DLS provider;
- aDL_RESET_IND fromthe DLS provider, followed by aDL_RESET RESfrom the DLS user.

TheDL_RESET_REQ acts as a synchronization mark in the stream of DLSDUsthat are transmitted by the
issuing DL S user; the DL_RESET _IND acts as a synchronization mark in the stream of DLSDUs that are
received by the peer DLS user. Similarly, the DL_RESET_RES acts as a synchronization mark in the
stream of DLSDUs that are transmitted by the responding DLS user; the DL_RESET _CON acts as a
synchronization mark in the stream of DLSDUsthat are received by the DL S user which originally issued
the reset.

The resynchronizing properties of the reset service are that:

« No DLSDU transmitted by the DLS user before the synchronization mark in that transmitted stream
will be delivered to the other DL S user after the synchronization mark in that received stream.

« The DLS provider will discard al DLSDUs submitted before the issuing of the DL_RESET REQ that
have not been delivered to the peer DL S user when the DLS provider issuesthe DL_RESET_IND.

« The DLS provider will discard all DLSDUs submitted before the issuing of the DL_RESET RES that
have not been delivered to the initiator of the DL_RESET REQ when the DLS provider issues the
DL_RESET_CON.

« No DLSDU transmitted by a DLS user after the synchronization mark in that transmitted stream will
be delivered to the other DL S user before the synchronization mark in that received stream.

The complete message flow depends on the origin of the reset, which may be the DLS provider or either
DLSuser. Thefollowing figureillustrates the message flow for areset invoked by one DLS user.

Revision: 2.0.0 Page 18 August 20, 1991

0S| Work Group

DL_RESET

request \
777777 - \ DL_RESET

indication
DL_RESET
response
_ ____
DL RESET _ — | DL_OK
confirm acknowledge

Figure 24. Message Flow: DL S User-Invoked Connection Reset
Thefollowing figure illustrates the message flow for areset invoked by both DL S users simultaneously.

DL_RESET DL_RESET

request /\/ request
DL_RESET /\/ DL_RESET
confirm confirm

Figure 25. Message Flow: Simultaneous DL S User-Invoked Connection Reset

Thefollowing figure illustrates the message flow for areset invoked by the DLS provider.

DL RESET __ — | /\/ T DL_RESET
indication indication
DL_RESET DL_RESET
response response
DL_OK /\/ DL_OK
acknowledge acknowledge

Figure 26. Message Flow: DL S Provider-Invoked Connection Reset

The following figure illustrates the message flow for areset invoked simultaneously by one DLS user and
the DLS provider.

Revision: 2.0.0 Page 19 August 20, 1991

DLPI Services

DL_RESET

request \

DL RESET _ — |

confirm

I\
I\

T

B

DL_RESET
indication
DL_RESET
response

DL_OK
acknowledge

Figure 27. Message Flow: Simultaneous DL S User & DL S Provider Invoked Connection Reset

Revision: 2.0.0

Page 20

August 20, 1991

0S| Work Group

3.3 Connectionless-mode Services

The connectionless-mode services enable a DLS user to transfer units of data to peer DLS users without
incurring the overhead of establishing and releasing a connection. The connectionless service does not,
however, guarantee reliable delivery of data units between peer DLS users (e.g. lack of flow control may
cause buffer resource shortages that result in data being discarded).

Once a stream has been initialized via the local management services, it may be used to send and receive
connectionless data units.

3.3.1 Connectionless Data Transfer Service

The connectionless data transfer service provides for the exchange of user data (DLSDUS) in either
direction or in both directions simultaneoudy without having to establish a data link connection. Data
transfer is neither acknowledged nor confirmed, and there is no end-to-end flow control provided. As
such, the connectionless data transfer service cannot guarantee reliable delivery of data. However, a
specific DLS provider can provide assurance that messages will not be lost, duplicated, or reordered.

DL_UNITDATA_REQ conveys one DLSDU to the DLS provider. DL_UNITDATA_IND conveys one
DLSDU tothe DLSuser. The normal flow of messagesisillustrated in the figure below.

DL_UNITDATA
request ’\
—————— =
DL_UNITDATA
indication

Figure 28. Message Flow: Connectionless Data Transfer
3.3.2 QOSManagement Service

The QOS (Quality of Service) management service enables a DL S user to specify the quality of service it
can expect for each invocation of the connectionless data transfer service. The DL_UDQQOS_REQ directs
the DLS provider to set the QOS parameters to the specified values. The normal flow of messages is
illustrated in the figure below.

DL_UDQOS
request

DL_OK
acknowledge

Figure 29. Message Flow: Connectionless Data Transfer
3.3.3 Error Reporting Service

The connectionless-mode error reporting service may be used to notify a DLS user that a previously sent
data unit either produced an error or could not be delivered. This service does not, however, guarantee
that an error indication will be issued for every undeliverable data unit.

Revision: 2.0.0 Page 21 August 20, 1991

DLPI Services

DL_UDERROR
indication

3.3.4 XIDand TEST Service

The XID and TEST service enables the DLS User to issue an XID or TEST request to the DLS Provider.
On receiving a response for the XID or TEST frame transmitted to the peer DLS Provider, the DLS
Provider sends up an XID or TEST confirmation primitive to the DLS User. On receiving an XID or TEST
frame from the peer DLS Provider, the loca DLS Provider sends up an XID or TEST indication
respectively to the DLS User. The DL S User must respond with an XID or TEST response primitive.

If the DLS User requested automatic handling of the XID or TEST response, at bind time, the DLS
Provider will send up an error acknowledgement on receiving an XID or TEST reguest. Also, no
indications will be generated to the DLS User on receiving XID or TEST frames from the remote side.

The normal flow of messages isillustrated in the figure below.

DL_XID
request
\ ,,,,,, -~
T DLXD
indication
DL_XID
response
_ - // P
DLXD |
confirm
Figure 30. Message Flow: XID Service
DL_TEST
request
\ ,,,,,, -~
T DL_TEST
indication
DL_TEST
response
_ - // P
DL TEST _ — |
confirm

Figure 31. Message Flow: TEST Service

Revision: 2.0.0 Page 22

August 20, 1991

0S| Work Group

3.4 Acknowledged Connectionless-mode Services

The acknowledged connectionless-mode services are designed for general use for the reliable transfer of
informations between peer DLS Users. These services are intended for applications that require
acknowledgement of cross-LAN data unit transfer, but wish to avoid the complexity that is viewed as
being associated with the connection-mode services. Although the exchange service is connectionless, in-
sequence delivery is guaranteed for data sent by the initiating station.

3.4.1 Acknowledged Connectionlesssmode Data Transfer Services

The acknowledged connectionless-mode data transfer services provide the means by which the DLS Users
can exchange DL SDUswhich are acknowledged at the LLC sublayer, without the establishment of a Data
Link connection. The services provide a means by which alocal DLS User can send a data unit to the peer
DL S User, request apreviously prepared data unit, or exchange data units with the peer DLS User.

DL_DATA_ACK

request \
777777 - \ DL_DATA_ACK

indication

DL_DATA ACK_STATUS — |

indication

Figure 32. Message Flow: Acknowledged Connectionless-Mode Data Unit Transmission service

The next figure illustrates the acknowledged connectionless-mode data unit exchange service.

DL_REPLY

request \
777777 - \ DL_REPLY

indication

DL_REPLY_STATUS__— |

indication

Figure 33. Message Flow: Acknowledged Connectionless-Mode Data Unit Exchange service
The next figure illustrates the Reply Data Unit Preparation service.

Revision: 2.0.0 Page 23 August 20, 1991

DLPI Services

DL_REPLY_UPDATE
request

DL_REPLY_UPDATE_STA
indication

Figure 34. Message Flow: Acknowledged Connectionless-Mode Reply Data Unit Preparation Service
3.4.2 QOSManagement Service

The Quality of Service (QOS) management service enables a DLS User to specify the quality of service it
can expect for each invocation of the acknowledged connectionless data transfer service. The
DL_UDQOS REQ directs the DLS provider to set the QOS parameters to the specified values. The normal
flow of messagesisillustrated in section 3.3.2, (Connectionless mode services).

3.4.3 Error Reporting Service

The acknowledged connectionless mode error reporting service is the same as the unacknowledged
connectionless-mode error reporting service. For the message flow, refer to section 3.3.3.

Revision: 2.0.0 Page 24 August 20, 1991

3.5 An Example

0S| Work Group

To bring it all together, the following example illustrates the primitives that flow during a complete,
connection-mode sequence between stream open and stream close.

DL_ATTACH
request

DL_OK
acknowledge

DL_BIND
request

DL_BIND
acknowledge

DL_CONNECT
request

DL_CONNECT
confirm

DL_DATA
request

DL_DATA
indication
DL_DISCONNECT
request

DL_OK
acknowledge

DL_UNBIND
request

DL_OK
acknowledge

DL_DETACH
request

DL_OK
acknowledge

=
=

T

/

T

/

=
=
=

—————— =
—_—
—————— =
—_—
—————— =

<

DL_ATTACH
request

DL_OK
acknowledge

DL_BIND
request

DL_BIND
acknowledge

DL_CONNECT
indication
DL_CONNECT
response

DL_OK
acknowledge

WAL

DL_DATA
indication

DL_DATA
request

\

| DL_DISCONNECT

indication

DL_UNBIND
request

DL_OK
acknowledge

DL_DETACH
request

DL_OK
acknowledge

Revision: 2.0.0

Figure 35. Message Flow: A Connection-mode Example

Page 25

August 20, 1991

Revision: 2.0.0 Page 26 August 20, 1991

0S| Work Group

4. DLPI Primitives

The kernel-level interface to the data link layer defines a STREAMS-based message interface between the
provider of the data link service (DLS provider) and the consumer of the data link service (DLS user).
STREAMS provides the mechanism in which DLPI primitives may be passed between the DLS user and
DLS provider.

Before DLPI primitives can be passed between the DLS user and the DLS provider, the DLS user must
establish a stream to the DL S provider using open(2). The DLS provider must therefore be configured asa
STREAMS driver. When interactions between the DLS user and DLS provider have completed, the
stream may be closed.

The STREAM S messages used to transport data link service primitives across the interface have one of the
following formats:

« One M_PROTO message block followed by zero or more M_DATA blocks. The M_PROTO message
block contains the data link layer service primitive type and al relevant parameters associated with the
primitive. The M_DATA block(s) contain any DLS user data that might be associated with the service
primitive.

« One M_PCPROTO message block containing the data link layer service primitive type and al relevant
parameters associated with the service primitive.

« Oneor more M_DATA message blocks conveying user data.

The information contained in the M_PROTO or M_PCPROTO message blocks must begin on a byte
boundary that is appropriate for structure alignment (e.g. word-aligned on the AT&T 3B2 Computer).
STREAMS will alocate buffers that begin on such a boundary. However, these message blocks may
contain information whose representation is described by a length and an offset within the block. An
example is the DLSAP address (dl_addr_length and dl_addr_offset) in the DL_BIND_ACK primitive.
The offset of such information within the message block is not guaranteed to be properly aigned for
casting the appropriate data type (such as an int or a structure).

Appendix B defines the sequence in which DLPI primitives can be passed between DLS user and DLS
provider, and Appendix C summarizes the precedence rules associated with each primitive for ordering the
primitives on the DL S provider and DL S user queues.

The following sections describe the format of the primitives that support the services described in the
previous section. The primitives are grouped into four general categories for presentation:

« Local Management Service Primitives
« Connection-mode Service Primitives
« Connectionless-mode Service Primitives

« Acknowledged Connectionless-mode Service Primitives

Revision: 2.0.0 Page 27 August 20, 1991

DLPI Primitives

4.1 Local Management Service Primitives

This section describes the local management service primitives that are common to the connection,
connectionless and acknowledged connectionless service modes. These primitives support the
Information Reporting, Attach, Bind, enabling/disabling of multicast addresses and turning on/off the
promiscuous mode. Once a stream has been opened by a DL S user, these primitives initialize the stream,
preparing it for use.

4.1.1 PPA Initialization / De-initialization

The PPA associated with each stream must be initialized before the DLS provider can transfer data over
the medium. The initialization and de-initialization of the PPA is a network management issue, but DLPI
must address the issue because of the impact such actions will have on a DLS user. More specifically,
DLPI requires the DLS provider to initialize the PPA associated with a stream at some point before it
completes the processing of the DL_BIND_REQ. Guidelines for initialization and de-initialization of a
PPA by aDLS provider are presented here.

A DLS provider may initialize a PPA using the following methods:
- pre-initialized by some network management mechanism before the DL_BIND_REQ isreceived; or
« automatic initialization on receipt of aDL_BIND_REQ or DL_ATTACH_REQ.

A specific DLS provider may support either of these methods, or possibly some combination of the two,
but the method implemented has no impact on the DLS user. From the DL S user’s viewpoint, the PPA is
guaranteed to be initialized on receipt of aDL_BIND_ACK. For automatic initialization, thisimplies that
the DL_BIND_ACK may not be issued until the initialization has completed.

If pre-initialization has not been performed and/or automatic initialization fails, the DL S provider will fail
the DL_BIND_REQ. Two errors, DL_INITFAILED and DL_NOTINIT, may be returned in the
DL_ERROR_ACK responseto aDL_BIND_REQ if PPA initialization fails. DL_INITFAILED is returned
when a DLS provider supports automatic PPA initialization, but the initialization attempt failed.
DL_NOTINIT is returned when the DLS provider requires pre-initialization, but the PPA is not initialized
before the DL_BIND_REQ isreceived.

A DLS provider may handle PPA de-initialization using the following methods:

- automatic de-initialization upon receipt of the fina DL_DETACH_REQ (for style 2 providers) or
DL_UNBIND_REQ (for style 1 providers), or upon closing of the last stream associated with the PPA;

- automatic de-initialization after expiration of a timer following the last DL_DETACH_REQ,
DL_UNBIND_REQ), or close as appropriate; or

« no automatic de-initialization; administrative intervention is required to de-initialize the PPA at some
point after it isno longer being accessed.

A specific DLS provider may support any of these methods, or possibly some combination of them, but the
method implemented has no impact on the DLS user. From the DLS user's viewpoint, the PPA is
guaranteed to be initialized and available for transmission until it closes or unbinds the stream associated
with the PPA.

DL S provider-specific addendum documentation should describe the method chosen for PPA initialization
and de-initialization.

Revision: 2.0.0 Page 28 August 20, 1991

0S| Work Group

4.1.2 Message DL _INFO_REQ (dl_info_req t)

Requests information of the DLS provider about the DLPI stream. This information includes a set of
provider-specific parameters, aswell asthe current state of the interface.

M essage For mat

The message consists of one M_PCPROTO message block, which contains the following structure.

typedef struct {
ul ong dl_primtive;
} dl _info req_t;

Parameters

di_primitive
conveys DL_INFO_REQ.

State

The message is valid in any state in which a local acknowledgement is not pending, as described in
Appendix B, Allowable Sequence of DLPI Primitives.

New State

The resulting state is unchanged.

Response

The DLS provider responds to the information request withaDL_INFO_ACK.

Revision: 2.0.0 Page 29 August 20, 1991

DLPI Primitives

4.1.3 Message DL _INFO_ACK (dI_info_ack t)

This message is sent in response to DL_INFO_REQ); it conveys information about the DLPI stream to the
DLSuser.

M essage For mat

The message consists of one M_PCPROTO message block, which contains the following structure.

typedef struct {

ul ong dl_primtive;

ul ong dl _max_sdu;

ul ong dl _mn_sdu;

ul ong dl _addr _I engt h;

ul ong dl _mac_type;

ul ong dl _reserved;

ul ong dl _current _state;

| ong dl _sap_|l engt h;

ul ong dl _servi ce_node;

ul ong dl _gos_I| engt h;

ul ong dl _gos_offset;

ul ong dl _gos_range_I engt h;
ul ong dl _gos_range_of fset;
ul ong dl _provider_style;

ul ong dl _addr _of fset;

ul ong dl _version;

ul ong dl _brdcst _addr I ength;
ul ong dl _brdcst_addr_of fset;
ul ong dl _growt h;

} dl __info_ack t;

Parameters

di_primitive
conveys DL_INFO_ACK.
d_max_sdu

conveys the maximum number of bytes that may be transmitted in aDLSDU. This value must be
apositive integer that is greater than or equal to the value of dl_min_sdu.

dl_min_sdu
conveys the minimum number of bytes that may be transmitted in a DLSDU. The value is never
less than one.

dl_addr_length
conveys the length, in bytes, of the provider's DLSAP address. In the case of a hierarchical
subsequent bind, the length returned is the total length i.e Physical address + SAP + subsequent
address length.

d_mac_type
conveys the type of medium supported by this DLPI stream. Possible values include:

DL_CSMACD The medium is Carrier Sense Multiple Access with Callision Detection (1SO
8802/3).

DL_TPB The medium is Token-Passing Bus (1SO 8802/4).

Revision: 2.0.0 Page 30 August 20, 1991

0S| Work Group

DL_TPR The medium is Token-Passing Ring (1SO 8802/5).
DL_METRO The medium is Metro Net (1SO 8802/6).
DL_ETHER The medium is Ethernet Bus.

DL_HDLC The medium is a bit synchronous communication line.

DL_CHAR The medium is a character synchronous communication line (e.g. BISYNC).
DL_CTCA The medium is a channel-to-channel adapter.

DL_FDDI The medium isa Fiber Distributed Data Interface.

DL_OTHER Any other medium not listed above.

dl_reserved
isareserved field whose value must be set to zero.

dl_current_state
conveys the state of the DLPI interface for the stream when the DLS provider issued this
acknowledgement. See Appendix B for alist of DLPI states and an explanation of each.

d_sap length
indicates the current length of the SAP component of the DLSAP address. It may have a
negative, zero or positive value. A positive value indicates the ordering of the SAP and
PHY SICAL component within the DLSAP address as SAP component followed by PHY SICAL
component. A negative value indicates PHY SICAL followed by the SAP. A zero value indicates
that no SAP has yet been bound. The absolute value of the dl_sap_length provides the length of
the SAP component within the DLSAP address.

dl_service_mode
if returned before the DL_BIND REQ is processed, this conveys which service modes
(connection-mode, connectionlessmode or acknowledged connectionlesssmode, or any
comibination of these modes) the DLS provider can support. It contains a bit-mask specifying
one or more than one of the following values:

DL_CODLS connection-oriented data link service;
DL_CLDLS connectionlessdata link service;
DL_ACLDLS acknowledged connectionless data link service;

Once a specific service mode has been bound to the stream, this field returns that specific service
mode.

dl_gos length
conveys the length, in bytes, of the negotiated/selected values of the quality of service (QOS)
parameters. Section 5, Quality of Data Link Service, describes quality of service and its
associated parameters completely. For connection-mode service, the returned values are those
agreed during negotiation. For connectionless-mode service, the values are those currently
selected by the DLS user. |If quality of service has not yet been negotiated, default values will be
returned; these values correspond to those that will be applied by the DLS provider on a connect
reguest in connection-mode service, or those that will be applied to each data unit transmission in
connectionlessmode service. If the DLS provider supports both connection-mode and
connectionless-mode services but the DLS user has not yet bound a specific service mode, the
DL S provider may return either connection-mode or connectionl esss-mode QOS parameter val ues.

The QOS values are conveyed in the structures defined in section 5.3, QOS Data Structures. For
any parameter the DLS provider does not support or cannot determine, the corresponding entry
will be set to DL_UNKNOWN. If the DLS provider does not support any QOS parameters, this

Revision: 2.0.0 Page 31 August 20, 1991

DLPI Primitives

length field will be set to zero.

dl_gos offset
conveys the offset from the beginning of the M_PCPROTO block where the current quality of
service parameters begin.

dl_gos range length
conveys the length, in bytes, of the available range of QOS parameter values supported by the
DLS provider. For connection-mode service, thisis the range available to the calling DLS user in
a connect request. For connectionless-mode, this is the range available for each data unit
transmission. If the DLS provider supports both connection-mode and connectionless-mode
services but the DL S user has not yet bound a specific service mode, the DL S provider may return
either connection-mode or connectionless-mode QOS parameter val ues.

Therange of available QOS values is conveyed in the structures defined in section 5.3, QOS Data
Sructures. For any parameter the DLS provider does not support or cannot determine, the
corresponding entry will be set to DL_UNKNOWN. If the DLS provider does not support any
QOS parameters, this length field will be set to zero.

dl_gos range offset
conveys the offset from the beginning of the M_PCPROTO block where the available range of
quality of service parameters begins.

dl_provider_style
conveys the style of DLS provider associated with the DLPI stream (see section 2.3.1, Physical
Attachment Identification). The following provider classes are defined:

DL_STYLE1 The PPA isimplicitly attached to the DLPI stream by opening the appropriate
major/minor device number.

DL_STYLE2 The DLS user must explicitly attach a PPA to the DLPI stream using
DL_ATTACH_REQ.

DLS users implemented in a protocol-independent manner must access this parameter to
determine whether the DL S attach service must be invoked explicitly.

d_addr_offset
conveys the offset of the address that is bound to the associated stream. If the DL S user issues a
DL_INFO_REQ prior to binding a DLSAP, the value of dl_addr_len will be 0 and consequently
indicate that there has been no address bound.

dl_version
indicates the current version of the dipi that’s supported.

dl_brdcst_addr_length
indicates the length of the physical broadcast address.

dl_brdcst_addr_offset
indicates the offset of the physical broadcast address from the beginning of the PCPROTO bl ock.

dl_growth
conveys a growth field for future use. The value of thisfield will be zero.

State
The messageisvalid in any state in responseto aDL_INFO_REQ.
New State

Theresulting state is unchanged.

Revision: 2.0.0 Page 32 August 20, 1991

0S| Work Group

4.1.4 MessageDL_ATTACH_REQ (dI_attach_req t)

Requests the DLS provider associate a physica point of attachment (PPA) with a stream.
DL_ATTACH_REQ is needed for style 2 DLS providers to identify the physical medium over which
communication will transpire. The request may not be issued to a style 1 DLS provider; doing so may
cause errors.

The DLS provider may initialize the physical line on receipt of this primitive or the DL_BIND_REQ.
Otherwise, the line must be initialized through some management mechanism before this request is issued
by the DLS user. Either way, the physical link must be initialized and ready for use on successful
completion of the DL_BIND_REQ.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
ul ong dl_primtive;
ul ong dl _ppa;

} dl _attach_req_t;

Parameters

di_primitive
conveys DL_ATTACH_REQ.

d_ppa
conveys the identifier of the physical point of attachment to be associated with the stream. The
format of the identifier is provider-specific, and it must contain sufficient information to
distinguish the desired PPA from all possible PPAs on a system.

At a minimum, this must include identification of the physical medium over which
communication will transpire. For media that multiplex multiple channels over a single physical
medium, this identifier should also specify a specific channel to be used for communication
(where each channel on aphysical medium is associated with a separate PPA).

Because of the provider-specific nature of this value, DLS user software that is to be protocol
independent should avoid hard-coding the PPA identifier. The DLS user should retrieve the
necessary PPA identifier from some other entity (such as a management entity) and insert it
without inspection into the DL_ATTACH_REQ.

State

The message isvalid in state DL_UNATTACHED.
New State

Theresulting stateis DL_ATTACH_PENDING.
Response

If the attach request is successful, DL_OK_ACK is sent to the DLS user resulting in state
DL_UNBOUND.

If the request fails, message DL_ERROR_ACK isreturned and the resulting state is unchanged.

Reasonsfor Failure

Revision: 2.0.0 Page 33 August 20, 1991

DLPI Primitives

DL_BADPPA The specified PPA isinvalid.
DL_ACCESS The DLS user did not have proper permission to use the requested PPA.
DL_OUTSTATE The primitive was issued from an invalid state.

DL_SYSERR A system eror has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Revision: 2.0.0 Page 34 August 20, 1991

0S| Work Group

415 MessageDL_DETACH_REQ (dI_detach_req t)

For style 2 DLS providers, this requests the DLS provider detach a physical point of attachment (PPA)
from a stream. The request may not be issued to a style 1 DL S provider; doing so may cause errors.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
ul ong dl_primtive;
} dl _detach_req_t;

Parameters

di_primitive
conveys DL_DETACH_REQ.

State

The message isvalid in state DL_UNBOUND.
New State

The resulting state is DL_DETACH_PENDING.
Response

If the detach request is successful, DL_OK_ACK is sent to the DLS user resulting in state
DL_UNATTACHED.

If the request fails, message DL_ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor Failure
DL_OUTSTATE The primitive was issued from an invalid state.

DL_SYSERR A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Revision: 2.0.0 Page 35 August 20, 1991

DLPI Primitives

4.1.6 MessageDL_BIND_REQ (dl_bind req t)

Requests the DL S provider bind a DLSAP to the stream. The DLS user must identify the address of the
DLSAP to be bound to the stream. For connection-mode service, the DLS user also indicates whether it
will accept incoming connection requests on the stream. Finally, the request directs the DLS provider to
activate the stream associated with the DLSAP.

A stream isviewed as active when the DL S provider may transmit and receive protocol data units destined
to or originating from the stream. The PPA associated with each stream must be initialized upon
completion of the processing of the DL_BIND REQ (see section 4.1.1, PPA Initialization / De-
initialization). More specifically, the DLS user is ensured that the PPA is initidized when the
DL_BIND_ACK isreceived. If the PPA cannot beinitialized, the DL_BIND_REQ will fail.

A stream may be bound as a "connection management" stream, such that it will receive all connect
reguests that arrive through a given PPA (see section 2.4, The Connection Management Sream). In this
case, the dl_sap will beignored.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure.

ul ong dl_primtive;

ul ong dl _sap;

ul ong dl _max_coni nd;
ushort dl _servi ce_node;
ushort dl _conn_ngnt ;

ul ong dl _xidtest flg;

} dl _bind req_t;

Parameters
di_primitive
conveys DL_BIND_REQ.

d_sap
conveys sufficient information to identify the DLSAP that will be bound to the DLPI stream (see

section 2.3, DLPI Addressing, for a description of DLSAP addresses). The format of this
information is specific to agiven DLS provider, and may contain the full DLSAP address or some
portion of that address sufficient to uniquely identify the DLSAPin question. The full address of
the bound DLSAP will be returned in the DL_BIND_ACK.

Thefollowing rules are used by the DL S provider when binding a DLSAP address.
« The DLSprovider must define and manage its DL SAP address space.

- DLPI alows the same DL SAP to be bound to multiple streams, but a given DL S provider may
need to restrict its address space to allow one stream per DLSAP.

» The DLS provider may not be able to bind the specified DLSAP address for the following
reasons:

(1) theDLSprovider may statically associate a specific DLSAP with each stream; or

(2) the DLS provider may only support one stream per DLSAP and the DLS user
attempted to bind a DL SAP that was already bound to another stream.

In case (1), the value of dl_sap is ignored by the DLS provider and the DL_BIND_ACK
returns the DLSAP address that is already associated with the stream. In case (2), if the DLS

Revision: 2.0.0 Page 36 August 20, 1991

0S| Work Group

provider cannot bind the given DLSAP to the stream, it may attempt to choose an alternate
DLSAP and return that on the DL_BIND_ACK. If an aternate DLSAP cannot be chosen, the
DL S provider will returnaDL_ERROR_ACK and set dl_errnoto DL_NOADDR.

Because of the provider-specific nature of the DLSAP address, DL S user software that is to be
protocol independent should avoid hard-coding this value. The DLS user should retrieve the
necessary DL SAP address from some other entity (such as a management entity or higher layer
protocol entity) and insert it without inspection into the DL_BIND_REQ.

dl_max_conind

conveys the maximum number of outstanding DL_CONNECT IND messages allowed on the
DLPI stream. If the value is zero, the stream cannot accept any DL_CONNECT _IND messages.
If greater than zero, the DLS user will accept DL_CONNECT_IND messages up to the given
value before having to respond with a DL_CONNECT _RES or a DL_DISCONNECT_REQ (see
section 4.2.1, Multi-threaded Connection Establishment, for details on how this value is used to
support multi-threaded connect processing). The DLS provider may not be able to support the
value supplied in dl_max_conind, as specified by the following rules.

- If the provider cannot support the specified number of outstanding connect indications, it
should set the value down to a number it can support.

« Only one stream that is bound to the indicated DLSAP may have an allowed number of
maximum outstanding connect indications greater than zero. If aDL_BIND_REQ specifies a
value greater than zero, but another stream has aready bound itself to the DLSAP with a
value greater than zero, the DLS provider will fail the request, setting dl_errno to
DL_BOUND onthe DL_ERROR_ACK.

- If astream with dl_max_conind greater than zero is used to accept a connection, the stream
will be found busy during the duration of the connection, and no other streams may be bound
to the same DLSAP with a value of dl_max _conind greater than zero. This restriction
prevents more than one stream bound to the same DL SAP from receiving connect indications
and accepting connections. Accepting a connection on such a stream is only alowed if there
isjust asingle outstanding connect indication being processed.

« A DLS user should aways be able to request a dl_max_conind value of zero, since this
indicates to the DL S provider that the stream will only be used to originate connect requests.

- A stream with anegotiated value of dl_max_conind that is greater than zero may not originate
connect requests.

Thisfield isignored in connectionless-mode service.

dl_service_mode
conveys the desired mode of service for this stream, and may contain one of the following:

DL_CODLS connection-oriented data link service;
DL_CLDLS connectionlessdata link service.
DL_ACLDLS acknowledged connectionless data link service.

If the DLS provider does not support the requested service mode, a DL_ERROR_ACK will be
generated, specifying DL_UNSUPPORTED.

dl_conn_mgmt
if non-zero, indicates that the stream is the "connection management” stream for the PPA to
which the stream is attached. When an incoming connect request arrives, the DLS provider will
first look for a stream bound with dl_max_conind greater than zero that is associated with the
destination DLSAP. If such a stream is found, the connect indication will be issued on that
stream. Otherwise, the DLS provider will issue the connect indication on the "connection

Revision: 2.0.0 Page 37 August 20, 1991

DLPI Primitives

management” stream for that PPA, if one exists. Only one "connection management” stream is
allowed per PPA, so an attempt to bind a second "connection management” stream on a PPA will
fail with the DLPI error set to DL_BOUND. When dl_conn_mgmt is non-zero, the value of
dl_sap will be ignored. In connectionless-mode service, dl_conn_mgmt is ignored by the DLS
provider.

di_xidtest_flg

indicates to the DLS Provider that XID and/or TEST responses for this stream are to be
automatically generated by the DLS Provider. The DLS Provider will not generate DL_XID_IND
and/or DL_TEST _IND, and will error a DL_XID_REQ and/or DL_TEST REQ. If the DLS
Provider does not support automatic handling of XID and/or TEST responses, a
DL_ERROR_ACK will be generated, specifying DL_NOAUTO, DL_NOXIDAUTO or
DL_NOTESTAUTO. If the Provider receives an XID or TEST request from the DLS User, a
DL_ERROR_ACK will be generated specifying DL_XIDAUTO or DL_TESTAUTO
respectively.

Thedl xidtest flg contains a bit-mask specifying zero or more of the following values:
DL_AUTO _XID Automatically respond to XD commands.
DL_AUTO_TEST Automatically respond to TEST commands.
State
The message isvalid in state DL_UNBOUND.
New State
Theresulting stateis DL_BIND_PENDING.
Response
If the bind request is successful, DL_BIND_ACK issent to the DLS user resulting in state DL_IDLE.
If the request fails, message DL_ ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor Failure
DL_BADADDR The DLSAP address information was invalid or was in an incorrect format.

DL_INITFAILED Automatic initialization of the PPA failed.

DL_NOTINIT The PPA had not been initialized prior to this request.

DL_ACCESS The DLSuser did not have proper permission to use the requested DL SAP address.

DL_BOUND The DLS user attempted to bind a second stream to a DLSAP with dl_max_conind
greater than zero, or the DLS user attempted to bind a second "connection management”
stream to a PPA.

DL_OUTSTATE The primitive was issued from an invalid state.
DL_NOADDR The DLS provider could not allocate a DL SAP address for this stream.
DL_UNSUPPORTED The DL S provider does not support requested service mode on this stream.

DL_SYSERR A system eror has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

DL_NOAUTO Automatic handling of XID and TEST responses not supported.
DL_NOXIDAUTO Automatic handling of XID response not supported.

DL_NOTESTAUTO Automatic handling of TEST response not supported.

Revision: 2.0.0 Page 38 August 20, 1991

0S| Work Group

4.1.7 Message DL_BIND_ACK (dlI_bind_ack t)

Reports the successful bind of a DLSAP to a stream, and returns the bound DLSAP address to the DLS
user. Thisprimitive isgenerated in responseto aDL_BIND_REQ.

M essage For mat

The message consists of one M_PCPROTO message block, which contains the following structure.

typedef struct {

ul ong dl_primtive;
ul ong dl _sap;

ul ong dl _addr _I engt h;
ul ong dl _addr _of fset;
ul ong dl _max_coni nd;
ul ong dl _xidtest flg;

} dl _bind_ack _t;

Parameters

di_primitive
conveys DL_BIND_ACK.

di_sap
conveys the DL SAP address information associated with the bound DLSAP. It corresponds to the

dl_sap field of the associated DL_BIND_REQ, which contains either part or al of the DLSAP
address. For that portion of the DLSAP address conveyed in the DL_BIND_REQ, this field
contains the corresponding portion of the address for the DL SAP that was actually bound.

dl_addr_length
conveys the length of the complete DLSAP address that was bound to the DLPI stream (see
section 2.3, DLPI Addressing, for a description of DLSAP addresses). The bound DLSAP is
chosen according to the guidelines presented under the description of DL_BIND_REQ.

d_addr_offset
conveys the offset from the beginning of the M_PCPROTO block where the DLSAP address
begins.

dl_max_conind
conveys the allowed, maximum number of outstanding DL_CONNECT_IND messages to be
supported on the DLPI stream. |If the value is zero, the stream cannot accept any
DL_CONNECT_IND messages. |If greater than zero, the DLS user will accept
DL_CONNECT_IND messages up to the given value before having to respond with a
DL_CONNECT_RES or a DL_DISCONNECT_REQ. The rules for negotiating this value are
presented under the description of DL_BIND_REQ.

d_xidtest_flg
conveys the XID and TEST responses supported by the provider.
DL_AUTO_XID XID response handled automatically.

DL_AUTO_TEST TEST response handled automatically.

If no value is specified in dl_xidtest_flg, it indicates that automatic handling of XID and TEST
responses is not supported by the Provider.

State

Revision: 2.0.0 Page 39 August 20, 1991

DLPI Primitives
The messageisvalid in state DL_BIND_PENDING.

New State
Theresulting stateisDL_IDLE.

Revision: 2.0.0 Page 40 August 20, 1991

0S| Work Group

4.1.8 Message DL_UNBIND_REQ (dl_unbind_req t)

Requests the DL S provider to unbind the DL SAP that had been bound by a previous DL_BIND_REQ from
this stream. If one or more DLSAPs were bound to the stream using a DL_SUBS BIND_REQ, and have
not been unbound using a DL_SUBS UNBIND_REQ, the DL_UNBIND_REQ will unbind all the
subesquent DLSAPsfor that stream along with the DLSAP bound using the previous DL_BIND_REQ.

At the successful completion of the request, the DLS user may issue a new DL _BIND_REQ for a
potentially new DLSAP.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
ul ong dl_prinmtive;
} dl _unbind req_t;

Parameters

di_primitive
conveys DL_UNBIND_REQ.

State

The message isvalid in state DL_IDLE.

New State

The resulting stateis DL_UNBIND_PENDING.
Response

If the unbind request is successful, DL_OK_ACK is sent to the DLS user resulting in state
DL_UNBOUND.

If the request fails, message DL_ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor Failure
DL_OUTSTATE The primitive was issued from an invalid state.

DL_SYSERR A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Revision: 2.0.0 Page 41 August 20, 1991

DLPI Primitives

4.1.9 Message DL_SUBS BIND_REQ (dl_subs bind req t)

Requests the DLS provider bind a subsequent DLSAP to the stream. The DLS user must identify the
address of the subsequent DL SAPto be bound to the stream.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {

ul ong dl_primtive;

ul ong dl _subs_sap_offset;
ul ong dl _subs_sap_I| engt h;
ul ong dl _subs_bind_cl ass;

} dl _subs_bind req_t;

Parameters

di_primitive
conveys DL_SUBS BIND_REQ.

d_subs sap offset
conveys the offset of the DLSAP from the beginning of the M_PROTO bl ock.

dl_subs sap length
conveys the length of the specified DLSAP.

dl_subs bind class
Specifies either peer or hierarchical addressing

DL_PEER _BIND specifies peer addressing. The DLSAP specified is used in lieu of the
DL SAP bound in the BIND request.

DL_HIERARCHICAL_BIND specifies hierarchical addressing. The DLSAP specified is used in
addition to the DL SAP specified using the BIND request.

State

The message isvalid in state DL_IDLE.

New State

Theresulting stateis DL_SUBS BIND_PND.
Response

If the subsequent bind request is successful, DL_SUBS BIND_ACK is sent to the DLS user resulting in
state DL_IDLE.

If the request fails, message DL_ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor Failure

DL_BADADDR The DLSAP address information wasinvalid or was in an incorrect format.
DL_ACCESS The DLS user did not have proper permission to use the requested DL SAP address.
DL_OUTSTATE The primitive was issued from an invalid state.

DL_SYSERR A System error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Revision: 2.0.0 Page 42 August 20, 1991

0S| Work Group

DL_UNSUPPORTED Reguested addressing class not supported.

DL_TOOMANY Limit exceeded on the maximum number of DLSAPS per stream.

Revision: 2.0.0 Page 43 August 20, 1991

DLPI Primitives

4.1.10 Message DL_SUBS BIND_ACK (dl_subs bind _ack t)

Reports the succesful bind of a subsequent DLSAP to a stream, and returns the bound DL SAP address to
the DLSuser. Thisprimitive isgenerated in responseto aDL_SUBS BIND_REQ.

M essage For mat

The message consists of one M_PCPROTO message block, which contains the following structure.

typedef struct {

ul ong dl_primtive;
ul ong dl _subs_sap_offset;
ul ong dl _subs_sap_I| ength;

} dl _subs_bind_ack t;

Parameters

di_primitive
conveys DL_SUBS BIND_ACK.

d_subs sap offset
conveys the offset of the DLSAP from the beginning of the M_PCPROTO block.

dl_subs sap length
conveys the length of the specified DLSAP.

State

The message isvalid in state DL_SUBS BIND_PND
New State

The resulting stateis DL_IDLE.

Revision: 2.0.0 Page 44 August 20, 1991

0S| Work Group

4.1.11 Message DL_SUBS UNBIND_REQ (dl_subs unbind req t)

Requests the DLS Provider to unbind the DLSAP that had been bound by a previous
DL_SUBS BIND_REQ from this stream.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct {

ul ong dl_primtive;
ul ong dl _subs_sap_offset;
ul ong dl _subs_sap_I| ength;

} dl _subs_unbind req_t;

Parameters

di_primitive
conveys DL_SUBS UNBIND_REQ.

d_subs sap offset
conveys the offset of the DLSAP from the beginning of the M_PROTO bl ock.

dl_subs sap length
conveys the length of the specified DLSAP.

State

The message isvalid in state DL_IDLE.

New State

The resulting stateis DL_SUBS _UNBIND_PND.
Response

If the unbind request is successful, a DL_OK_ACK is sent to the DLS User. The resulting state is
DL_IDLE.

If the request fails, message DL_ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor failure
DL_OUTSTATE The primitive was issued from an invalid state

DL_SYSERR A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

DL_BADADDR The DLSAP address information wasinvalid or was in an incorrect format.

Revision: 2.0.0 Page 45 August 20, 1991

DLPI Primitives

4.1.12 Message DL_ENABMULTI_REQ (dI_enabmulti_req t)

Requests the DL S Provider to enable specific multicast addresses on a per Stream basis. It isinvalid for a
DLS Provider to pass upstream messages that are destined for any address other than those explicitly
enabled on that Stream by the DLS User.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct {
ulong dl _prinmtive;
ul ong dl _addr _Iength;
ul ong dl _addr_offset;
} dl _enabnulti _req_t;

Parameters

di_primitive
conveys DL_ENABMULTI_REQ

dl_addr_length
conveys the length of the multicast address

d_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the multicast
address begins

State

This message isvalid in any state in which alocal acknowledgement is not pending with the exception of
DL_UNATTACH.

New State
The resulting state is unchanged.
Response

If the enable request is successful, aDL_OK_ACK is sent to the DLS user. If the request fails, message
DL_ERROR_ACK isreturned and the resulting state is unchanged.

Reasonsfor failure

DL_BADADDR Address information was invalid or wasin an incorrect format.
DL_TOOMANY Too many multicast address enable attempts. Limit exceeded.
DL_OUTSTATE The primitive was issued from an invalid state
DL_NOTSUPPORTED The primitive is known, but not supported by the DL S Provider.

Revision: 2.0.0 Page 46 August 20, 1991

0S| Work Group

4.1.13 Message DL_DISABMULTI_REQ (dl_disabmulti_req t)
Requests the DL S Provider to disable specific multicast addresses on a per Stream basis.
M essage For mat

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct {
ulong dl _prinmtive;
ul ong dl _addr _Iength;
ul ong dl _addr_offset;
} dl _disabrmulti _req_t;

Parameters

di_primitive
conveys DL_DISABMULTI_REQ

dl_addr_length
conveys the length of the physical address

d_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the multicast
address begins

State

This message isvalid in any state in which alocal acknowledgement is not pending with the exception of
DL_UNATTACH.

New State
The resulting state is unchanged.
Response

If the disable request is successful, aDL_OK_ACK is sent to the DLS user. If the request fails, message
DL_ERROR_ACK isreturned and the resulting state is unchanged.

Reasonsfor failure

DL_BADADDR Address information was invalid or in an incorrect format.
DL_NOTENAB Address specified is not enabled.

DL_OUTSTATE The primitive was issued from an invalid state.

DL_NOTSUPPORTED Primitive is known, but not supported by the DL S Provider.

Revision: 2.0.0 Page 47 August 20, 1991

DLPI Primitives

4.1.14 Message DL_PROMISCON_REQ (dl_promiscon_req t)

This primitive requests the DL'S Provider to enable promiscuous mode on a per Stream basis, either at the
physical level or at the SAPlevel.

The DL Provider will route all received messages on the media to the DLS User until either a
DL_DETACH_REQ or aDL_PROMISCOFF_REQ isreceived or the Stream is closed.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
ul ong dl_primtive;
ul ong dl _level;

} dl _prom scon_req_t;

Parameters

di_primitive
conveys DL_PROMISCON_REQ

d _level
indicates promiscuous mode at the physical or SAP level

DL_PROMISC_PHYS indicates promiscuous mode at the physical level
DL_PROMISC_SAP indicates promiscuous mode at the SAP level
DL_PROMISC_MULTI indicates promiscuous mode for all multicast addresses
State
The message isvalid in any state when there is no pending acknowledgement.
New State
The resulting state is unchanged.
Response

If enabling of promiscuous mode is successful, a DL_OK_ACK is returned. Otherwise, a
DL_ERROR_ACK isreturned.

Reasonsfor Failure

DL_OUTSTATE The primitive was issued from an invalid state

DL_SYSERR A System error has occurred and the UNIX System error is indicated in the
DL_ERROR_ACK.

DL_NOTSUPPORTED Primitive is known but not supported by the DL S Provider

DL_UNSUPPORTED Requested service is not supplied by the provider.

Revision: 2.0.0 Page 48 August 20, 1991

0S| Work Group

4.1.15 Message DL_PROMISCOFF_REQ (dI_promiscoff req t)

This primitive requests the DL'S Provider to disable promiscuous mode on a per Stream basis, either at the
physical level or at the SAPlevel.

M essage For mat

The message consists of one M_PROTO message block, which contains the following structure.

typedef struct ({
ul ong dl_primtive;
ul ong dl _level;

} dl _promscoff req_t;

Parameters

di_primitive
conveys DL_PROMISCOFF_REQ

d _level
indicates promiscuous mode at the physical or SAP level
DL_PROMISC_PHYS indicates promiscuous mode at the physical level
DL_PROMISC_SAP indicates promiscuous mode at the SAP level
DL_PROMISC_MULTI indicates promiscuous mode for all multicast addresses

State

The message is valid in any state in which the promiscuous mode is enabled and there is no pending
acknowledgement.

New State
The resulting state is unchanged.
Response

If the promiscuous mode disabling is successful, a DL_OK_ACK is returned. Otherwise, a
DL_ERROR_ACK isreturned.

Reasonsfor Failure

DL_OUTSTATE The primitive was issued from an invalid state

DL_SYSERR A System error has occurred and the UNIX System error is indicated in the
DL_ERROR_ACK.

DL_NOTSUPPORTED Primitive is known but not supported by the DL S Provider

DL_NOTENAB Mode not enabled.

Revision: 2.0.0 Page 49 August 20, 1991

DLPI Primitives

4.1.16 Message DL_OK_ACK (dl_ok ack t)

Acknowledges to the DL S user that a previously issued request primitive was received successfully. It is
only initiated for those primitives that require a positive acknowledgement.

M essage For mat

The message consists of one M_PCPROTO message block, which contains the following structure.

typedef struct {

ul ong dl_primtive;

ul ong dl _correct _primtive;
} dl _ok_ack _t;

Parameters

di_primitive
conveys DL_OK_ACK.

dl_correct_primitive
identifies the successfully received primitive that is being acknowledged.

State

The message is vaid in response to a DL_ATTACH_REQ, DL_DETACH_REQ, DL_UNBIND_REQ,
DL_CONNECT_RES, DL_RESET RES, DL_DISCON_REQ, DL_SUBS UNBIND_REQ,
DL_PROMISCON_REQ, DL_ENABMULTI_REQ, DL_DISABMULTI_REQ or
DL_PROMISCOFF_REQ from any of several states as defined in Appendix B.

New State

The resulting state depends on the current state and is defined fully in Appendix B.

Revision: 2.0.0 Page 50 August 20, 1991

0S| Work Group

4.1.17 Message DL_ERROR_ACK (dl_error_ack t)

Informs the DLS user that a previously issued request or response was invalid. It conveys the identity of
the primitive in error, aDLPI error code, and if appropriate, aUNIX system error code.

Whenever this primitive is generated, it indicates that the DLPI state is identical to what it was before the
€ITONeous request or response.

M essage For mat

The message consists of one M_PCPROTO message block, which contains the following structure.

typedef struct {

ul ong dl_primtive;

ul ong dl _error_primtive;
ul ong dl _errno;

ul ong dl _uni x_errno;

} dl _error_ack_t;

Parameters

di_primitive
conveys DL_ERROR_ACK.

dl_error_prim
identifies the primitive in error.

d_errno
conveys the DLPI error code associated with the failure. See the individual request or response
for the error codes that are applicable. In addition to those errors:

— DL_BADPRIM error isreturned if an unrecognized primitive isissued by the DLS user.

— DL_NOTSUPPORTED error is returned if an unsupported primitive is issued by the DLS
user.

dl_unix_errno
conveys the UNIX system error code associated with the failure. This value should be non-zero
only when dl_errno is set to DL_SY SERR. It isused to report UNIX system failures that prevent
the processing of a given request or response.

State

The message is valid in every state where an acknowledgement or confirmation of a previous request or
response is pending.

New State

Theresulting state is that from which the acknowledged request or response was generated.

Revision: 2.0.0 Page 51 August 20, 1991

DLPI Primitives

4.2 Connection-mode Service Primitives

This section describes the service primitives that support the connection-mode service of the data link
layer. These primitives support the connection establishment, connection-mode data transfer, and
connection release services described earlier.

4.2.1 Multi-threaded Connection Establishment

In the connection establishment model, the calling DL S user initiates a request for a connection, and the
called DLS user receives each request and either accepts or regjects it. In the simplest form (single-
threaded), the called DL S user is passed a connect indication and the DL S provider holds any subsequent
indications until a response for the current outstanding indication is received. At most one connect
indication is outstanding at any time.

DLPI also enables acalled DLS user to multi-thread connect indications and responses. This capability is
desirable, for example, when imposing a priority scheme on all DLS users attempting to establish a
connection. The DLS provider will pass all connect indications to the called DLS user (up to some pre-
established limit as set by DL_BIND _REQ and DL_BIND_ACK). The called DLS user may then respond
to the requests in any order.

To support multi-threading, a correlation value is needed to associate responses with the appropriate
connect indication. A correlation value is contained in each DL_CONNECT _IND, and the DL S user must
use this value in the DL_CONNECT_RES or DL_DISCONNECT_REQ primitive used to accept or reject
the connect request. The DLS user can also receive a DL_DISCONNECT _IND with a correlation value
when the calling DL S user or the DL S provider abort a connect request.

Once a connection has been accepted or rejected, the correlation value has no meaning to a DLS user. The
DLS provider may reuse the correlation value in another DL_CONNECT IND. Thus, the lifetime of a
correlation value is the duration of the connection establishment phase, and as good programming practice
it should not be used for any other purpose by the DLS provider.

The DLS provider assigns the correlation value for each connect indication. Correlation values must be
unique among all outstanding connect indications on a given stream. The values may, but need not, be
unique across al streams to the DLS provider. The correlation value must be a positive, non-zero value.
There is no implied sequencing of connect indications using the correlation value; the values do not have
to increase sequentially for each new connect indication.

Revision: 2.0.0 Page 52 August 20, 1991

0S| Work Group

4.2.2 Message DL_CONNECT_REQ (dl_connect_req t)

Requests the DL S provider establish a data link connection with aremote DLS user. The request contains
the DLSAP address of the remote (called) DLS user and quality of service parameters to be negotiated
during connection establishment.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {

ul ong dl_primtive;

ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;
ul ong dl _gos_I engt h;

ul ong dl _gos_offset;

ul ong dl _growt h;

} dl _connect _req_t;

Parameters

di_primitive
conveys DL_CONNECT_REQ.
dl_dest_addr_length
conveys the length of the DL SAP address that identifies the DL S user with whom a connection is

to be established. If the called user isimplemented using DLPI, this address is the full DLSAP
address returned on the DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_gos length
conveys the length of the quality of service (QOS) parameter values desired by the DLS user
initiating a connection. The desired QOS values are conveyed in the appropriate structure
defined in section 5.3, QOS Data Sructures. A full specification of these QOS parameters and
rules for negotiating their values is presented in section 5, Quality of Data Link Service.

If the DLS user does not wish to specify a particular QOS vaue, the vaue
DL_QOS DONT_CARE may be specified. If the DLS user does not care to specify any QOS
parameter values, this field may be set to zero.

dl_gos offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

dl_growth
defines agrowth field for future enhancements to this primitive. Itsvalue must be set to zero.

State

The message isvalid in state DL_IDLE.

New State

The resulting stateis DL_OUTCON_PENDING.

Revision: 2.0.0 Page 53 August 20, 1991

DLPI Primitives

Response

There is no immediate response to the connect request. However, if the connect request is accepted by the
called DLSuser, DL_CONNECT_CON is sent to the calling DL S user, resulting in state DL_DATAXFER.

If the connect request is rejected by the called DLS user, the called DLS user cannot be reached, or the
DLS provider and/or called DLS user do not agree on the specified quality of service, a
DL_DISCONNECT _IND issent to the calling DL S user, resulting in state DL_IDLE.

If the request is erroneous, message DL ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor Failure

DL_BADADDR The destination DLSAP address was in an incorrect format or contained invalid
information.

DL_BADQOSPARAM The quality of service parameters contained invalid values.

DL_BADQOSTYPE The quality of service structure type was not supported by the DL S provider.
DL_ACCESS The DLSuser did not have proper permission to use the requested DL SAP address.
DL_OUTSTATE The primitive was issued from an invalid state.

DL_SYSERR A system eror has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Revision: 2.0.0 Page 54 August 20, 1991

0S| Work Group

4.2.3 Message DL_CONNECT _IND (dl_connect_ind _t)

Conveys to the local DL S user that aremote (calling) DL S user wishes to establish a data link connection.
The indication contains the DLSAP address of the calling and called DLS user, and the quality of service
parameters as specified by the calling DL S user and negotiated by the DL S provider.

The DL_CONNECT _IND aso contains a number that allows the DLS user to correlate a subsequent
DL_CONNECT_RES, DL_DISCONNECT_REQ, or DL_DISCONNECT_IND with the indication (see
section 4.2.1, Multi-threaded Connection Establishment).

The number of outstanding DL_CONNECT _IND primitives issued by the DLS provider must not exceed
the value of dl_max_conind as returned on the DL_BIND_ACK. If thislimit is reached and an additional
connect regquest arrives, the DLS provider must not pass the corresponding connect indication to the DLS
user until aresponseisreceived for an aready outstanding indication.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {

ul ong dl_primtive;

ul ong dl _correl ation;

ul ong dl _cal |l ed_addr I ength;
ul ong dl _call ed_addr_of fset;
ul ong dl _calling_addr _| ength;
ul ong dl _calling _addr_offset;
ul ong dl _gos_I engt h;

ul ong dl _gos_offset;

ul ong dl _growt h;

} dl _connect _ind_t;

Parameters

di_primitive
conveys DL_CONNECT_IND.

dl_correlation
conveys the correlation number to be used by the DLS user to associate this message with the
DL_CONNECT_RES, DL_DISCONNECT_REQ, or DL_DISCONNECT _IND that is to follow.
This value, then, enables the DLS user to multi-thread connect indications and responses. All
outstanding connect indications must have a distinct, non-zero correlation value set by the DLS
provider.

dl_called_addr_length
conveys the length of the address of the DLSAP for which this DL_CONNECT_IND primitive is
intended. This address is the full DLSAP address specified by the calling DLS user and is
typically the value returned on the DL_BIND_ACK associated with the given stream.

d_called_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the called DLSAP
address begins.

dl_calling_addr_length
conveys the length of the address of the DLSAP from which the DL_CONNECT_REQ primitive
was sent.

Revision: 2.0.0 Page 55 August 20, 1991

DLPI Primitives

dl_calling_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the calling DLSAP
address begins.

dl_gos length
conveys the range of quality of service parameter values desired by the calling DLS user and
negotiated by the DLS provider. The range of QOS values is conveyed in the appropriate
structure defined in section 5.3, QOS Data Sructures. A full specification of these QOS
parameters and rules for negotiating their values is presented in section 5, Quality of Data Link
Service.

For any parameter the DLS provider does not support or cannot determine, the corresponding
parameter values will be set to DL_UNKNOWN. If the DLS provider does not support any QOS
parameters, thislength field will be set to zero.

dl_gos offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

dl_growth
defines a growth field for future enhancements to this primitive. Itsvalue will be set to zero.

State

The message is valid in state DL_IDLE, or state DL_INCON_PENDING when the maximum number of
outstanding DL_CONNECT _IND primitives has not been reached on this stream.

New State
Theresulting state is DL_INCON_PENDING, regardless of the current state.
Response

The DLS user must eventually send either DL_CONNECT_RES to accept the connect request or
DL_DISCONNECT_REQ to reject the connect request. In either case, the responding message must
convey the correlation number received in the DL_CONNECT IND. The DLS provider will use the
correlation number to identify the connect request to which the DL S user is responding.

Revision: 2.0.0 Page 56 August 20, 1991

0S| Work Group

4.24 Message DL_CONNECT_RES (dI_connect_res t)

Directs the DLS provider to accept a connect reguest from a remote (calling) DL S user on a designated
stream. The DLS user may accept the connection on the same stream where the connect indication
arrived, or on a different stream that has been previously bound. The response contains the correlation
number from the corresponding DL_CONNECT IND, selected quality of service parameters, and an
indication of the stream on which to accept the connection.

After issuing this primitive, the DLS user may immediately begin transferring data using the
DL_DATA_REQ primitive. If the DLS provider receives one or more DL_DATA_REQ primitives from
the local DLS user before it has completed connection establishment, however, it must queue the data
transfer requests internally until the connection is successfully established.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {

ul ong dl_primtive;
ul ong dl _correl ation;
ul ong dl _resp_token;
ul ong dl _gos_I engt h;
ul ong dl _gos_offset;
ul ong dl _growt h;

} dl _connect _res_t;

Parameters

dl_primitive
conveys DL_CONNECT_RES.

dl_correlation
conveys the correlation number that was received with the DL_CONNECT_IND associated with
the connection request. The DLS provider will use the correlation number to identify the connect
indication to which the DL S user is responding.

dl_resp token
if non-zero, conveys the token associated with the responding stream on which the DLS provider
is to establish the connection; this stream must be in the state DL_IDLE. The token value for a
stream can be obtained by issuing a DL_TOKEN_REQ on that stream. If the DLS user is
accepting the connection on the stream where the connect indication arrived, this value must be
zero. See section 2.2.1.2, Connection Establishment, for a description of the connection response
model.

dl_gos length
conveys the length of the quality of service parameter values selected by the called DLS user.
The selected QOS values are conveyed in the appropriate structure as defined in section 5.3, QOS
Data Structures. A full specification of these QOS parameters and rules for negotiating their
valuesis presented in section 5, Quality of Data Link Service.

If the DLS user does not care which value is selected for a particular QOS parameter, the value
DL_QOS DONT_CARE may be specified. If the DLS user does not care which values are
selected for al QOS parameters, this field may be set to zero.

dl_gos offset
conveys the offset from the beginning of the M_PROTO message block where the quality of

Revision: 2.0.0 Page 57 August 20, 1991

DLPI Primitives

service parameters begin.

dl_growth
defines a growth field for future enhancements to this primitive. Itsvalue must be set to zero.

State

The primitive isvalid in state DL_INCON_PENDING.
New State

Theresulting stateisDL_CONN_RES PENDING.
Response

If the connect response is successful, DL_OK_ACK is sent to the DLS user. If no outstanding connect
indications remain, the resulting state for the current stream is DL_IDLE; otherwise it remains
DL_INCON_PENDING. For the responding stream (designated by the parameter dl_resp token), the
resulting state is DL_DATAXFER. If the current stream and responding stream are the same, the resulting
state of that stream is DL_DATAXFER. These streams may only be the same when the response
corresponds to the only outstanding connect indication.

If the request fails, DL_ERROR_ACK isreturned on the stream where the DL_CONNECT_RES primitive
was received, and the resulting state of that stream and the responding stream is unchanged.

Reasonsfor Failure

DL_BADTOKEN Thetoken for the responding stream was not associated with a currently open stream.
DL_BADQOSPARAM The quality of service parameters contained invalid values.

DL_BADQOSTYPE The quality of service structure type was not supported by the DL S provider.

DL_BADCORR The correlation number specified in this primitive did not correspond to a pending
connect indication.

DL_ACCESS The DLS user did not have proper permission to use the responding stream.

DL_OUTSTATE The primitive was issued from an invalid state, or the responding stream was not in a
valid state for establishing a connection.

DL_SYSERR A system eror has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

DL_PENDING Current stream and responding stream is the same and there is more than one
outstanding connect indication.

Revision: 2.0.0 Page 58 August 20, 1991

0S| Work Group

4.25 Message DL_CONNECT_CON (dI_connect_con_t)

Informs the local DLS user that the requested data link connection has been established. The primitive
contains the DLSAP address of the responding DL S user and the quality of service parameters as selected
by the responding DL S user.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {

ul ong dl_primtive;

ul ong dl _resp_addr _|I engt h;
ul ong dl _resp_addr_of fset;
ul ong dl _gos_I engt h;

ul ong dl _gos_offset;

ul ong dl _growt h;

} dl _connect _con_t;

Parameters

dl_primitive
conveys DL_CONNECT_CON.
d_resp addr_length

conveys the length of the address of the responding DL SAP associated with the newly established
data link connection.

d_resp addr_offset
conveys the offset from the beginning of the M_PROTO message block where the responding
DL SAP address begins.

dl_gos length
conveys the length of the quality of service parameter values selected by the responding DLS
user. The selected QOS values are conveyed in the appropriate structure defined in section 5.3,
QOS Data Structures. A full specification of these QOS parameters and rules for negotiating
their valuesis presented in section 5, Quality of Data Link Service.

For any parameter the DLS provider does not support or cannot determine, the corresponding
parameter value will be set to DL_UNKNOWN. If the DLS provider does not support any QOS
parameters, thislength field will be set to zero.

dl_gos offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

dl_growth
defines agrowth field for future enhancements to this primitive. Itsvalue will be set to zero.

State

The message isvalid in state DL_OUTCON_PENDING.
New State

The resulting state is DL_DATAXFER.

Revision: 2.0.0 Page 59 August 20, 1991

DLPI Primitives

4.2.6 MessageDL_TOKEN_REQ (dl_token req t)

Requests that a connection response token be assigned to the stream and returned to the DLS user. This
token can be supplied in the DL_CONNECT _RES primitive to indicate the stream on which a connection
will be established.

M essage For mat

The message consists of one M_PCPROTO message block, which contains the following structure.

typedef struct {
ul ong dl_primtive;
} dl _token_ req_t;

Parameters

di_primitive
conveys DL_TOKEN_REQ.

State

The message is valid in any state in which a local acknowledgement is not pending, as described in
Appendix B, Allowable Sequence of DLPI Primitives.

New State

The resulting state is unchanged.

Response

The DLS provider responds to the information request withaDL_TOKEN_ACK.

Revision: 2.0.0 Page 60 August 20, 1991

0S| Work Group

4.2.7 Message DL_TOKEN_ACK (dl_token_ack t)

This message is sent in response to DL_TOKEN_REQ); it conveys the connection response token assigned
to the stream.

M essage For mat

The message consists of one M_PCPROTO message block, which contains the following structure.

typedef struct {
ul ong dl_primtive;
ul ong dl _t oken;

} dl _token_ack _t;

Parameters

di_primitive
conveys DL_TOKEN_ACK.

dl_token
conveys the connection response token associated with the stream. This value must be a non-zero
value. The DLS provider will generate a token value for each stream upon receipt of the first
DL_TOKEN_REQ primitive issued on that stream. The same token value will be returned in
response to all subsequent DL_ TOKEN_REQ primitives issued on a stream.

State
The message isvalid in any state in response to aDL_TOKEN_REQ.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 61 August 20, 1991

DLPI Primitives

4.2.8 Message DL_DATA_REQ

Conveys a complete DLSDU from the DL S user to the DLS provider for transmission over the data link
connection.

The DLS provider guarantees to deliver each DLSDU to the remote DLS user in the same order as
received from the local DLS user. If the DLS provider detects unrecoverable data loss during data
transfer, thismay be indicated to the DLSuser by aDL_RESET _IND, or by aDL_DISCONNECT _IND (if
the connection islost).

M essage For mat
The message consists of one or more M_DATA message blocks containing at least one byte of data.

To simplify support of aread(2)/write(2) interface to the data link layer, the DLS provider must recognize
and process messages that consist of one or more M_DATA message blocks with no preceding M_PROTO
message block. This message type may originate from the write(2) system call™.

State

The message is valid in state DL_DATAXFER. If it is received in state DL_IDLE or
DL_PROV_RESET PENDING, it should be discarded without generating an error.

New State

Theresulting state is unchanged.

Response

If the request isvalid, no response is generated.

If the request is erroneous, a STREAMS M _ERROR message should be issued to the DLS user specifying
an errno value of EPROTO. This action should be interpreted as afatal, unrecoverable, protocol error. A
request is considered erroneous under the following conditions.

— The primitive was issued from an invalid state. If the request is issued in state DL_IDLE or
DL_PROV_RESET PENDING, however, it issilently discarded with no fatal error generated.

— The amount of data in the current DLSDU is not within the DLS provider's acceptable bounds as
specified by dl_min_sdu and dl_max_sdu inthe DL_INFO_ACK.

Note (Support of Direct User-Level Access)

A STREAMS module would implement "moré’ field processing itself to support direct user-level access.

This module could collect messages and send them in one larger message to the DLS provider, or break

large DLSDUSs passed to the DL S user into smaller messages. The module would only be pushed if the
DL S user was a user-level process.

1. Thisdoes not imply that DLPI will directly support a pure read(2)/write(2). If such an interface is desired, a STREAMS module
could be implemented to be pushed above the DL S provider.

Revision: 2.0.0 Page 62 August 20, 1991

0S| Work Group

4.2.9 Message DL_DATA_IND

Conveys a DLSDU from the DLS provider to the DLSuser. The DLS provider guarantees to deliver each
DLSDU to the local DLS user in the same order as received from the remote DLS user. If the DLS
provider detects unrecoverable data loss during data transfer, this may be indicated to the DLS user by a
DL_RESET_IND, or by aDL_DISCONNECT _IND (if the connection islost).

M essage For mat

The message consists of one or more M_DATA blocks containing at least one byte of data.
State

The messageisvalid in state DL_ DATAXFER.

New State

Theresulting state is unchanged.

Revision: 2.0.0 Page 63 August 20, 1991

DLPI Primitives

4.2.10 Message DL_DISCONNECT_REQ (dl_disconnect_req t)

Requests the DLS provider to disconnect an active data link connection or one that was in the process of
activation, either outgoing or incoming, as a result of an ealier DL_CONNECT IND or
DL_CONNECT_REQ. If an incoming DL_CONNECT _IND is being refused, the correlation number
associated with that connect indication must be supplied. The message indicates the reason for the
disconnect.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {

ul ong dl_primtive;
ul ong dl _reason;
ul ong dl _correl ation;

} dl _disconnect _req_t;

Parameters

di_primitive
conveys DL_DISCONNECT_REQ.

dl_reason
conveys the reason for the disconnect.

Reasons for Disconnect

DL_DISC_NORMAL_CONDITION
normal release of adata link connection

DL_DISC_ABNORMAL_CONDITION
abnormal release of adata link connection

DL_CONREJ PERMANENT_COND
a permanent condition caused the rejection of a connect request

DL_CONREJ_TRANSIENT_COND
atransient condition caused the rejection of a connect request

DL_DISC_UNSPECIFIED
reason unspecified

dl_correlation
if non-zero, conveys the correlation number that was contained in the DL_CONNECT _IND being
rejected (see section 4.2.1, Multi-threaded Connection Establishment). This value permits the
DLS provider to associate the primitive with the proper DL_CONNECT_IND when rejecting an
incoming connection. If the disconnect request is releasing a connection that is already
established, or is aborting a previously sent DL_CONNECT_REQ, the value of dl_correlation
should be zero.

State

The message is vaid in any of the statess DL_DATAXFER, DL_INCON_PENDING,
DL_OUTCON_PENDING, DL_PROV_RESET_PENDING, DL_USER_RESET_PENDING.

New State

Revision: 2.0.0 Page 64 August 20, 1991

0S| Work Group

Theresulting state is one of the disconnect pending states, as defined in Appendix B.

Response

If the disconnect is successful, DL_OK_ACK issent to the DLS user resulting in state DL_IDLE.
If the request fails, message DL_ERROR_ACK isreturned, and the resulting state is unchanged.
Reasonsfor Failure

DL_BADCORR The correlation number specified in this primitive did not correspond to a pending
connect indication.

DL_OUTSTATE The primitive was issued from an invalid state.

DL_SYSERR A system eror has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Revision: 2.0.0 Page 65 August 20, 1991

DLPI Primitives

4.211 Message DL_DISCONNECT _IND (dI_disconnect_ind_t)

Informs the DL S user that the data link connection on this stream has been disconnected, or that a pending
connection (either DL_CONNECT_REQ or DL_CONNECT _IND) has been aborted.

The primitive indicates the origin and the cause of the disconnect.
M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {

ul ong dl_primtive;

ul ong dl _originator;
ul ong dl _reason;

ul ong dl _correl ation;

} dl _disconnect _ind_t;

Parameters

di_primitive
conveys DL_DISCONNECT _IND.
dl_originator

conveys whether the disconnect was DLS user or DLS provider originated (DL_USER or
DL_PROVIDER, respectively).

dl_reason
conveys the reason for the disconnect.

Reasons for Disconnect

DL_DISC_PERMANENT_CONDITION
connection released due to permanent condition

DL_DISC_TRANSIENT_CONDITION
connection released due to transient condition

DL_CONREJ DEST_UNKNOWN
unknown destination for connect request

DL_CONREJ_DEST_UNREACH_PERMANENT
could not reach destination for connect request - permanent condition

DL_CONREJ_DEST_UNREACH_TRANSIENT
could not reach destination for connect request - transient condition

DL_CONREJ QOS UNAVAIL_PERMANENT
requested quality of service parameters permanently unavailable during connection
establishment

DL_CONREJ QOS UNAVAIL_TRANSIENT
requested quality of service parameters temporarily unavailable during connection
establishment

DL_DISC_UNSPECIFIED
reason unspecified

dl_correlation
if non-zero, conveys the correlation number that was contained in the DL_CONNECT _IND that

Revision: 2.0.0 Page 66 August 20, 1991

0S| Work Group

is being aborted (see section 4.2.1, Multi-threaded Connection Establishment). This value
permits the DLS user to associate the message with the proper DL_CONNECT _IND. If the
disconnect indication is indicating the release of a connection that is already established, or is
indicating the rgjection of a previously sent DL_ CONNECT_REQ, the value of dl_correlation
will be zero.

State

The message is vaid in any of the statess DL_DATAXFER, DL_INCON_PENDING,
DL_OUTCON_PENDING, DL_PROV_RESET_PENDING, DL_USER_RESET_PENDING.

New State
Theresulting stateisDL_IDLE.

Revision: 2.0.0 Page 67 August 20, 1991

DLPI Primitives

4212 Message DL_RESET_REQ (dl_reset req t)

Requests that the DLS provider initiate the resynchronization of a data link connection. This service is
abortive, so no guarantee of delivery can be assumed about data that isin transit when the reset request is
initiated.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
ul ong dl_primtive;
} dl _reset req_t;

Parameters

di_primitive
conveys DL_RESET_REQ.

State

The message isvalid in state DL_DATAXFER.

New State

Theresulting stateis DL_USER_RESET_PENDING.
Response

There is no immediate response to the reset request. However, as resynchronization completes,
DL_RESET_CON is sent to the initiating DL S user, resulting in state DL_DATAXFER.

If the request fails, message DL_ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor Failure
DL_OUTSTATE The primitive was issued from an invalid state.

DL_SYSERR A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Revision: 2.0.0 Page 68 August 20, 1991

0S| Work Group

4.213 Message DL_RESET _IND (dl_reset_ind t)

Informs the DL S user that either the remote DL S user is resynchronizing the data link connection, or the
DLS provider is reporting loss of data for which it can not recover. The indication conveys the reason for
the reset.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {

ul ong dl_primtive;
ul ong dl _originator;
ul ong dl _reason;

} dl _reset _ind_t;

Parameters

di_primitive
conveys DL_RESET_IND.

dl_originator
conveys whether the reset was originated by the DLS user or DLS provider (DL_USER or
DL_PROVIDER, respectively).

dl_reason
conveys the reason for the reset.

Reasons for Reset

DL_RESET_FLOW_CONTROL
indicates flow control congestion

DL_RESET_LINK_ERROR
indicates adata link error situation

DL_RESET_RESYNCH
indicates arequest for resynchronization of adata link connection.
State

The message isvalid in state DL_DATAXFER.

New State

Theresulting stateis DL_PROV_RESET_PENDING.

Response

The DLSuser should issueaDL_RESET_RES primitive to continue the resynchronization procedure.

Revision: 2.0.0 Page 69 August 20, 1991

DLPI Primitives

4214 MessageDL_RESET_RES (dl_reset_res t)
Directs the DL S provider to complete resynchronizing the data link connection.
M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
ul ong dl_primtive;
} dl _reset res_t;

Parameters

di_primitive
conveys DL_RESET_RES.

State

The primitive isvalid in state DL_PROV_RESET_PENDING.
New State

Theresulting stateisDL_RESET_RES PENDING.

Response

If the reset response is successful, DL_OK_ACK is sent to the DLS user resulting in state
DL_DATAXFER.

If the reset response is erroneous, DL ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor Failure
DL_OUTSTATE The primitive was issued from an invalid state.

DL_SYSERR A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Revision: 2.0.0 Page 70 August 20, 1991

0S| Work Group

4.2.15 Message DL_RESET_CON (dl_reset_con t)
Informs the reset-initiating DL S user that the reset has completed.
M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
ul ong dl_primtive;
} dl _reset _con_t;

Parameters

di_primitive
conveys DL_RESET_CON.

State

The message isvalid in state DL_USER_RESET_PENDING.
New State

The resulting state is DL_DATAXFER.

Revision: 2.0.0 Page 71 August 20, 1991

DLPI Primitives

4.3 Connectionlesssmode Service Primitives

This section describes the primitives that support the connectionless-mode service of the data link layer.
These primitives support the connectionless data transfer service described earlier.

Revision: 2.0.0 Page 72 August 20, 1991

0S| Work Group

4.3.1 Message DL_UNITDATA_REQ (dl_unitdata_req t)
Conveys one DLSDU from the DL S user to the DLS provider for transmission to a peer DL S user.

Because connectionless data transfer is an unacknowledged service, the DLS provider makes no
guarantees of delivery of connectionless DLSDUSs. It is the responsibility of the DLS user to do any
necessary segquencing or retransmission of DLSDUsin the event of a presumed loss.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below, followed by
one or more M_DATA blocks containing at least one byte of data. The amount of user data that may be
transferred in a single DLSDU is limited. This limit is conveyed by the parameter di_max_sdu in the
DL_INFO_ACK primitive.

typedef struct ({

ul ong dl_primtive;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr_of fset;

dl_priority_t dl _priority;
} dl _unitdata req_t;

Parameters

di_primitive
conveys DL_UNITDATA_REQ.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DL S user. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

di_priority
indicates the priority value within the supported range for this particular DLSDU.

State

The message isvalid in state DL_IDLE.
New State

The resulting state is unchanged.
Response

If the DLS provider accepts the data for transmission, there is no response. This does not, however,
guarantee that the data will be delivered to the destination DL S user, since the connectionless data transfer
isnot aconfirmed service.

If the request is erroneous, message DL_UDERROR_IND is returned, and the resulting state is unchanged.

If for some reason the request cannot be processed, the DLS provider may generate a
DL_UDERROR _IND to report the problem. There is, however, no guarantee that such an error report will
be generated for all undeliverable data units, since connectionless data transfer is not a confirmed service.

Revision: 2.0.0 Page 73 August 20, 1991

DLPI Primitives

Reasonsfor Failure

DL_BADADDR The destination DLSAP address was in an incorrect format or contained invalid
information.

DL_BADDATA The amount of datain the current DLSDU exceeded the DL S provider's DLSDU limit.
DL_OUTSTATE The primitive was issued from an invalid state.

DL_UNSUPPORTED Requested priority not supplied by provider.

Revision: 2.0.0 Page 74 August 20, 1991

0S| Work Group

4.3.2 Message DL_UNITDATA_IND (dI_unitdata_ind_t)
Conveys one DLSDU from the DL S provider to the DLS user.
M essage For mat

The message consists of one M_PROTO message block containing the structure shown below, followed by
one or more M_DATA blocks containing at least one byte of data. The amount of user data that may be
transferred in a single DLSDU is limited. This limit is conveyed by the parameter di_max_sdu in the
DL_INFO_ACK primitive.

typedef struct {

ul ong dl_primtive;

ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;
ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
ul ong dl _group_address;

} dl _unitdata_ind t;

Parameters

di_primitive
conveys DL_UNITDATA_IND.

dl_dest_addr_length
conveys the length of the address of the DLSAP where this DL_UNITDATA_IND is intended to
be delivered.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the DL SAP address of the sending DL S user.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

dl_group_address
is set by the DLS Provider upon receiving and passing upstream a data message when the
destination address of the data message is amulticast or broadcast address.

State
The message isvalid in state DL_IDLE.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 75 August 20, 1991

DLPI Primitives

4.3.3 Message DL_UDERROR _IND (dl_uderror_ind t)

Informs the DLS user that a previously sent DL_UNITDATA_REQ produced an error or could not be
delivered. The primitive indicates the destination DL SAP address associated with the failed request, and
conveys an error value that specifies the reason for failure.

M essage For mat

The message consists of either one M_PROTO message block or one M_PCPROTO message block
containing the structure shown below.

typedef struct ({

ul ong dl_primtive;

ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;
ul ong dl _uni x_errno;

ul ong dl _errno;

} dl __uderror_ind_t;

Parameters

di_primitive
conveys DL_UDERROR_IND.

dl_dest_addr_length
conveys the length of the DL SAP address of the destination DL S user.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_unix_errno
conveys the UNIX system error code associated with the failure. This value should be non-zero
only when dl_errno is set to DL_SY SERR. It is used to report UNIX system failures that prevent
the processing of a given request.

d_errno

conveys the DLPI error code associated with the failure. See Reasons for Failure in the
description of DL_UNITDATA_REQ for the error codes that apply to an erroneous
DL_UNITDATA_REQ. In addition, the error value DL_UNDELIVERABLE may be returned if
the request was valid but for some reason the DLS provider could not deliver the data unit (e.g.
due to lack of sufficient local buffering to store the data unit). There is, however, no guarantee
that such an error report will be generated for al undeliverable data units, since connectionless
data transfer is not a confirmed service.

State
The message isvalid in state DL_IDLE.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 76 August 20, 1991

0S| Work Group

4.34 Message DL_UDQOS REQ (dl_udqos req t)

Requests the DL S provider to apply the specified quality of service parameter values to subsequent data
unit transmissions. These new values will remain in effect until another DL_UDQOS_REQ isissued.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {

ul ong dl_primtive;
ul ong dl _gos_I| engt h;
ul ong dl _gos_offset;

} dl __udgos_req_t;

Parameters

di_primitive
conveys DL_UDQOS REQ.

dl_gos length
conveys the length, in bytes, of the requested quality of service parameter values. The values are
conveyed in the appropriate structure defined in section 5.3, QOS Data Srructures. The available
range of QOS values that may be selected is specified by the dl_qos range length and
dl_gos range offset parametersinthe DL_INFO_ACK primitive.

For any parameter whose value the DLS user does not wish to select, the vaue
DL_QOS DONT_CARE may be set and the DLS provider will maintain the current value for
that parameter. See section 5, Quality of Data Link Service, for afull description of the quality of
service parameters.

dl_gos offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

State

The message isvalid in state DL_IDLE.

New State

The resulting stateis DL_UDQOS_PENDING.
Response

If the quality of service request is successful, DL_OK_ACK is sent to the DLS user and the resulting state
isDL_IDLE.

If the request fails, message DL_ERROR_ACK isreturned and the resulting state is unchanged.
Reasonsfor Failure

DL_BADQOSPARAM The quality of service parameters contained values outside the range of those supported
by the DLS provider.

DL_BADQOSTYPE The quality of service structure type was not supported by the DL S provider.

DL_OUTSTATE The primitive was issued from an invalid state.

Revision: 2.0.0 Page 77 August 20, 1991

DLPI Primitives

4.4 Primitivesto handle XID and TEST operations

This section describes the service primitives that support the X1D and TEST operations. The DLS User can
issue these primitives to the DLS Provider requesting the provider to send an XID or a TEST frame. On
receipt of an XID or TEST frame from the remote side, the DLS Provider can send the appropriate
indication to the User.

Revision: 2.0.0 Page 78 August 20, 1991

0S| Work Group

441 MessageDL_TEST_REQ (d_test req t)

Conveys one TEST command DLSDU from the DLS User to the DLS Provider for transmission to a peer
DLSProvider.

M essage For mat

The message consists of one M_PROTO message block, followed by zero or more M_DATA blocks
containing zero or more bytes of data. The message structure is as follows:

typedef struct {
ulong dl _prinmtive;
ulong dl _fl ag;
ul ong dl _dest _addr | engt h;
ul ong dl _dest addr_of fset;
} dl _test req_t;

Parameters

di_primitive
conveys DL_TEST_REQ

d_flag
indicates flag values for the request as follows:

DL_POLL_FINAL indicatesif the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

State

The message isvalid in states DL_IDLE and DL_DATAXFER.
New State

The resulting state is unchanged.

Response

On an invalid TEST command request, a DL_ERROR_ACK is issued to the user. If the DLS Provider
receives a response from the remote side, aDL_TEST_CON isissued to the DLS User. It is recommended
that the DLS User use atimeout procedure to recover from a situation when there is no response from the
peer DLS User.

Reasonsfor failure

DL_OUTSTATE The primitive was issued from an invalid state
DL_BADADDR The DLSAP address information wasinvalid or was in an incorrect format.
DL_SYSERR A System error has occurred and the UNIX System error is indicated in the

DL_ERROR_ACK.

Revision: 2.0.0 Page 79 August 20, 1991

DLPI Primitives

DL_NOTSUPPORTED Primitive is known but not supported by the DL S Provider
DL_TESTAUTO Previous bind request specified automatic handling of TEST responses.
DL_UNSUPPORTED Requested service not supplied by provider.

Revision: 2.0.0 Page 80 August 20, 1991

0S| Work Group

4.4.2 MessageDL_TEST_IND (dl_test ind_t)
Conveys the TEST response/indication DLSDU from the DL S Provider to the DLS User.
M essage For mat

The message consists of one M_PROTO message block, followed by zero or more M_DATA blocks
containing zero or more bytes of data. The message structure is asfollows:

typedef struct ({
ul ong dl_primtive;
ul ong dl_flag;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;
ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
} dl _test _ind_t;

Parameters

di_primitive
conveys DL_TEST_IND

d_flag
indicates the flag values associated with the received TEST frame:

DL_POLL_FINAL indicatesif the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the source DLSAP address. If the source user is implemented using DLPI,
this address if the full DLSAP address returned on the DL_BIND_ACK.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

State
Themessageisvalid in states DL_IDLE and DL_ DATAXFER.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 81 August 20, 1991

DLPI Primitives

4.4.3 MessageDL_TEST_RES (dI_test res t)

Conveys the TEST response DLSDU from the DLS User to the DLS Provider in response to a
DL_TEST_IND.

M essage For mat

The message consists of one M_PROTO message block, followed by zero or more M_DATA blocks
containing zero or more bytes of data. The message structure is asfollows:

typedef struct {

ul ong dl_primtive;

ul ong dl _flag;

ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;

} dl _test res t;
Parameters
di_primitive

conveys DL_TEST_RES
d_flag

indicates the flag values for the response as follows:
DL_POLL_FINAL indicatesif the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the

DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination

State

DL SAP address begins.

The message isvalid in states DL_IDLE and DL_DATAXFER.

New State

The resulting state is unchanged.

Revision: 2.0.0 Page 82

August 20, 1991

0S| Work Group

4.4.4 MessageDL_TEST_CON (dI_test con_t)

Conveys the TEST response DLSDU from the DLS Provider to the DLS User in response to a
DL_TEST_REQ.

M essage For mat

The message consists of one M_PROTO message block, followed by zero or more M_DATA blocks
containing zero or more bytes of data. The message structure is asfollows:

typedef struct {
ul ong dl_primtive;
ul ong dl _flag;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr_of fset;
ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
} dl _test _con_t;

Parameters

di_primitive
conveys DL_TEST_RES

d_flag
indicates the flag values for the request as follows:

DL_POLL_FINAL indicatesif the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the source DLSAP address. If the source user is implemented using DLPI,
this address isthe full DLSAP address returned onthe DL_BIND_ACK.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

State
Themessageisvalid in states DL_IDLE and DL_ DATAXFER.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 83 August 20, 1991

DLPI Primitives

445 MessageDL_XID_REQ (dl_xid req t)
Conveys one XI1D DLSDU from the DLS User to the DL S Provider for transmission to a peer DLS User.
M essage For mat

The message consists of one M_PROTO message block, followed by zero or more M_DATA blocks
containing zero or more bytes of data. The message structure is as follows:

typedef struct {
ulong dl _prinmtive;
ulong dl _fl ag;
ul ong dl _dest _addr | engt h;
ul ong dl _dest addr_of fset;
} dl _xid req_t;

Parameters
di_primitive
conveys DL_XID_REQ

d_flag
indicates the flag values for the response as follows:

DL_POLL_FINAL indicates status of the poll/final bit in the xid frame.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

State

The message isvalid in state DL_IDLE and DL_DATAXFER.
New State

The resulting state is unchanged.

Response

On an invalid XID request, a DL_ERROR_ACK isissued to the user. If the remote side responds to the
XID request, aDL_XID_CON will be sent to the User. It isrecommended that the DLS User use a timeout
procedure on an XID_REQ. The timeout may be used if the remote side does not respond to the XID
request.

Reasonsfor failure

DL_BADDATA The amount of data in the current DLSDU exceeded the DLS Provider's
DLSDU limit.

DL_XIDAUTO Previous bind request specified Provider would handle XID.

DL_OUTSTATE The primitive was issued from an invalid state

DL_BADADDR The DLSAP address information wasinvalid or was in an incorrect format.

Revision: 2.0.0 Page 84 August 20, 1991

0S| Work Group

DL_SYSERR A System error has occurred and the UNIX System error is indicated in the
DL_ERROR_ACK.

DL_NOTSUPPORTED Primitive is known but not supported by the DL S Provider

Revision: 2.0.0 Page 85 August 20, 1991

DLPI Primitives

4.4.6 MessageDL_XID_IND (dl_xid ind t)
Conveys an XID DLSDU from the DL S Provider to the DLS User.
M essage For mat

The message consists of one M_PROTO message block, followed by zero or more M_DATA blocks
containing zero or more bytes of data. The message structure is as follows:

typedef struct ({
ul ong dl_primtive;
ul ong dl_flag;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;
ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
} dl _xid_ind_t;

Parameters

di_primitive
conveys DL_XID_IND

d_flag
conveys the flag values associated with the received XID frame.

DL_POLL_FINAL indicatesif the received xid frame had the poll/final bit set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the source DLSAP address. If the source user is implemented using DLPI,
this address if the full DLSAP address returned on the DL_BIND_ACK.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

State

The message isvalid in state DL_IDLE and DL_DATAXFER.
New State

The resulting state is unchanged.

Response

The DLS User must respond with aDL_XID_RES.

Revision: 2.0.0 Page 86 August 20, 1991

0S| Work Group

4.4.7 MessageDL_XID_RES (dl_xid res t)
Conveys an XID DLSDU from the DL S User to the DLS Provider in responseto aDL_XID_IND.
M essage For mat

The message consists of one M_PROTO message block, followed by zero or more M_DATA blocks
containing zero or more bytes of data. The message structure is asfollows:

typedef struct ({
ul ong dl_primtive;
ul ong dl_flag;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;
} dl _xid res_t;

Parameters

dl_primitive
conveys DL_XID_RES

d_flag
conveys the flag values associated with the received XID frame.

DL_POLL_FINAL

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

State
Themessageisvalid in states DL_IDLE and DL_ DATAXFER.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 87 August 20, 1991

DLPI Primitives

4.4.8 MessageDL_XID_CON (dl_xid con t)
Conveys an XID DLSDU from the DL S Provider to the DLS User in responseto aDL_XID_REQ.
M essage For mat

The message consists of one M_PROTO message block, followed by zero or more M_DATA blocks
containing zero or more bytes of data. The message structure is as follows:

typedef struct ({
ul ong dl_primtive;
ul ong dl_flag;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;
ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
} dl _xid _con_t;

Parameters

di_primitive
conveys DL_XID_CON

d_flag
conveys the flag values associated with the received XID frame.

DL_POLL_FINAL

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the source DLSAP address. If the source user is implemented using DLPI,
this address isthe full DLSAP address returned onthe DL_BIND_ACK.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

State
Themessageisvalid in states DL_IDLE and DL_ DATAXFER.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 88 August 20, 1991

0S| Work Group

4.5 Acknowledged Connectionlesssmode Service Primitives

This section describes the primitives that support the acknowledged connectionless-mode service of the
data link layer. These primitives support the acknowledged connectionless data transfer service described
earlier.

Revision: 2.0.0 Page 89 August 20, 1991

DLPI Primitives

45.1 Message DL_DATA_ACK_REQ (dl_data _ack req t)

Thisrequest is passed to the Data Link Provider to request that a DLSDU be sent to a peer DLS User using
acknowledged connectionless mode data unit transmission procedures.

M essage For mat

Consists of one M_PROTO message block containing the structure shown below, followed by one or more
M_DATA blocks containing one or more bytes of data. The amount of user data that may be transferred in
asingle DLSDU is limited. This limit is conveyed by the parameter dl_max_sdu in the DL_INFO_ACK
primitive.

typedef struct {
ul ong dl_primtive;
ul ong dl _correl ation;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr_of fset;

ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
ul ong dl _priority;

ul ong dl _service_cl ass;

} dl _data_ack req_t;

Parameters

di_primitive
conveys DL_DATA_ACK_REQ

dl_correlation
Conveys a unique identifier which will be returned in the DL_DATA_ACK_STATUS IND
primitive to allow the DLS User to correlate the status to the appropriate DL_DATA_ACK_REQ
primitive.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is

implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the DL SAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

di_priority
indicates the priority value within the supported range for this particular DLSDU.
dl_service class

Specifies whether or not an acknowledge capability in the medium access control sublayer is to
be used for the data unit transmission.

DL_RQST_RSP Request acknowledgement service from the medium access control sublayer if
supported

Revision: 2.0.0 Page 90 August 20, 1991

0S| Work Group

DL_RQST_NORSP No acknowledgement service requested from the medium access control
sublayer.

State

Thismessageisvalid in state DL_IDLE.

New State

Theresulting state is unchanged.

Response

If the request is erroneous, message DL ERROR_ACK isreturned, and the resulting state is unchanged.

If the DLS Provider accepts the data for transmission, a DL_DATA_ACK_STATUS IND isreturned. This
indication will indicate the success or failure of the data transmission. Although the exchange service is
connectionless, in-sequence delivery is guaranteed for data sent by the initiating station.

Reasonsfor Failure

DL_OUTSTATE The primitive was issued from an invalid state.

DL_BADADDR The destination DL SAP address wasin an incorrect format or contained invalid
information.

DL_NOTSUPPORTED Primitive isvalid, but not supported.

DL_BADDATA The amount of data in the current DLSDU exceeded the DLS provider's
DLSDU limit.

DL_UNSUPPORTED Requested service or priority not supported by Provider (Request with response

at the Medium Access Control sublayer).

Revision: 2.0.0 Page 91 August 20, 1991

DLPI Primitives

45.2 Message DL_DATA_ACK _IND (dI_data ack ind_t)

Conveys one DLSDU from the DLS Provider to the DLS User. This primitive indicates the arrival of a
non-null, non-duplicate DLSDU from a peer Data Link User entity.

M essage For mat

Consists of one M_PROTO message block containing the structure shown below, followed by one or more
M_DATA blocks containing one or more bytes of data. The amount of user data that may be transferred in
asingle DLSDU is limited. This limit is conveyed by the parameter dl_max_sdu in the DL_INFO_ACK
primitive.

typedef struct {
ul ong dl_primtive;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;

ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
ul ong dl _priority;

ul ong dl _service_cl ass;

} dl _data_ack_ind_t;

Parameters

di_primitive
conveys DL_DATA_ACK_IND

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this addressisthe full DLSAP

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the DL SAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins. address returned on the DL_BIND_ACK.

di_priority
priority provided for the data unit transmission.

dl_service class
Specifies whether or not an acknowledge capability in the medium access control sublayer is to
be used for the data unit transmission.

DL_RQST_RSP Use acknowledgement service in the medium access control sublayer.

DL_RQST_NORSP No acknowledgement service to be used in the medium access control
sublayer.

State
Thismessageisvalid in state DL_IDLE.

Revision: 2.0.0 Page 92 August 20, 1991

0S| Work Group

New State

Theresulting state is unchanged.

Revision: 2.0.0 Page 93 August 20, 1991

DLPI Primitives

45.3 Message DL_DATA_ACK_STATUS IND (dl_data ack status ind t)

Conveys the results of the previous associated DL_DATA_ACK_REQ from the DLS Provider to the DLS
User.

M essage For mat

Consists of one M_PROTO message block containing the structure shown below.

typedef struct ({

ul ong dl_primtive;
ul ong dl _correl ation;
ul ong dl _status;

} dl _data_ack _status_ind_t;

Parameters

di_primitive
conveys DL_DATA_ACK_STATUS_IND

dl_correlation
conveys the unique identifier passed with the DL_DATA_ACK_REQ primitive, to allow the DLS
User correlate the status to the appropriate DL_ DATA_ACK_REQ.

d_status
indicates the success or failure of the previous associated acknowledged connectionless-mode
data unit transmission request.

DL_CMD_OK Command accepted.

DL_CMD_RS Unimplemented or inactivated service.
DL_CMD_UE LLC User Interface error

DL_CMD_PE Protocol error

DL_CMD_IP Permanent implementation dependent error
DL_CMD_UN Resources temporarily unavailable.
DL_CMD_IT Temporary implementation dependent error.

State
Thismessageisvalid in state DL_IDLE.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 94 August 20, 1991

0S| Work Group

454 MessageDL_REPLY_REQ (dl_reply req t)

Thisregquest primitive is passed to the DL S Provider by the DL S User to request that a DLSDU be returned
from a peer DLS Provider or that DLSDUs be exchanged between stations using acknowledged
connectionless mode data unit exchange procedures.

M essage For mat

Consists of one M_PROTO message block containing the structure shown below, followed by one or more
M_DATA blocks with one or more bytes of data.

typedef struct {
ul ong dl_primtive;
ul ong dl _correl ation;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;

ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
ul ong dl _priority;

ul ong dl _service_cl ass;

} dl _reply req_t;

Parameters

di_primitive
conveysDL_REPLY_REQ

dl_correlation
Conveys a unique identifier which will be returned inthe DL_REPLY _STATUS_IND primitive to
allow the DLS User to correlate the status to the appropriate DL_REPLY_REQ primitive.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is
implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the DL SAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

di_priority
priority provided for the data unit transmission.

dl_service class

Specifies whether or not an acknowledge capability in the medium access control sublayer is to
be used for the data unit transmission.

State
Thisprimitive isvalid in state DL_IDLE.

Revision: 2.0.0 Page 95 August 20, 1991

DLPI Primitives

New State

Theresulting state is unchanged.

Response

If the request is erroneous, message DL ERROR_ACK isreturned, and the resulting state is unchanged.

If the message isvalid, aDL_REPLY_STATUS IND is returned. This will indicate the success or failure
of the previous associated acknowledged connectionless-mode data unit exchange.

Reasonsfor Failure

DL_OUTSTATE The primitive was issued from an invalid state.

DL_BADADDR The destination DL SAP address was in an incorrect format or contained invalid
information.

DL_NOTSUPPORTED Primitive isvalid, but not supported.

DL_BADDATA The amount of data in the current DLSDU exceeded the DLS provider's
DLSDU limit.

DL_UNSUPPORTED Requested service not supported by Provider (Request with response at the

Medium Access Control sublayer).

Revision: 2.0.0 Page 96 August 20, 1991

0S| Work Group

455 MessageDL_REPLY _IND (dl_reply ind t)

This primitive is the service indication primitive for the acknowledged connectionless-mode data unit
exchange service. It is passed from the DLS Provider to the DLS User to indicate either a successful
reguest of a DLSDU from the peer data link user entity, or exchange of DLSDUs with a peer data link user
entity.

M essage For mat

Consists of one M_PROTO message block containing the structure shown below, followed by zero or
more M_DATA blocks.

typedef struct {
ul ong dl_primtive;
ul ong dl _dest _addr _|I engt h;
ul ong dl _dest addr _of fset;

ul ong dl _src_addr_Iength;
ul ong dl _src_addr_offset;
ul ong dl _priority;

ul ong dl _service_cl ass;

} dl _reply_ind_t;

Parameters

di_primitive
conveys DL_REPLY_IND
dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination user is

implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest addr_offset
conveys the offset from the beginning of the M_PROTO message block where the destination
DL SAP address begins.

dl_src_addr_length
conveys the length of the DL SAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

di_priority
priority provided for the data unit transmission.

dl_service class
Specifies whether or not an acknowledge capability in the medium access control sublayer is to
be used for the data unit transmission.

State
Thisprimitive isvalid in state DL_IDLE.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 97 August 20, 1991

DLPI Primitives

45.6 MessageDL_REPLY_STATUS IND (dl_reply status ind_t)

This indication primitive is passed from the DLS Provider to the DLS User to indicate the success or
failure of the previous associated acknowledged connectionless mode data unit exchange request.

M essage For mat

Consists of one M_PROTO message block containing the structure shown below, followed by zero or

more M_DATA blocks.

typedef struct
ul ong
ul ong
ul ong

{

dl_primtive;
dl _correl ation;
dl _stat us;

} dl _reply status_ind_t;

Parameters

di_primitive

conveys DL_REPLY_STATUS_IND

dl_correlation

conveys the unique identifier passed with the DL_REPLY _REQ primitive, to allow the DLS User
correlate the status to the appropriate DL_REPLY _REQ.

dl_StatUSI ndicates the success or failure of the previous associated acknowledged connectionless-mode
data unit exchange request.
DL_CMD_OK Command accepted.
DL_CMD_RS Unimplemented or inactivated service.
DL_CMD_UE LLC User Interface error
DL_CMD_PE Protocol error
DL_CMD_IP Permanent implementation dependent error
DL_CMD_UN Resources temporarily available.
DL_CMD_IT Temporary implementation dependent error.
DL_RSP OK Response DLSDU present.
DL_RSP_RS Unimplemented or inactivated service.
DL_RSP NE Response DL SDU never submitted.
DL_RSP_NR Response DL SDU not requested.
DL_RSP UE LLC User interface error.
DL_RSP_IP Permanent implementation dependent error.
DL_RSP_UN Resources temporarily unavailable.
DL_RSPIT Temporary implementation dependent error.

State

Thisprimitive isvalid in state DL_IDLE.

Revision: 2.0.0

Page 98

August 20, 1991

0S| Work Group

New State

Theresulting state is unchanged.

Revision: 2.0.0 Page 99 August 20, 1991

DLPI Primitives

45.7 MessageDL_REPLY_UPDATE_REQ (dl_reply update req t)

Conveys aDLSDU to the DL S Provider from the DLS User to be held by the DLS Provider and sent out at
alater time when regquested to do so by the peer DLS Provider.

M essage For mat

Consists of one M_PROTO message block containing the structure shown below, followed by one or more
M_DATA blocks.

typedef struct {

ul ong dl_primtive;

ul ong dl _correl ation;

ul ong dl _src_addr I ength;
ul ong dl _src_addr_offset;

} dl _reply update req_t;

Parameters

di_primitive
conveys DL_REPLY_UPDATE_REQ

dl_correlation
conveys context specific information to be returned in the DL_REPLY_UPDATE_STATUS IND
primitive to allow the DL S User correlate the status to the appropriate previous request.

dl_src_addr_length
conveys the length of the DL SAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source DLSAP
address begins.

State

Thisprimitive isvalid in state DL_IDLE.
New State

The resulting state is unchanged.
Response

If the request is erroneous, a DL_ERROR_ACK is returned with the appropriate error code. Otherwise, a
DL_REPLY_UPDATE_STATUS IND is returned, which indicates the success or falure of the
DL_REPLY UPDATE REQ.

Reasonsfor failure

DL_OUTSTATE The primitive was issued from an invalid state.
DL_BADDATA The amount of datain the DLSDU exceeded the DLS Provider's DLSDU limit.
DL_NOTSUPPORTED Primitive is known, but not supported.

Revision: 2.0.0 Page 100 August 20, 1991

0S| Work Group

458 MessageDL_REPLY_UPDATE_STATUS IND (dl_reply update status ind_t)

This primitive is the service confirmation primitive for the reply data unit preparation service. This
primitive is sent to the DL User from the DLS Provider to indicate the success or failure of the previous
associated data unit preparation request.

M essage For mat

Consists of one M_PROTO message block containing the structure shown below.

typedef struct ({

ul ong dl_primtive;
ul ong dl _correl ation;
ul ong dl _status;

} dl _reply update req_t;

Parameters

di_primitive
conveys DL_UPDATE_STATUS IND
dl_correlation

Indicates the context information passed with the DL_REPLY_UPDATE_REQ to alow the DLS
User correlate the status with the appropriate previous request.

d_status
indicates the success or failure of the previous associated data unit preparation request.

DL_CMD_OK Command accepted.

DL_CMD_RS Unimplemented or inactivated service.
DL_CMD_UE LLC User Interface error

DL_CMD_PE Protocol error

DL_CMD_IP Permanent implementation dependent error
DL_CMD_UN Resources temporarily available.
DL_CMD_IT Temporary implementation dependent error.
DL_RSP_OK Response DLSDU present.

DL_RSP_RS Unimplemented or inactivated service.
DL_RSP_NE Response DL SDU never submitted.
DL_RSP_NR Response DL SDU not requested.

DL_RSP UE LLC User interface error.

DL_RSP_IP Permanent implementation dependent error.
DL_RSP_UN Resources temporarily unavailable.
DL_RSPIT Temporary implementation dependent error.

State
Thisprimitive isvalid in state DL_IDLE.

Revision: 2.0.0 Page 101 August 20, 1991

DLPI Primitives

New State

Theresulting state is unchanged.

Revision: 2.0.0 Page 102 August 20, 1991

0S| Work Group

5. Quality of Data Link Service

The quality of data link service is defined by the term "Quality of Service' (QOS), and describes certain
characteristics of transmission between two DLS users. These characteristics are attributable solely to the
DLS provider, but are observable by the DLS users. The visibility of QOS characteristics enables a DLS
user to determine, and possibly negotiate, the characteristics of transmission needed to communicate with
the remote DL S user.

Revision: 2.0.0 Page 103 August 20, 1991

Quality of DataLink Service

5.1 Overview of Quality of Service

Quality of service characteristics apply to both the connection and connectionless modes of service. The
semantics for each mode are discussed below.

Revision: 2.0.0 Page 104 August 20, 1991

0S| Work Group

5.1.1 Connection-mode Service

"Quality of Service' (QOS) refers to certain characteristics of a data link connection as observed between
the connection endpoints. QOS describes the specific aspects of a data link connection that are
attributable to the DLS provider.

QOS s defined in terms of QOS parameters. The parameters give DLS users a means of specifying their
needs. These parameters are divided into two groups, based on how their values are determined:

« QOS parameters that are negotiated on a per-connection basis during connection establishment; and

« QOS parameters that are not negotiated during connection establishment. The values are determined
or known through other methods, usually administrative.

The QOS parameters that can be negotiated during connection establishment are: throughput, transit delay,
priority, and protection. The QOS parameters for throughput and transit delay are negotiated end-to-end
between the two DLS users and the DLS provider. The QOS parameters for priority and protection are
negotiated locally by each DLS user with the DLS provider. The QOS parameters that cannot be
negotiated are residual error rate and resilience. Section 5.4, Procedures for QOS Negotiation and
Selection describes the rules for QOS negotiation.

Once the connection is established, the agreed QOS values are not renegotiated at any point. There is no
guarantee by any DL S provider that the original QOS values will be maintained, and the DL S users are not
informed if QOS changes. The DLS provider also need only record those QOS values sdlected at
connection establishment for return in response to the DL_INFO_REQ primitive.

Revision: 2.0.0 Page 105 August 20, 1991

Quality of DataLink Service

5.1.2 QOSfor Connectionlesssmode and Acknowledged Connectionless-mode Service

The QOS for connectionlessmode and acknowledged connectionlessmode service refers to
characteristics of the data link layer between two DLSAPs, attributable to the DLS provider. The QOS
applied to each DL_UNITDATA_REQ/DL_DATA_ACK_REQ primitive may be independent of the QOS
applied to preceding and following DL_UNITDATA_REQ/DL_DATA_ACK_REQ primitives. QOS
cannot be negotiated between two DL S users as in the connection-mode service.

Every DL_UNITDATA_REQ/DL_DATA_ACK_REQ primitive may have certain QOS values associated
with it. The supported range of QOS parameter values is made known to the DL S user in response to the
DL_INFO_REQ primitive. The DLS user may select specific QOS parameter values to be associated with
subsequent data unit transmissions using the DL_UDQOS _REQ primitive. Thisselection isastrictly local
management function. If different QOS vaues are to be associated with each transmission,
DL_UDQOS REQ may be issued to ater those values before each
DL_UNITDATA_REQ/DL_DATA_ACK_REQ isissued.

Revision: 2.0.0 Page 106 August 20, 1991

0S| Work Group

5.2 QOSParameter Definitions

This section describes the quality of service parameters supported by DLPI for both connection-mode and
connectionless-mode services. The following table summarizes the supported parameters. It indicates to
which service mode (connection, connectionless, or both) the parameter applies. For those parameters
supported by the connection-mode service, the table also indicates whether the parameter vaue is
negotiated during connection establishment. |f so, the table further indicates whether the QOS values are
negotiated end-to-end among both DLS users and the DLS provider, or localy for each DLS user
independently with the DLS provider.

Parameter Service Mode | Negotiation
throughput connection end-to-end
transit delay both end-to-end
priority both local
protection both local
residua error rate | both none
resilience connection none

Revision: 2.0.0 Page 107 August 20, 1991

Quality of DataLink Service

5.2.1 Throughput

Throughput is a connection-mode QOS parameter that has end-to-end significance. It is defined as the
total number of DLSDU hits successfully transferred by a DL_DATA_REQ/DL_DATA _IND primitive
sequence divided by the input/output time, in seconds, for that sequence. Successful transfer of a DLSDU
is defined to occur when the DLSDU is delivered to the intended user without error, in proper sequence,
and before connection termination by the receiving DLS user.

Theinput/output time for aDL_DATA_REQ/DL_DATA_IND primitive sequence isthe greater of:
- the time between the first and last DL_DATA_REQ in a sequence; and
« the time between the first and last DL_DATA_IND in the sequence.

Throughput is only meaningful for a sequence of complete DLSDUs.

Throughput is specified and negotiated for the transmit and receive directions independently at connection
establishment. The throughput specification defines the target and minimum acceptable values for a
connection. Each specification is an average rate.

The DLS user can delay the receipt or sending of DLSDUs. The delay caused by a DLS user is not
included in calculating the average throughput values.

Parameter Format

typedef struct {
| ong dl _target_ val ue;
| ong dl _accept val ue;
} dl _through t;

This typedef is used to negotiate the transmit and receive throughput values.

dl_target value
specifies the desired throughput value for the connection in bits/second.

dl_accept value
specifies the minimum acceptable throughput value for the connection in bits/second.

Revision: 2.0.0 Page 108 August 20, 1991

0S| Work Group

5.2.2 Transit Delay

Connection and connectionless modes can specify a transit delay, which indicates the elapsed time
between aDL_DATA_REQ or DL_UNITDATA_REQ primitive and the corresponding DL_DATA_IND or
DL_UNITDATA_IND primitive. The elapsed time is only computed for DLSDUs successfully
transferred, as described previously for throughput.

In connection mode, transit delay is negotiated on an end-to-end basis during connection establishment.
For each connection, transit delay is negotiated for the transmit and receive directions separately by
specifying the target value and maximum acceptable value. For connectionless-mode service, a DLS user
selects a particular value within the supported range using the DL_UDQQOS_REQ primitive, and the value
may be changed for each DL SDU submitted for connectionless transmission.

The transit delay for an individual DLSDU may be increased if the receiving DL S user flow controls the
interface. The average and maximum transit delay values exclude any DLS user flow control of the
interface. The values are specified in milliseconds, and assume a DL SDU size of 128 octets.

Parameter Format

typedef struct {
| ong dl _target_ val ue;
| ong dl _accept val ue;
} dl _transdelay t;

Thistypedef is used to negotiate the transmit and receive transit delay values.

dl_target value
specifies the desired transit delay value.

dl_accept_value
specifies the maximum acceptable transit delay value.

Revision: 2.0.0 Page 109 August 20, 1991

Quality of DataLink Service

5.2.3 Priority

Priority is negotiated locally between each DLS user and the DLS provider in connection-maode service,
and can also be specified for connectionless-mode service. The specification of priority is concerned with
the relationship between connections or the relationship between connectionless data transfer requests.
The parameter specifies the relative importance of a connection with respect to:

- the order in which connections are to have their QOS degraded, if necessary; and
- the order in which connections are to be released to recover resources, if necessary;

For connectionless-mode service, the parameter specifies the relative importance of unitdata objects with
respect to gaining use of shared resources.

For connection-mode service, each DL S user negotiates a particular priority value with the DLS provider
during connection establishment. The value is specified by a minimum and a maximum within a given
range. For connectionlessmode service, a DLS user selects a particular priority value within the
supported range using the DL_UDQQOS_REQ primitive, and the value may be changed for each DLSDU
submitted for connectionless transmission.

This parameter only has meaning in the context of some management entity or structure able to judge
relative importance. The priority has local significance only, with a value of zero being the highest
priority and 100 being the lowest priority.

Parameter Format

typedef struct {
| ong dl_nmn;
| ong dl _max;
} dl _priority_t;

d_min
specifies the minimum acceptable priority.

d_max
specifies the maximum desired priority.

Revision: 2.0.0 Page 110 August 20, 1991

0S| Work Group

5.2.4 Protection

Protection is negotiated locally between each DL S user and the DL S provider in connection-mode service,
and can also be specified for connectionless-mode service. Protection is the extent to which a DLS
provider attempts to prevent unauthorized monitoring or manipulation of DL S user-originated information.
Protection is specified by a minimum and maximum protection option within the following range of
possible protection options:

DL_NONE DL S provider will not protect any DL S user data
DL_MONITOR DL S provider will protect against passive monitoring

DL_MAXIMUM DLS provider will protect against modification, replay, addition, or deletion of
DLSuser data

For connection-mode service, each DLS user negotiates a particular value with the DLS provider during
connection establishment. The value is specified by a minimum and a maximum within a given range. For
connectionless-mode service, a DLS user selects a particular value within the supported range using the
DL_UDQOS REQ primitive, and the value may be changed for each DLSDU submitted for
connectionlesstransmission. Protection hasloca significance only.

Parameter Format

typedef struct {
| ong dl_nmin;
| ong dl _max;
} dl _protect t;

d_min
specifies the minimum acceptable protection.

d_max
specifies the maximum desired protection.

Revision: 2.0.0 Page 111 August 20, 1991

Quality of DataLink Service

5.2.5 Residual Error Rate

Residual error rate is the ratio of total incorrect, lost and duplicate DLSDUSs to the total DLSDUs
transferred between DLS users during a period of time. The relationship between these quantities is
defined below:

DLSDU, + DLSDU; + DLSDU,
DLSDUyy

RER =

where

DLSDU, = total DLSDUstransferred, which isthe total of DLSDU,, DLSDU;, DLSDU,, and correctly
received DLSDUs.

DLSDU, = DLSDUsreceived 2 or more times.
DLSDU; = incorrectly received DLSDUs.
DLSDU, = DLSDUssent, but not received.

Parameter Format

| ong dl _residual _error;

Theresidua error value is scaled by afactor of 1,000,000, since the parameter is stored as along integer in
the QOS data structures. Residual error rate is not a negotiated QOS parameter. Itsvalue is determined by
procedures outside the definition of DLPI. It isassumed to be set by an administrative mechanism, which
isinformed of the value by network management.

Revision: 2.0.0 Page 112 August 20, 1991

0S| Work Group

5.2.6 Reslience

Resilience is meaningful in connection mode only, and represents the probability of either: DLS
provider-initiated disconnects or DL S provider-initiated resets during atime interval of 10,000 seconds on
aconnection.

Resilience is not anegotiated QOS parameter. Itsvalue is determined by procedures outside the definition
of DLPI. It is assumed to be set by an administrative mechanism, which is informed of the value by
network management.

Parameter Format

typedef struct {

| ong dl _di sc_prob;

| ong dl _reset _prob;
} dl _resilience_t;

dl_disc prob
specifies the probability of receiving a provider-initiated disconnect, scaled by 10000.

dl_reset prob
specifies the probability of receiving a provider-initiated reset, scaled by 10000.

Revision: 2.0.0 Page 113 August 20, 1991

Quality of DataLink Service

5.3 QOSData Structures

To simplify the definition of the primitives containing QOS parameters and the discussion of QOS
negotiation, the QOS parameters are organized into four structures. This section defines the structures and
indicates which structures apply to which primitives.

Each structure is tagged with a type field contained in the first four bytes of the structure, similar to the
tagging of primitives. The type field has been defined because of the current volatility of QOS parameter
definition within the international standards bodies. If new QOS parameter sets are defined in the future
for the data link layer, the type field will enable DLPI to accommodate these sets without breaking
existing DLS user or provider implementations. However, DLS user and provider software should be
coghizant of the possibility that new QOS structure types may be defined in future issues of the DLPI
specification. If aDLS provider receives a structure type that it does not understand in a given primitive,
the error DL_BADQOSTY PE should be returned to the DLSuser inaDL_ERROR_ACK primitive.

Currently the following QOS structure types are defined:
DL_QOS CO RANGE1 QOSrange structure for connection-mode service for Issue 1 of DLPI

DL_QOS CO SEL1 QOS selection structure for connection-mode service for Issue 1 of DLPI

DL_QOS CL_RANGE1 QOSrange structure for connectionless-mode service for Issue 1 of DLPI

DL_QOS CL_SEL1 QOS sdlection structure for connectionless-mode service for Issue 1 of
DLPI

The syntax and semantics of each structure type is presented in the remainder of this section.

Revision: 2.0.0 Page 114 August 20, 1991

0S| Work Group

5.3.1 StructureDL_QOS CO_RANGEL1

Structure type DL_QOS CO_RANGEL enables a DLS user and DLS provider to pass between them a
range of QOS parameter values in the connection-mode service. The format of this structure typeis:

typedef struct ({

ul ong dl _gos_type;

dl _through t dl _rcv_throughput;
dl _transdel ay _t dl _rcv_trans_del ay;
dl _through t dl _xnt _throughput;
dl _transdel ay _t dl _xnt _trans_del ay;
dl_priority_t dl _priority;

dl _protect t dl _protection;

| ong dl _residual _error;
dl _resilience_t dl _resilience;

} dl _gos_co_rangel t;

where the value of dl_gos_type is DL_QOS_CO_RANGEL. The fields of this structure correspond to the
parameters defined in section 5.2, QOS Parameter Definitions. The throughput and transit delay
parameters are specified for each direction of transmission on adata link connection.

This structure type is returned in the dl_qos range length and dl_qos range offset fields of the
DL_INFO_ACK, and specifies the supported ranges of service quality supported by the DLS provider. In
other words, it specifies the available range of QOS parameter values that may be specified on a
DL_CONNECT_REQ.

For the DL_CONNECT_REQ and DL_CONNECT _IND primitives, this structure specifies the negotiable
range of connection-mode QOS parameter values. See section 5.4, Procedures for QOS Negotiation and
Selection, for the semantics of this structure in these primitives.

Revision: 2.0.0 Page 115 August 20, 1991

Quality of DataLink Service

5.3.2 StructureDL_QOS CO_SEL1

Structure type DL_QOS CO_SEL 1 conveys selected QOS parameter values for connection-mode service
between the DLS user and DL S provider. The format of this structure typeis:

typedef struct {

ul ong dl _gos_type;

| ong dl _rcv_throughput;

| ong dl _rcv_trans_del ay;
| ong dl _xnt _throughput;

| ong dl _xnt _trans_del ay;
| ong dl _priority;

| ong dl _protection;

| ong dl _residual _error;

dl _resilience_t dl _resilience;

} dl _gos _co_sell t;

where the value of dl_gos type is DL_QOS CO_SEL1. The fields of this structure correspond to the
parameters defined in section 5.2, QOS Parameter Definitions. The throughput and transit delay
parameters are specified for each direction of transmission on a data link connection.

This structure type is returned in the di_gos length and dl_gos offset fields of the DL_INFO_ACK, and
specifies the current or default QOS parameter values associated with a stream. Default values are
returned prior to connection establishment, and currently negotiated values are returned when a
connection is active on the stream.

The structure type is used in the DL_CONNECT_RES to enable the responding DLS user to select
particular QOS parameter values from the available range. The DL_CONNECT_CON primitive returns
the selected values to the calling DLS user in this structure. See section 5.4, Procedures for QOS
Negotiation and Selection, for the semantics of this structure in these primitives.

Revision: 2.0.0 Page 116 August 20, 1991

0S| Work Group

5.3.3 StructureDL_QOS CL_RANGEL1

Structure type DL_QOS CL_RANGEL enables a DLS user and DLS provider to pass between them a
range of QOS parameter values in the connectionless-mode service. The format of this structure typeis.

typedef struct {

ul ong dl _gos_type;

dl _transdel ay _t dl _trans_del ay;
dl_priority_t dl _priority;

dl _protect _t dl _protection;

| ong dl _residual _error;

} dl _gos_cl _rangel t;

where the value of dl_gos _type is DL_QOS_CL_RANGE1L. The fields of this structure correspond to the
parameters defined in section 5.2, QOS Parameter Definitions.

This structure type is returned in the dl_qos range length and dl_qos range offset fields of the
DL_INFO_ACK, and specifies the range of connectionless-mode QOS parameter values supported by the
DLS provider on the stream. The DLS user may select specific values from this range using the
DL_UDQOS_REQ primitive, as described in section 5.4, Procedures for QOS Negotiation and Selection.

Revision: 2.0.0 Page 117 August 20, 1991

Quality of DataLink Service

534 StructureDL_QOS CL_SEL1

Structure type DL_QOS CL_SEL1 conveys selected QOS parameter values for connectionless-mode
service between the DLS user and DL S provider. The format of this structure typeis:

typedef struct {

ul ong dl _gos_type;

| ong dl _trans_del ay;

| ong dl _priority;

| ong dl _protection;

| ong dl _residual _error;

} dl _qgos_cl _sell t;

where the value of dl_gos type is DL_QOS CL_SEL1. The fields of this structure correspond to the
parameters defined in section 5.2, QOS Parameter Definitions.

This structure type is returned in the dl_qos length and di_qos _ offset fields of the DL_INFO_ACK, and
specifies the current or default QOS parameter values associated with a stream. Default values are
returned until the DLS user issues a DL_UDQOS REQ to change the values, after which the currently
selected values will be returned. The structure type is aso used in the DL_UDQOS REQ primitive to
enable a DLS user to select particular QOS parameter values from the supported range, as described in
section 5.4, Procedures for QOS Negotiation and Selection.

Revision: 2.0.0 Page 118 August 20, 1991

0S| Work Group

5.4 Proceduresfor QOSNegotiation and Selection

This section describes the methods used for negotiating and/or selecting QOS parameter values. In the
connection-mode service, some QOS parameter values may be negotiated during connection
establishment. For connectionless-mode service, parameter values may be selected for subsequent data
transmission.

Throughout this section, two special QOS values are referenced. These are defined for al the parameters
used in QOS negotiation and selection. The values are:

DL_UNKNOWN This value indicates that the DLS provider does not know the value
for the field or does not support that parameter.
DL_QOS DONT_CARE This value indicates that the DLS user does not care to what value

the QOS parameter is set.

These values are used to distinguish between DLS providers that support and negotiate QOS parameters
and those that cannot. The following sections include the interpretation of these values during QOS
negotiation and selection.

Revision: 2.0.0 Page 119 August 20, 1991

Quality of DataLink Service

5.4.1 Connection-mode QOS Negotiation
The current connection-mode QOS parameters can be divided into three types as follows:

« Those that are negotiated end-to-end between peer DL S users and the DLS provider during connection
establishment (throughput and transit delay);

- those that are negotiated locally between each DLS user and the DLS provider during connection
establishment (priority and protection); and

- those that cannot be negotiated (residual error rate and resilience).

The rules for processing these three types of parameters during connection establishment are described in
this section.

The current definition of most existing data link protocols does not describe a mechanism for negotiating
QOS parameters during connection establishment. As such, DLPI does not require every DLS provider
implementation to support QOS negotiation. If agiven DLS provider implementation cannot support QOS
negotiation, two alternatives are available;

« The DLS provider may specify that any or all QOS parameters are unknown. This isindicated to the
DLS user in the DL_INFO_ACK, where the values in the QOS range field (indicated by
dl_gos range length and di_qos range_offset) and the current QOS field (indicated by dl_qos length
and dI_gos offset) of this primitive are set to DL_UNKNOWN. This value will aso be indicated on
the DL_CONNECT _IND and DL_CONNECT_CON primitives. If the DLS provider does not support
any QOS parameters, the QOS length field may be set to zero in each of these of these primitives.

« The DLS provider may interpret QOS parameters with strictly local significance, and their values in
the DL_CONNECT _IND primitive will be set to DL_ UNKNOWN.

A DLS user need not select a specific value for each QOS parameter. The specia QOS parameter value,
DL_QOS DONT_CARE, is used if the DLS user does not care what quality of service is provided for a
particular parameter. The negotiation procedures presented below explain the exact semantics of this
value during connection establishment.

If QOS parameters are supported by the DLS provider, the provider will define a set of default QOS
parameter values that are used whenever DL_QOS DONT_CARE is specified for a QOS parameter value.
These default values can be defined for all DLS users or can be defined on a per DLS user basis. The
default parameter value set is returned in the QOSfield (indicated by di_qos length and dl_gos_offset) of
the DL_INFO_ACK before aDL S user negotiates QOS parameter values.

DLS provider addendum documentation must describe the known ranges of support for the QOS
parameters and the default values, and also specify whether they are used in alocal manner only.

The following procedures are used to negotiate QOS parameter values during connection establishment.

(1) The DL_CONNECT _REQ specifies the DLS user's desired range of QOS vaues in the
dl_gos co rangel t structure. The target and least-acceptable values are specified for throughput
and transit delay, as described in section 5.2.1, Throughput, and section 5.2.2, Transit Delay. The
target value is the value desired by the calling DLS user for the QOS parameters. The least-
acceptable vaue is the lowest value the calling user will accept. These values are specified
separately for both the transmit and receive directions of the connection.

If either value is set to DL_QOS DONT_CARE the DLS provider will supply a default value,
subject to the following consistency constraints:

— If DL_QOS DONT_CARE is specified for the target value, the value chosen by the DLS
provider may not be less than the |east-acceptabl e val ue.

— If DL_QOS DONT_CARE is specified for the |east-acceptable value, the value set by the
DL S provider cannot be greater than the target value.

Revision: 2.0.0 Page 120 August 20, 1991

0S| Work Group

— If DL_QOS DONT_CARE is specified for both the target and |east-acceptable value, the
DLS provider is free to select any value, without constraint, for the target and least-
acceptable values.

For priority and protection, the DL_CONNECT_REQ specifies a minimum and maximum desired
value as defined in section 5.2.3, Priority, and section 5.2.4, Protection. As with throughput and
transit delay, the DLS user may specify a vaue of DL_QOS DONT_CARE for either the
minimum or maximum value. The DLS provider will interpret this value subject to the following
consistency constraints.

— If DL_QOS DONT_CARE is specified for the maximum value, the value chosen by the
DL S provider may not be less than the minimum val ue.

— If DL_QOS DONT_CARE is specified for the minimum value, the value set by the DLS
provider cannot be greater than the maximum value.

— If DL_QOS DONT_CARE is specified for both the minimum and maximum values, the
DLS provider is free to select any value, without constraint, for the maximum and
minimum val ues.

The values of theresidual error rate and resilience parameters in the DL_CONNECT_REQ have no
meaning and are ignored by the DL S provider.

If the value of dl_qos length in the DL_CONNECT_REQ is set to zero by the DLS user, the DLS
provider should treat al QOS parameter values as if they were set to DL_QOS DONT_CARE,
selecting any value in its supported range.

If the DLS provider cannot support throughput, transit delay, priority, and protection values within
the ranges specified in the DL_CONNECT_REQ, aDL_DISCONNECT _IND should be sent to the
calling DLSuser.

(2) If the requested ranges of values for throughput and transit delay in the DL_CONNECT_REQ are
acceptable to the DL S provider, the QOS parameters will be adjusted to values the DLS provider
will support. Only the target value may be adjusted, and it is set to a value the DLS provider is
willing to provide (which may be of lower QOS than the target value). The least-acceptable value
cannot be modified. The updated QOS range is then sent to the called DLS user in the
dl_gos co rangel t structure of the DL_CONNECT _IND, where it is interpreted as the available
range of service.

If the requested range of values for priority and protection in the DL_CONNECT REQ is
acceptable to the DLS provider, an appropriate value within the range is selected and saved for
each parameter; these selected values will be returned to the DLS user in the corresponding
DL_CONNECT_CON primitive. Because priority and protection are negotiated locally, the
DL_CONNECT _IND will not contain values selected during negotiation with the calling DLS
user. Instead, the DLS provider will offer arange of values in the DL_CONNECT _IND that will
be supported locally for the called DLS user.

The DLS provider will also include the supported values for residual error rate and resilience in the
DL_CONNECT _IND that is passed to the called DLS user.

If the DLS provider does not support negotiation of throughput, transit delay, priority, or
protection, avalue of DL_UNKNOWN should be set in the |east-acceptabl e, target, minimum, and
maximum value fields of the DL_CONNECT _IND. Also, if the DLS provider does not support
any particular QOS parameter, DL_UNKNOWN should be specified in all vaue fields for that
parameter. |f the DLS provider does not support any QOS parameters, the value of dl_gos length
may be set to zero in the DL_CONNECT _IND.

(3) Upon receiving the DL_CONNECT _IND, the called DLS user examines the QOS parameter values
and selects a specific value from the proffered range of the throughput, transit delay, priority, and

Revision: 2.0.0 Page 121 August 20, 1991

Quality of DataLink Service

(4)

protection parameters. If the called DLS user does not agree on values in the given range, the
connection should be refused with a DL_DISCONNECT_REQ primitive. Otherwise, the selected
values are returned to the DLS provider in the dl_gos co sell t structure of the
DL_CONNECT_RES primitive.

The values of residua error rate and resilience inthe DL_CONNECT _RES are ignored by the DLS
provider. These parameters may not be negotiated by the called DLS user. The selected values of
throughput and transit delay are meaningful, however, and are adopted for the connection by the
DLS provider. Similarly, the selected priority and protection values are adopted with local
significance for the called DL S user.

If the user specifies DL_QOS DONT_CARE for either throughput, transit delay, priority, or
protection on the DL_CONNECT_RES, the DLS provider will select a value from the range
specified for that parameter in the DL_CONNECT _IND primitive. Also, a value of zero in the
dl_qgos length field of the DL_CONNECT_RES is equivalent to DL_QOS DONT_CARE for al
QOS parameters.

Upon completion of connection establishment, the values of throughput and transit delay as
selected by the called DLS user are returned to the calling DLS user in the dl_gos co sell t
structure of the DL_CONNECT_CON primitive. The values of priority and protection that were
selected by the DLS provider from the range indicated in the DL_CONNECT _REQ will aso be
returned in the DL_CONNECT_CON. This primitive will also contain the values of residual error
rate and resilience associated with the newly established connection. The DLS provider also saves
the negotiated QOS parameter values for the connection, so that they may be returned in response
toaDL_INFO_REQ primitive.

As with DL_CONNECT IND, if the DLS provider does not support negotiation of throughput,
transit delay, priority, or protection, avalue of DL_UNKNOWN should be returned in the selected
value fields. Furthermore, if the DLS provider does not support any particular QOS parameter,
DL_UNKNOWN should be specified in al value fields for that parameter, or the value of
dl_gos_length may be set to zero in the DL_CONNECT_CON primitive.

Revision: 2.0.0 Page 122 August 20, 1991

0S| Work Group

5.4.2 Connectionless-mode QOS Selection

This section describes the procedures for selecting QOS parameter values that will be associated with the
transmission of connectionless data or acknowledged connectionless data.

Aswith connection-mode protocols, the current definition of most existing (acknowledged) connectionless
data link protocols does not define a quality of service concept. As such, DLPI does not require every
DLS provider implementation to support QOS parameter selection. The DLS provider may specify that
any or all QOS parameters are unsupported. This is indicated to the DLS user in the DL_INFO_ACK,
where the values in the supported range field (indicated by dl_gos range length and d_qos range_offset)
and the current QOS field (indicated by dl_qos length and dl_qgos offset) of this primitive are set to
DL_UNKNOWN. If the DLS provider supports no QOS parameters, the QOS length fields in the
DL_INFO_ACK may be set to zero.

If the DLS provider supports QOS parameter selection, the DL_INFO_ACK primitive will specify the
supported range of parameter values for transit delay, priority, protection and residual error rate. Default
values are also returned inthe DL_INFO_ACK.

For each DL_UNITDATA_REQ/DL_DATA_ACK_REQ, the DLS provider should apply the currently
selected QOS parameter values to the transmission. If no values have been selected, the default values
should be used.

At any point during data transfer, the DLS user may issue a DL_UDQQOS REQ primitive to select new
values for the transit delay, priority, and protection parameters. These values are selected using the
dl_gos cl_sell tstructure. Theresidual error rate parameter isignored by this primitive and cannot be set
by aDLS user.

In the DL_UDQOS REQ, the DLS user need not require a specific value for every QOS parameter.
DL_QOS DONT_CARE may be specified if the DLS user does not care what quality of service is
provided for a particular parameter. When specified, the DLS provider should retain the current (or
default if no previous selection has occurred) value for that parameter.

Revision: 2.0.0 Page 123 August 20, 1991

Quality of DataLink Service

REFERENCES
1. International Organization for Standardization, "Data Link Service Definition for Open Systems
Interconnection," DIS 8886, February 1987.
2. International Organization for Standardization, "Logical Link Control," DIS 8802/2, 1985.

4. CCITT Recommendation X.200, "Reference Model of Open Systems Interconnection for CCITT
Applications," 1984.

Revision: 2.0.0 Page 124 August 20, 1991

0S| Work Group

Appendix A — Optional Primitivesto perform Essential M anagement Functions

This appendix presents the optional primitives to perform essential management functions. The
management functions supported are get and set of physical address, and statistics gathering.

Revision: 2.0.0 Page 125 August 20, 1991

Appendix A

A.1 MessageDL_PHYS ADDR_REQ (dI_phys addr_req t)

This primitive requests the DLS provider to return either the default (factory) or the current value of the
physical address associated with the stream depending upon the value of the address type selected in the
request.

M essage For mat

The message consists of one M_PROTO message block containing the structure shown below:

typedef struct {
ulong dl _prinmtive;
ul ong dl _addr_type;
} dl _phys_addr _req_t;

Parameters

di_primitive
conveys DL_PHYS ADDR_REQ;

d_addr_type
conveys the type of address requested - factory physical address or current physical address

DL_FACT_PHYS ADDRfactory physical address
DL_CURR_PHYS ADDR current physical address
State

The message isvalid in any attached state in which alocal acknowledgement is not pending. For a style 2
provider, this would be after a PPA is attached using the DL_ATTACH_REQ. For a Style 1 provider, the
PPA isimplicitly attached after the stream is opened.

New State
The resulting state is unchanged.
Response

The provider responds to the request with a DL_PHYS ADDR_ACK if the request is supported.
Otherwise, aDL_ERROR_ACK isreturned.

Reasonsfor failure
DL_NOTSUPPORTED Primitive is known, but not supported by the DL S Provider.

DL_OUTSTATE The primitive was issued from an invalid state.

Revision: 2.0.0 Page 126 August 20, 1991

0S| Work Group

A.2 MessageDL_PHYS ADDR_ACK (d_phys addr_ack t)

This primitive returns the value for the physica address to the link user in response to a
DL_PHYS ADDR_REQ.

M essage For mat

The message consists of M_PCPROTO message block containing the following structure:

typedef struct {
ulong dl _prinmtive;
ul ong dl _addr _Iength;
ul ong dl _addr_offset;
} dl _phys_addr_ack _t;

Parameters

di_primitive
conveys DL_PHYS ADDR_ACK

dl_addr_length
conveys length of the physical address.

d_addr_offset
conveys the offset from the beginning of the M_PCPROTO message block.

State
The message isvalid in any state in responseto aDL_PHYS_ADDR_REQ.
New State

The resulting state is unchanged.

Revision: 2.0.0 Page 127 August 20, 1991

Appendix A

A.3 MessageDL_SET_PHYS ADDR_REQ (dl_set_phys addr_req t)
Sets the physical address value for al streams for that provider for a particular PPA.
M essage For mat

The message consists of M_PROTO message block which contains the following structure:

typedef struct {
ulong dl _prinmtive;
ul ong dl _addr _Iength;
ul ong dl _addr_offset;
} dl _set phys_addr _req_t;

Parameters

di_primitive
conveysDL_SET_PHYS ADDR_REQ

d_addr_offset
conveys the offset from the beginning of the M_PROTO message block

dl_addr_length
conveys the length of the requested hardware address
State

The message isvalid in any attached state in which alocal acknowledgement is not pending. For a Style 2
provider, this would be after a PPA is attached using the DL_ATTACH_REQ. For a Style 1 provider, the
PPA isimplicitly attached after the stream is opened.

New State
The resulting state is unchanged
Response

The provider responds to the request with a DL_OK_ACK on successful completion. Otherwise, a
DL_ERROR_ACK isreturned.

Reasonsfor failure

DL_BADADDR The address information was invalid or wasin an incorrect format.
DL_NOTSUPPORTED Primitive is known, but not supported by the DL S Provider.

DL_SYSERR A system error has occurred

DL_OUTSTATE The primitive was issued from an invalid state.

DL_BUSY One or more streams for that particular PPA are in the DL_BOUND state.

Revision: 2.0.0 Page 128 August 20, 1991

0S| Work Group

A.4 MessageDL_GET_STATISTICS REQ (dl_get_statistics req t)
Directs the DL S provider to return statistics
M essage For mat

The message consists of one M_PROTO message block containing the structure shown below:

typedef struct {
ul ong dl_primtive;
} dl _get _statistics req_t;

Parameters

di_primitive
conveys DL_GET_STATISTICS _REQ

State

The message isvalid in any state in which alocal acknowledgement is not pending.
New State

The resulting state is unchanged

Response

The DLS Provider responds to this request with a DL_GET_STATISTICS ACK if the primitive is
supported. Otherwise, aDL_ERROR_ACK isreturned.

Reasonsfor failure

DL_NOTSUPPORTED Primitive is known but not supported by the DL S Provider.

Revision: 2.0.0 Page 129 August 20, 1991

Appendix A

A.5 MessageDL_GET_STATISTICS ACK (dI_get datistics ack t)

Returns statistics in reponse to the DL_GET_STATISTICS REQ. The contents of the statistics block is
defined in the DLS Provider specific addendum.

M essage For mat

The message consists of one M_PCPROTO message block containing the structure shown below:

typedef struct {

ul ong dl_primtive;
ul ong dl _stat | ength;
ul ong dl _stat_offset;

} dl _get statistics_ack t;

Parameters

di_primitive
conveys DL_GET_STATISTICS ACK

d_stat len
conveys the length of the statistics structure

d_stat offset
conveys the offset from the beginning of the M_PCROTO message block where the statistics
information resides.

State
The message isvalid in any state in which alocal acknowledgement is not pending.
New State

The resulting state is unchanged

Revision: 2.0.0 Page 130 August 20, 1991

0S| Work Group

Appendix B — Allowable Sequence of DL PI Primitives

This appendix presents the allowable sequence of DLPI primitives. The sequence is described using a
state transition table that defines possible states as viewed by the DLS user. The state transition table
describes transitions based on the current state of the interface and a given DLPI event. Each transition
consists of a state change and possibly an interface action. The states, events, and related transition
actions are described below, followed by the state transition table itself.

Revision: 2.0.0 Page 131 August 20, 1991

Appendix B

B.1 DLPI States

The following table describes the states associated with DLPI. It presents the state name used in the state
transition table, the corresponding DLPI state name used throughout this specification, a brief description
of the state, and an indication of whether the state is valid for connection-oriented data link service
(DL_CODLYS), connectionless data link service (DL_CLDLS), acknowledged connectionless data link
service (ACLDLYS) or al.

Revision: 2.0.0 Page 132 August 20, 1991

0S| Work Group

STATE

DLPI STATE

DESCRIPTION

SERVICE
TYPE

0) UNATTACHED
1) ATTACH PEND

2) DETACH PEND

3) UNBOUND

4) BIND PEND

5) UNBIND PEND

6) IDLE

7) UDQOS PEND

8) OUTCON PEND

9) INCON PEND

10) CONN_RES PEND

11) DATAXFER

12) USER RESET PEND

13) PROV RESET PEND

14) RESET_RES PEND

DL_UNATTACHED
DL_ATTACH_PENDING

DL_DETACH_PENDING

DL_UNBOUND

DL_BIND_PENDING

DL_UNBIND_PENDING

DL_IDLE

DL_UDQOS_PENDING

DL_OUTCON_PENDING

DL_INCON_PENDING

DL_CONN_RES PENDING

DL_DATAXFER

DL_USER_RESET_PENDING

DL_PROV_RESET_PENDING

DL_RESET_RES PENDING

Stream opened but PPA not attached

The DLS user iswaiting for an
acknowledgement of a
DL_ATTACH_REQ

The DLS user iswaiting for an
acknowledgement of a
DL_DETACH_REQ

Stream is attached but not bound to a
DLSAP

The DLS user iswaiting for an
acknowledgement of a
DL_BIND_REQ

The DLS user iswaiting for an
acknowledgement of a
DL_UNBIND_REQ

The stream is bound and activated for
use - connection establishment or
connectionless data transfer may take
place

The DLS user iswaiting for an
acknowledgement of a
DL_UDQOS REQ

An outgoing connection is pending -
the DLS user iswaiting for a
DL_CONNECT_CON

Anincoming connection is pending -
the DLS provider iswaiting for a
DL_CONNECT_RES

The DLS user iswaiting for an
acknowledgement of a
DL_CONNECT_RES

Connection-mode data transfer may
take place

A user-initiated reset is pending - the
DLS user iswaiting for a
DL_RESET_CON

A provider-initiated reset is pending -
the DLS provider iswaiting for a
DL_RESET_RES

The DLS user iswaiting for an
acknowledgement of a
DL_RESET_RES

ALL
ALL

ALL

ALL

ALL

ALL

ALL

DL_CLDLS

DL_CODLS

DL_CODLS

DL_CODLS

DL_CODLS

DL_CODLS

DL_CODLS

DL_CODLS

Revision: 2.0.0

Page 133

August 20, 1991

Appendix B

STATE

DLPI STATE

DESCRIPTION

SERVICE
TYPE

15) DISCON 8 PEND

16) DISCON 9 PEND

17) DISCON 11 PEND

18) DISCON 12 PEND

19) DISCON 13 PEND

20) SUBS_BIND PEND

21) SUBS_UNBIND PEND

DL_DISCON8_PENDING

DL_DISCON9_PENDING

DL_DISCON11 _PENDING

DL_DISCON12_PENDING

DL_DISCON13_PENDING

DL_SUBS BIND_PND

DL_SUBS_UNBIND_PND

The DLS user iswaiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from
the DL_OUTCON_PENDING state

The DLS user iswaiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from
the DL_INCON_PENDING state

The DLS user iswaiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from
the DL_DATAXFER state

The DLS user iswaiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from
the DL_USER_RESET_PENDING
state

The DLS user iswaiting for an
acknowledgement of a
DL_DISCONNECT_REQ issued from
the DL_PROV_RESET_PENDING
state

The DLS user iswaiting for an
acknowledgement of a
DL_SUBS BIND_REQ

The DLS user iswaiting for an
acknowledgement of a
DL_SUBS UNBIND_REQ

DL_CODLS

DL_CODLS

DL_CODLS

DL_CODLS

DL_CODLS

ALL

ALL

Revision: 2.0.0

TABLE 2. DLPI States

Page 134

August 20, 1991

0S| Work Group

B.2 Variablesand Actionsfor State Transtion Table
The following tables describe variables and actions used to describe the DLPI state transitions.

The variables are used to distinguish various uses of the same DLPI primitive. For example, a
DL_CONNECT_RES causes a different state transition depending on the current number of outstanding
connect indications. To distinguish these different connect response events, a variable is used to track the
number of outstanding connect indications.

VARIABLE DESCRIPTION

token The token contained in a DL_CONNECT_RES that indicates on which
stream the connection will be established. A value of zero indicates
that the connection will be established on the stream where the
DL_CONNECT_IND arrived. A non-zero value indicates the
connection will be passed to another stream.

outcnt Number of outstanding connect indications - those to which the DLS
user has not responded. Actions in the state tables that manipulate this
value may be disregarded when providing connectionless service.

TABLE 3. DPLI State Transition Table Variables

The actions represent steps the DLS provider must take during certain state transitions to maintain the
interface state. When an action is indicated in the state transition table, the DLS provider should change
the state as indicated and perform the specified action.

ACTION DESCRIPTION
1 outent = outent + 1,
2 outcnt = outent - 1;
3 Pass connection to the stream indicated by the token in the
DL_CONNECT_RES primitive

TABLE 4. DPLI State Transition Actions

Revision: 2.0.0 Page 135 August 20, 1991

Appendix B

B.3 DLPI User-Originated Events

The following table describes events initiated by the DLS user that correspond to the various request and
response primitives of DLPI. The table presents the event name used in the state transition table, a brief
description of the event (including the corresponding DLPI primitive), and an indication of whether the
event is valid for connection-oriented data link service (DL_CODLS), connectionless data link service
(DL_CLDLYS), acknowledged connectionless data link service (DL_ACLDLS) or all.

FSM EVENT DESCRIPTION SERVICE
TYPE
ATTACH_REQ DL_ATTACH_REQ primitive ALL
DETACH_REQ DL_DETACH_REQ primitive ALL
BIND_REQ DL_BIND_REQ primitive ALL
SUBS BIND_REQ DL_SUBS BIND_REQ primitive ALL
UNBIND_REQ DL_UNBIND_REQ primitive ALL
SUBS UNBIND_REQ | DL_SUBS UNBIND_REQ primitive ALL
UNITDATA_REQ DL_UNITDATA_REQ primitive DL_CLDLS
UDQOS REQ DL_UDQOS REQ primitive DL_CLDLS
CONNECT_REQ DL_CONNECT_REQ primitive DL_CODLS
CONNECT_RES DL_CONNECT_RES primitive DL_CODLS
PASS CONN Received a passed connection from a DL_CODLS
DL_CONNECT_RES primitive

DISCON_REQ DL_DISCONNECT_REQ primitive DL_CODLS
DATA_REQ DL_DATA_REQ primitive DL_CODLS
RESET_REQ DL_RESET_REQ primitive DL_CODLS
RESET_RES DL_RESET_RESprimitive DL_CODLS
DATA_ACK_REQ DL_DATA_ACK_REQ primitive DL_ACLDLS
REPLY_REQ DL_REPLY_REQ primitive DL_ACLDLS
REPLY_UPDATE_REQ | DL_REPLY_UPDATE_REQ primitive DL_ACLDLS

TABLE 5. DLPI User-Originated Events

Revision: 2.0.0

Page 136

August 20, 1991

0S| Work Group

B.4 DLPI Provider-Originated Events

The following table describes the events initiated by the DLS provider that correspond to the various
indication, confirmation, and acknowledgement primitives of DLPI. The table presents the event name
used in the state transition table, a brief description of the event (including the corresponding DLPI
primitive), and an indication of whether the event is valid for connection-oriented data link service

(DL_CODLS), connectionless data link service (DL_CLDLS), acknowledged connectionless service
(DL_ACDLS) or dll.

FSM EVENT DESCRIPTION SERVICE
TYPE

BIND_ACK DL_BIND_ACK primitive ALL

SUBS BIND_ACK DL_SUBS BIND_ACK primitive ALL

UNITDATA_IND DL_UNITDATA_IND primitive DL_CLDLS

UDERROR_IND DL_UDERROR_IND primitive DL_CLDLS

CONNECT_IND DL_CONNECT_IND primitive DL_CODLS

CONNECT_CON DL_CONNECT_CON primitive DL_CODLS

DISCON_IND1 DL_DISCONNECT_IND primitive DL_CODLS
when outent == 0

DISCON_IND2 DL_DISCONNECT_IND primitive DL_CODLS
when outent == 1

DISCON_IND3 DL_DISCONNECT_IND primitive DL_CODLS
when outent > 1

DATA_IND DL_DATA_IND primitive DL_CODLS

RESET_IND DL_RESET_IND primitive DL_CODLS

RESET_CON DL_RESET_CON primitive DL_CODLS

OK_ACK1 DL_OK_ACK primitive ALL
when outent ==

OK_ACK2 DL_OK_ACK primitive DL_CODLS
when outent == 1 and token ==

OK_ACK3 DL_OK_ACK primitive DL_CODLS
when outent == 1 and token |= 0

OK_ACK4 DL_OK_ACK primitive DL_CODLS
when outcnt > 1 and token =0

ERROR_ACK DL_ERROR_ACK ALL

DATA_ACK_IND DL_DATA_ACK_IND ACLDLS

DATA_ACK_STATUS IND DL_DATA_ACK_STATUS IND ACLDLS

REPLY _IND DL_REPLY_IND ACLDLS

REPLY_STATUS_IND DL_REPLY_STATUS IND ACLDLS

REPLY_UPDATE_STATUS IND | DL_REPLY_UPDATE_STATUS IND ACLDLS

TABLE 6. DLPI Provider-Originated Events

Revision: 2.0.0 Page 137 August 20, 1991

Appendix B

B.5 DLPI State Transition Table

Tables 7 - 10 describe the DLPI state transitions. Each column represents a state of DLPI (Table 2) and
each row represents a DLPI event (Tables 5 and 6). The intersecting transition cell defines the resulting
state transition (i.e. next state) and associated actions, if any, that must be executed by the DL S provider to
maintain the interface state. Each cell may contain the following:

- Thistransition cannot occur.
n The current input results in atransition to state "n'.

n[a | Thelist of actions"a" should be executed following the specified state
transition "n" (see table 4 for actions).

The DL_INFO_REQ, DL_INFO_ACK, DL_TOKEN_REQ, and DL_TOKEN_ACK primitives are
excluded from the state transition table because they can be issued from many states and, when fully
processed, do not cause a state transition to occur. However, the DLS user may not issue a
DL_INFO_REQ or DL_TOKEN_REQ if any local acknowledgements are pending. In other words, these
two primitives may not be issued until the DLS user receives the acknowledgement for any previously
issued primitive that is expecting local positive acknowledgement. Thus, these primitives may not be
issued from the DL_ATTACH_PENDING, DL_DETACH_PENDING, DL_BIND_PENDING,

DL_SUBS BIND_PND, DL_SUBS UNBIND_PND, DL_UNBIND_PENDING,
DL_UDQOS_PENDING, DL_CONN_RES PENDING, DL_RESET_RES PENDING,
DL_DISCONS_PENDING, DL_DISCON9_PENDING, DL_DISCON11_PENDING,

DL_DISCON12 PENDING, or DL_DISCON13 PENDING states. Failure to comply by this restriction
may result in loss of primitives at the stream head if the DLS user is a user process. Once a
DL_INFO_REQ or DL_TOKEN_REQ has been issued, the DLS provider must respond with the
appropriate acknowledgement primitive.

The following rules apply to the maintenance of DLPI state:

- The DLSprovider isresponsible for keeping arecord of the state of the interface as viewed by the DLS
user, to bereturned inthe DL_INFO_ACK.

- The DLS provider may never generate a primitive that places the interface out of state (i.e. would

correspond to a"-" cell entry in the state transition table below).

« If the DLS provider generates a STREAMS M_ERROR message upstream, it should free any further
primitives processed by it'swrite side put or service procedure.

« Theclose of a stream is considered an abortive action by the DLS user, and may be executed from any
state. The DLS provider must issue appropriate indications to the remote DLS user when a close
occurs. For example, if the DLPI state is DL_ DATAXFER, a DL_DISCONNECT _IND should be sent
to the remote DLS user. The DLS provider should free any resources associated with that stream and
reset the stream to its unopened condition.

Thefollowing points clarify the state transition table.

- If the DLS provider supports connection-mode service, the value of the outcnt state variable must be
initialized to zero for each stream when that stream isfirst opened.

« Theinitia and final state for astyle 2 DLS provider is DL_UNATTACHED. However, because a style
1 DLS provider implicitly attaches a PPA to a stream when it is opened, theinitial and final DLPI state
for a style 1 provider is DL_UNBOUND. The DLS user should not issue DL_ATTACH_REQ or
DL_DETACH_REQ primitives to astyle 1 DLS provider.

« A DLS provider may have multiple connect indications outstanding (i.e. the DLS user has not
responded to them) at one time (see section 4.2.1, Multi-threaded Connection Establishment). Asthe

Revision: 2.0.0 Page 138 August 20, 1991

0S| Work Group

state transition table points out, the stream on which those indications are outstanding will remain in
the DL_INCON_PENDING state until the DL S provider receives aresponse for al indications.

The DLPI state associated with a given stream may be transferred to another stream only when the
DL_CONNECT_RES primitive indicates this behavior. In this case, the responding stream (where the
connection will be established) must be inthe DL_IDLE state. This state transition is indicated by the
PASS CONN event intable 9.

The labeling of the states DL_PROV_RESET_PENDING and DL_USER_RESET_PENDING indicate
the party that started the local interaction, and does not necessarily indicate the originator of the reset
procedure.

A DL_DATA REQ primitive received by the DLS provider in the state
DL_PROV_RESET PENDING (i.e. after aDL_RESET_IND has been passed to the DL S user) or the
state DL_IDLE (i.e. after a data link connection has been released) should be discarded by the DLS
provider.

A DL_DATA _IND primitive received by the DLS user after the user has issued a DL_RESET REQ
should be discarded.

To ensure accurate processing of DLPI primitives, the DLS provider must adhere to the following rules
concerning the receipt and generation of STREAMSM_FLUSH messages during various state transitions.

The DLS provider must be ready to receive M_FLUSH messages from upstream and flush it's queues
as specified in the message.

The DL S provider must issue an M_FLUSH message upstream to flush both the read and write queues
after receiving asuccessful DL_UNBIND_REQ primitive but before issuing the DL_OK_ACK.

If an incoming disconnect occurs when the interface is in the DL_DATAXFER,
DL_USER RESET_PENDING, or DL_PROV_RESET PENDING state, the DLS provider must send
up an M_FLUSH message to flush both the read and write queues before sending up a
DL_DISCONNECT_IND.

If a DL_DISCONNECT_REQ is issued in the DL_DATAXFER, DL_USER_RESET_PENDING, or
DL_PROV_RESET PENDING states, the DLS provider must issue an M_FLUSH message upstream
to flush both the read and write queues after receiving the successful DL_DISCONNECT_REQ but
before issuing the DL_OK_ACK.

If areset occurs when the interface isin the DL_DATAXFER or DL_USER _RESET PENDING state,
the DLS provider must send up an M_FLUSH message to flush both the read and write queues before
sending upaDL_RESET IND or DL_RESET_ CON.

Revision: 2.0.0 Page 139 August 20, 1991

Appendix B

The following table presents the allowed sequence of DLPI primitives for the common local management
phase of communication.

STATES

EVENTS

ATTACH
PEND

UNATT.

0 1

DETACH
PEND

UNBND

BND
PND

UNBND
PND

IDLE

SUBS BND
PND

20

SUBS
UNBND
PND
21

ATTACH_REQ
DETACH_REQ
BIND_REQ
BIND_ACK

SUBS BIND_REQ
SUBS BIND_ACK
UNBIND_REQ
OK_ACK1
ERROR_ACK
SUBS UNBND_RQ

20

21

TABLE 7. DLPI State Transition Table - Local Management Phase

The following table presents the allowed sequence of DLPI primitives for the connectionless data transfer

phase.

STATES | IDLE | UDQOS
PEND
EVENTS 6
UDQOS_REQ 7
OK_ACK1 -
ERROR_ACK -
UNITDATA_REQ | 6
UNITDATA_IND 6
UDERROR_IND 6

TABLE 8. DLPI State Transition Table - Connectionless-mode Data Transfer Phase

Revision: 2.0.0

Page 140

August 20, 1991

STATES

EVENTS

IDLE

UDQOS
PEND

UDQOS _REQ

OK_ACK1

ERROR_ACK
DATA_ACK_REQ
REPLY_REQ
REPLY_UPDATE_REQ
DATA_ACK_IND
REPLY_IND
DATA_ACK_STATUS IND
REPLY_STATUS IND
REPLY_UPDATE_STATUS IND
ERROR_ACK

DO OO

[W B

0S| Work Group

TABLE 9. DLPI State Transition Table - Acknowledged Connectionless-mode Data Transfer Phase

Revision: 2.0.0

Page 141

August 20, 1991

Appendix B

The following table presents the allowed sequence of DLPI primitives for the connection establishment
phase of connection mode service.

STATES | IDLE | OUTCON | INCON | CONN_RES | DATA- | DISCON 8 | DISCON 9
PEND PEND PEND XFER PEND PEND
EVENTS 6 8 9 10 11 15 16

CONNECT_REQ 8 - - - - - -
CONNECT_RES - - 10 - - - -
DISCON_REQ - 15 16 - - - -
PASS CONN 11 - - - - - -
CONNECT_IND 9[1] - 9[1] - - - -
CONNECT_CON - 11 - - - - -
DISCON_IND1 - 6 - - 6 - -
(outent == 0)
DISCON_IND2 - - 6[2] - - - -
(outent == 1)
DISCON_IND3 - - 9[2] - - - -
(outent > 1)
OK_ACK1 - - - - - 6 -
(outent == 0)
OK_ACK2 - - - 11[2] - - 6[2]
(outent == 1,
token == 0)
OK_ACK3 - - - 6[2,3] - - 6[2]
(outent == 1,
token !=0)

OK_ACK4 - - - 9[2,3] - - 9[2]
(outent > 1,
token !=0)
ERROR_ACK - 6 - 9 - 8 9

TABLE 10. DLPI State Transition Table - Connection Establishment Phase

The following table presents the alowed sequence of DLPI primitives for the connection mode data
transfer phase.

STATES | IDLE | DATA- USER PROV RESET_RES | DISCON 11 | DISCON 12 | DISCON 13
XFER RESET | RESET PEND PEND PEND PEND
PEND PEND

EVENTS 6 11 12 13 14 17 18 19
DISCON_REQ - 17 18 19 - - - -
DATA_REQ - 11 - - - - - -
RESET_REQ - 12 - - - - - -
RESET_RES - - - 14 - - - -
DISCON_IND1 - 6 6 6 - - - -
(outent == 0)

DATA_IND - 11 - - - - - -
RESET_IND - 13 - - - - - -
RESET_CON - - 1 - - - - -
OK_ACK1 - - - - 11 6 6 6
(outent == 0)

ERROR_ACK - - 11 - 13 11 12 13

TABLE 11. DLPI State Transition Table - Connection-mode Data Transfer Phase

Revision: 2.0.0 Page 142 August 20, 1991

0S| Work Group

Appendix C — Precedence of DLPI Primitives

This appendix presents the precedence of DLPI primitives relative to one another. Two queues are used to
describe DLPI precedence rules. One queue contains DL S user-originated primitives and corresponds to
the STREAMS write queue of the DLS provider. The other queue contains DLS provider-originated
primitives and corresponds to the STREAMS read queue of the DLS user. The DLS provider isresponsible
for determining precedence on its write queue and the DL S user is responsible for determining precedence
onitsread queue asindicated in the precedence tables below.

For each precedence table, the rows (labeled PRIM X) correspond to primitives that are on the given
gueue and the columns (labeled PRIM Y) correspond to primitives that are about to be placed on that
gueue. Each pair of primitives (PRIM X, PRIM Y) may be manipulated resulting in:

- Change of order, where the order of apair of primitives isreversed if, and only if, the second primitive
in the pair (PRIM Y) is of atype defined to be able to advance ahead of the first primitive in the pair
(PRIM X).

- Deletion, where a primitive (PRIM X) may be deleted if, and only if, the primitive that follows it
(PRIM YY) is defined to be destructive with respect to that primitive. Destructive primitives may
always be added to the queue. Some primitives may cause both primitives in the pair to be destroyed.

The precedence rules define the allowed manipulations of a pair of DLPI primitives. Whether these
actions are performed is the choice of the DLS provider for user-originated primitives and the choice of
the DL S user for provider-originated primitives.

Revision: 2.0.0 Page 143 August 20, 1991

Appendix C

C.1 Write Queue Precedence

The following table presents the precedence rules for DLS user-originated primitives on the DLS
provider's STREAMS write queue. It assumes that only non-local primitives (i.e. those that generate
protocol data unitsto apeer DL S user) are queued by the DLS provider.

For connection establishment primitives, this table represents the possible pairs of DLPI primitives when
connect indications/responses are single-threaded. For the multi-threading scenario, the following rules
apply:

« A DL_CONNECT_RES primitive has no precedence over either a DL_CONNECT RES or a
DL_DISCONNECT _REQ primitive that is associated with another connection correlation number
(dl_correlation), and should therefore be placed on the queue behind such primitives.

« Similarly, aDL_DISCONNECT _REQ primitive has no precedence over either aDL_CONNECT_RES
or a DL_DISCONNECT _REQ primitive that is associated with another connection correlation
number, and should therefore be placed on the queue behind such primitives. Notice, however, that a
DL_DISCONNECT REQ does have precedence over a DL_CONNECT_RES primitive that is
associated with the same correlation number (thisisindicated in the table below).

Revision: 2.0.0 Page 144 August 20, 1991

0S| Work Group

PRIMY | PL | P2 | P3| P4 | P5 | P6| P7 P8 | P9 | PIO| P11 | P12 | P13 | P14 | P15
PRIM X (on queue)

P1 DL_INFO_REQ

P2 DL_ATTACH_REQ

P3 DL_DETACH_REQ

P4 DL_BIND_REQ

P5 DL_UNBIND_REQ

P6 DL_UNITDATA_REQ 1

P7 bL_UDQOS REQ

P8 DL_CONNECT_REQ 4

P9 DL_CONNECT_RES 3 1 1

P10 DL_TOKEN_REQ

P11 DL_DISCONNECT_REQ 1

P12 DL_DATA_REQ 5 1 3 3
P13 DL_RESET_REQ 3

P14 DL_RESET_RES 3 1 1

P15 DL_SUBS BIND_REQ

TABLE 12. Write Queue Precedence

KEY:

Code Interpretation
" Empty box indicates a scenario which cannot take place.

Y has no precedence over X and should be placed on queue behind X.
Y has precedence over X and may advance ahead of X.
Y has precedence over X and X must be removed.

Y has precedence over X and both X and Y must be removed.

a ~ W N P

Y may have precedence over X (DL S provider'schoice), and if so then X must be
removed.

Revision: 2.0.0 Page 145 August 20, 1991

Appendix C

C.2 Read Queue Precedence

The following table presents the precedence rules for DLS provider-originated primitives on the DLS
user's STREAMS read queue.

For connection establishment primitives, this table represents the possible pairs of DLPI primitives when
connect indications/responses are single-threaded. For the multi-threading scenario, the following rules

apply:

1. A DL_CONNECT_IND primitive has no precedence over either a DL_CONNECT _IND or a
DL_DISCONNECT _IND primitive that is associated with another connection correlation number
(dl_correlation), and should therefore be placed on the queue behind such primitives.

2. Similarly, a DL_DISCONNECT IND primitive has no precedence over either a
DL_CONNECT _IND or a DL_DISCONNECT IND primitive that is associated with another
connection correlation number, and should therefore be placed on the queue behind such primitives.

3. A DL_DISCONNECT_IND does have precedence over a DL_CONNECT_IND primitive that is
associated with the same correlation number (this is indicated in the table below). If a
DL_DISCONNECT _IND is about to be placed on the DLS user's read queue, the user should scan
the read queue for apossible DL_CONNECT _IND primitive with amatching correlation number. |If
a match is found, both the DL_DISCONNECT _IND and matching DL_CONNECT _IND should be
removed.

If the DLS user is a user-level process, it's read queue is the stream head read queue. Because a user
process has no control over the placement of DLS primitives on the stream head read queue, a DL S user
cannot straightforwardly initiate the actions specified in the following precedence table. Except for the
connection establishment scenario, the DLS user can ignore the precedence rules defined in the table
below. Thisisequivaent to saying the DLSuser's read queue contains at most one primitive.

The only exception to this rule is the processing of connect indication/response primitives. A problem
arises if auser issuesa DL_CONNECT_RES primitive when a DL_DISCONNECT _IND is on the stream
head read queue. The DLS provider will not be expecting the connect response because it has forwarded
the disconnect indication to the DLS user and isin the DL_IDLE state. It will therefore generate an error
upon seeing the DL_CONNECT_RES. To avoid this error, the DLS user should not respond to a
DL_CONNECT _IND primitive if the stream head read queue is not empty. The assumption here isanon-
empty queue may be holding a disconnect indication that is associated with the connect indication that is
being processed.

When connect indications/responses are single-threaded, a non-empty read queue can only contain a
DL_DISCONNECT _IND, which must be associated with the outstanding DL_CONNECT _IND. This
DL_DISCONNECT _IND primitive indicates to the DLS user that the DL_CONNECT IND is to be
removed. The DLS wuser should not issue a response to the DL _CONNECT_IND if a
DL_DISCONNECT_IND isreceived.

The multi-threaded scenario is dlightly more complex, because multiple DL_CONNECT_IND and
DL_DISCONNECT _IND primitives may be interspersed on the stream head read queue. In this scenario,
the DL S user should retrieve al indications on the queue before responding to a given connect indication.
If a queued primitive is a DL_CONNECT IND, it should be stored by the user process for eventual
response. |f aqueued primitiveisa DL_DISCONNECT _IND, it should be matched (using the correlation
number) against any stored connect indications. The matched connect indication should then be removed,
just asis done in the single-threaded scenario.

Revision: 2.0.0 Page 146 August 20, 1991

0S| Work Group

PRIMY | PL| P2 | P3| P4 | P5| P6| P7r | P8 | PO | PIO | P11 | P12 | P13 | P14
PRIM X (on queue)
P1DL_INFO ACK 1 1 1 1 1 1 1 1
P2 DL_BIND_ACK 1 1
P3 DL_UNITDATA_IND 2 1 2 2 2
P4 bL_UDERROR_IND 2 1 1 2 2
P5 DL_CONNECT_IND 2 2 4
P6 DL_CONNECT_CON 2 3 1 1
P7 DL_TOKEN_ACK 1 1 1 1 1 1
P8 DL_DISCONNECT_IND 2 1 2 2
P9 DL_DATA_IND 2 2 5 1 3 3 2
P10 DL_RESET_IND 2 2 3 2
P11 DL_RESET_CON 2 2 3 1 1 2
P12 DL_OK_AcCK 1 1 1 1 1 1
P13 DL_ERROR_ACK 1 1 1 1 1 1 1
P14 bL_sUBS BIND_ACK 1 1

TABLE 13. Read Queue Precedence

KEY:
Code Interpretation

" Empty box indicates a scenario which cannot take place.

1 Y has no precedence over X and should be placed on queue behind X.

2 Y has precedence over X and may advance ahead of X.

3 Y has precedence over X and X must be removed.

4 Y has precedence over X and both X and Y must be removed.

5 Y may have precedence over X (DL S provider's choice), and if so then X must be

removed.

Revision: 2.0.0 Page 147

August 20, 1991

Revision: 2.0.0 Page 148 August 20, 1991

0S| Work Group

Appendix D — Glossary of DLPI Termsand Acronyms
The following acronyms apply to the Data Link Provider Interface:
DLPI Data Link Provider Interface

DLS Data Link Service

DLSAP Datalink Service Access Point

DLSDU Datalink Service Data Unit

1SO International Organization for Standardization
osl Open Systems I nterconnection
PPA Physical Point of Attachment

QO0Ss Quality of Service

The following terms apply to the Data Link Provider Interface:

Called DL S user
The DLS user in connection mode that processes requests for connections from other DLS
users.

Calling DL S user
The DLSuser in connection mode that initiates the establishment of a data link connection.

Communication endpoint
Thelocal communication channel between a DLS user and DL S provider.

Connection establishment
The phase in connection mode that enables two DLS users to create a data link connection
between them.

Connectionlessmode
A mode of transfer in which data is passed from one user to another in self-contained units
with no logical relationship required among the units.

Connection management stream
A special stream that will receive all incoming connect indications destined for DLSAP
addresses that are not bound to any other streams associated with a particular PPA.

Connection mode
A circuit-oriented mode of transfer in which data is passed from one user to another over an
established connection in a sequenced manner.

Connection release
The phase in connection mode that terminates a previously established data link connection.

Data link service data unit
A grouping of DLS user data whose boundaries are preserved from one end of a data link
connection to the other.

Data transfer
The phase in connection and connectionless modes that supports the transfer of data between
two DLSusers.

DLSAP
Anpoint at aDLS user attaches itself to a DL S provider to access data link services.

Revision: 2.0.0 Page 149 August 20, 1991

Appendix D

DL SAP address
An identifier used to differentiate and locate specific DLS user access points to a DLS
provider.

DL Sprovider
Thedata link layer protocol that provides the services of the Data Link Provider Interface.

DL Suser
The user-level application or user-level or kernel-level protocol that accesses the services of
the data link layer.

L ocal management
The phase in connection and connectionless modes in which a DLS user initializes a stream
and binds a DLSAPto the stream. Primitivesin this phase generate local operations only.

PPA
The point at which a system attaches itself to a physical communications medium.

PPA identifier
Anidentifier of aparticular physical medium over which communication transpires.

Quality of service
Characteristics of transmission quality between two DL S users.

Revision: 2.0.0 Page 150 August 20, 1991

0S| Work Group

Appendix E — Guidelines for Protocol Independent DLS Users

DLPI enables aDL S user to be implemented in a protocol-independent manner such that the DL S user can
operate over many DL S providers without changing the DLS user software. DLS user implementors must
adhere to the following guidelines, however, to achieve thisindependence.

« The protocol-specific service limits returned in the DL_INFO_ACK primitive (e.g. d_max_sdu) must
not be exceeded. The DLS user should access these limits and adhere to them while interacting with
the DLS provider.

« Protocol-specific DLSAP address and PPA identifier formats should be hidden from DLS user
software. Hard-coded addresses and identifiers must be avoided. The DLS user should retrieve the
necessary information from some other entity (such as a management entity or a higher layer protocol
entity) and insert it without inspection into the appropriate primitives.

« The DLS user should not be written to a specific style of DLS provider (i.e. style 1 vs. style 2). The
DL_INFO_ACK returns sufficient information to identify which style of provider has been accessed,
and the DL S user should perform (or not perform) aDL_ATTACH_REQ accordingly.

« The names of devices should not be hard-coded into user-level programs that access a DL S provider.

« The DL S user should access the dl_service_mode field of the DL_INFO_ACK primitive to determine
whether connection or connectionless services are available on a given stream.

Revision: 2.0.0 Page 151 August 20, 1991

Revision: 2.0.0 Page 152 August 20, 1991

0S| Work Group

Appendix F — Required Information for DL S Provider-Specific Addenda

DLPI isageneral interface to the services of any DLS provider. However, areas have been documented in
this specification where DLS provider-specific information can be conveyed and interpreted. This
appendix summarizes all provider-specific issues as an aid to developers of DLS provider
implementations. As such, it forms a checklist of required information that should be documented in some
manner as part of the provider implementation. The areas DLS provider-specific addendum
documentation must address are:

- DLSAP Address Space
+ PPA Access and Control
+ Quality of Service

» DL_INFO_ACK Values
- Supported Services

For each area listed, a brief description of the provider-specific item(s) associated with it will be
presented, including references to the appropriate section in this specification.

DL SAP Address Space (Sections 2.3.2 and 4.1.6)

The format of a DLSAP address is specific to each DLS provider, as is the management of that address
space. There are no restriction on the format or style of a DLSAP address. As such, a specific
implementation should document the format, size, and restrictions of a DLSAP address, as well as
information on how the address space is managed. For example, DLPI enables a DLS user to choose a
specific DLSAP address to be bound to a stream, but a given implementation may pre-associate addresses
with streams based, for example, on the major/minor device number of the stream. In this case, the DLS
user could only retrieve the address associated with a stream.

If the DLS provider enables a user to select the DLSAP address for a stream, the implementation must
document the contents of the dl_sap field in the DL_BIND_REQ. This field must contain sufficient
information to enable the DLS provider to determine the chosen DLSAP address. This may be the full
DLSAP address (if it is not larger than sizeof(ulong)), or some distinguishable part of that address. For
example, an implementation of a DLS provider conforming to the 1SO 8802/2 address space might allow
the DSAP or SSAP portion of the DLSAP address to be specified here, where the MAC address portion
remains constant over all DL SAP addresses managed by that provider.

Another aspect of address management is whether the provider supports the ability to dynamically allocate
DL SAPs other than the requested DLSAPinaDL_BIND_REQ.

Restrictions on DLSAPs might cover the range of supported DLSAP values, services provided by a
DLSAP, connection management, and multiplexing. An example of connection management restrictions
is the number of connections allowed per DLSAP. Examples of multiplexing restrictions include the
number of DLSAPs per PPA, and requirements that certain DLSAPs are attached to specific PPAs.

Subsequent DL SAP Addresses (Section 4.1.9)

The |IEEE 802.2 link layer standard allows two ways of specifying a DLSAP value:
« Using an |EEE reserved DL SAP which corresponds to a well-defined protocol.
« Using aprivately defined DLSAP.

Previoudy, subnetworks used privately defined DLSAP values. As these subnetworks move into the OSI
world, they may exist in environments with other vendors machines. This presents a problem because
there are only 64 privately definable DLSAPS and any other vendor may choose to use these sasme DLSAP
values.

Revision: 2.0.0 Page 153 August 20, 1991

Appendix F

IEEE 802.1 has defined a third way of assigning DLSAP values that will allow for unique private protocol
demultiplexing. The DL_SUBS BIND_REQ may be used to support this method.

The Subsequent binding of DLSAPs can be peer or hierarchical. When the User requests peer addressing,
the DL_SUBS BIND_REQ will specify a DLSAP that may be used in lieu of the DLSAP that was bound
inthe DL_BIND_REQ. Thiswill alow for a choice to be made between a number of DLSAPs on a stream
when determining traffic based on DLSAP values. An example of this would be to various ether_type
values as DLSAPs. The DL_BIND_REQ), for example, could be issued with ether_type value of IP, and a
subsequent bind could be issued with ether type value of ARP. The Provider may now multiplex off of the
ether_type field and allow for either 1P or ARP traffic to be sent up this stream.

When the DL S User requests hierarchical binding, the DL_SUBS BIND_REQ will specify a DLSAP that
will be used in addition to the DLSAP bound using a DL_BIND_REQ. This will alow additional
information to be specified, that will be used in a header or used for demultiplexing. An example of this
would be to use hierarchical bind to specify the OUI (organizationally unique identifier) to be used by
SNAP.

If a DLS Provider supports peer subsequent bind operations, the first SAP that is bound is used as the
source SAP when there is ambiguity.

PPA Accessand Control (Sections 2.3.1and 4.1.1)

A physical point of attachment (PPA) is referenced in DLPI by a PPA identifier, which is of type "ulong'.
The format of this identifier is provider-specific. The DLS provider addendum documentation should
describe the format and generation of PPA identifiers for al physical media it is expected to control. It
should also describe how a PPA is controlled, the capabilities of the PPA, the number of PPAs supported,
and the administrative interface.

Multiplexing capabilities of a PPA should also be described in the DLS provider addendum
documentation. This conveys information on the number of DLSAPs that may be supported per PPA, and
the number of PPAs supported.

Another item that should be described is the manner in which a PPA is initialized. Section 4.1.1, PPA
Initialization/De-initialization, presents the alternative methods supported by DLPI for initializing a PPA.
The interactions of auto-initialization or pre-initialization with the Attach and Bind services should be
discussed, and the following items should be addressed.

« Isauto-initialization, pre-initialization, or both supported for a PPA?
« Can the method of initialization be restricted on a PPA basis?
Quality of Service (Section 5)

Support of QOS parameter negotiation and selection is a provider-specific issue that must be described for
each implementation. The DLS provider addendum documentation should describe which, if any, QOS
parameters are supported by the provider. For parameters that are negotiated end-to-end, the addendum
should describe whether the provider supports end-to-end negotiation, or whether these parameters are
negotiated in alocal manner only. Finaly, default QOS parameter values should be documented.

DL_INFO_ACK Values(Section 4.1.3)

The DL_INFO_ACK primitive specifies information on a DLS provider's restrictions and capabilities.
The DLS provider addendum documentation should describe the values for al fields in the
DL_INFO_ACK, and how they are determined (static, tunable, dynamic). At a minimum, the addendum
must describe the provider style and the service modes supported by the DL S provider.

Supported Services (Section 3)

The overall services that a specific DLS provider supports should be described. These include whether a
provider supports connection-mode service, connectionlessmode service (acknowledged or

Revision: 2.0.0 Page 154 August 20, 1991

0S| Work Group

unacknowledged), or both, and how a DL S user selects the appropriate mode. For example, the mode may
be mapped directly to a specific major/minor device, and the user selects an appropriate mode by opening
the corresponding specia file. Alternatively, a DLS provider that supports both modes may enable a DLS
user to select the service mode on the DL_BIND_REQ.

The file name(s) used to access a particular DLS provider and/or specific service modes of that provider
must also be documented.

Revision: 2.0.0 Page 155 August 20, 1991

Revision: 2.0.0 Page 156 August 20, 1991

0S| Work Group

Appendix G— DLPI Header File

This appendix contains alisting of the DLPI header file needed by implementations of both DLS user and
DL S provider software.

#i fndef _SYS DLPI _H
#define _SYS DLPI _H

/*
* dl pi.h header for Data Link Provider Interface

*
* This header file has encoded the values so an existing driver

* or user which was witten with the Logical Link Interface(LLIl)

* can migrate to the DLPI interface in a binary conpatible nanner.
* Any fields which require a specific format or value are flagged
* with a comment containing the nessage LLI conpatibility.

*

/*

* DLPI revision definition history

*/
#defi ne DL_CURRENT_VERSI ON 0x02 /* current version of dlpi */
#define DL_VERSI ON_2 0x02 /* version of dlpi March 12,1991 */
/*

* Primtives for Local Managenent Services

*/
#define DL_I NFO_REQ 0x00 /* Information Req, LLI compatibility */
#define DL_I NFO_ACK 0x03 /* Information Ack, LLI compatibility */
#define DL_ATTACH REQ 0x0b /* Attach a PPA */
#defi ne DL_DETACH REQ 0x0c /* Detach a PPA */
#define DL_BI ND_REQ 0x01 /* Bind dl sap address, LLI conmpatibility */
#define DL_BI ND_ACK 0x04 /* Dl sap address bound, LLI conpatibility */
#defi ne DL_UNBI ND_REQ 0x02 /* Unbind dl sap address, LLI conpatibility */
#define DL_OK_ACK 0x06 /* Success acknow edgnent, LLI conpatibility */
#defi ne DL_ERROR_ACK 0x05 /* Error acknow edgment, LLI conpatibility */
#define DL_SUBS_BI ND_REQ 0x1b /* Bind Subsequent DLSAP address */
#defi ne DL_SUBS_BI ND_ACK Ox1c /* Subsequent DLSAP address bound */
#define DL_SUBS_UNBI ND_REQ 0x15 /* Subsequent unbind */
#defi ne DL_ENABMULTI _REQ 0x1d /* Enabl e nmulticast addresses */
#define DL_DI SABMULTI _REQ Oxle /* Disable multicast addresses */
#defi ne DL_PROM SCON_REQ Oox1f /* Turn on prom scuous node */
#defi ne DL_PROM SCOFF_REQ 0x20 /* Turn off prom scuous node */
/*

* Primtives used for Connectionless Service

*/
#define DL_UNI TDATA REQ 0x07 /* datagram send request, LLI conpatibility */
#defi ne DL_UNI TDATA_I ND 0x08 /* datagramreceive indication, LLI conpatibility */
#defi ne DL_UDERROR_| ND 0x09 /* datagramerror indication, LLI conmpatibility */
#defi ne DL_UDQOS_REQ 0x0a /* set QOS for subsequent datagram transm ssions */
/*

* Primtives used for Connection-Oriented Service

*/
#defi ne DL_CONNECT_REQ 0x0d /* Connect request */
#defi ne DL_CONNECT_I ND 0x0e /* Incom ng connect indication */
#defi ne DL_CONNECT_RES 0xOf /* Accept previous connect indication */
#defi ne DL_CONNECT_CON 0x10 /* Connection established */
#defi ne DL_TOKEN_REQ 0x11 /* Passoff token request */

Revision: 2.0.0 Page 157 August 20, 1991

Appendix G

#def i

#def i
#def i

#def i
#def i
#def i
#def i

/*

ne

ne
ne

ne
ne
ne
ne

DL_TOKEN ACK

DL_DI SCONNECT_REQ
DL_DI SCONNECT | ND

DL_RESET_REQ
DL_RESET_| ND
DL_RESET_RES
DL_RESET_CON

0x12

0x13
0x14

0x17
0x18
0x19
Oxla

* Primtives used for Acknow edged

*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

ne
ne
ne
ne
ne
ne
ne
ne

DL_DATA_ACK_REQ
DL_DATA_ACK_I ND
DL_DATA_ACK_STATUS | ND
DL_REPLY_REQ

DL_REPLY | ND
DL_REPLY_STATUS_| ND
DL_REPLY_UPDATE_REQ

0x21
0x22
0x23
0x24
0x25
0x26
0x27

DL_REPLY_UPDATE_STATUS | ND

/*

/*
/*

/*
/*
/*
/*

Passof f token ack */

Di sconnect
Di sconnect

request */
i ndication */

Reset service request */

I ncomi ng reset indication */
Conpl ete reset processing */
Reset processing conplete */

Connectionl ess Service

/*
/*
/*
/*
/*
/*
/*

data unit transm ssion request */
Arrival of a command PDU */

Status indication of DATA ACK REQ/
Request a DLSDU fromthe rempte */
Arrival of a command PDU */

Status indication of REPLY_REQ */
Hold a DLSDU for transm ssion */

0x28 /* Status of REPLY_UPDATE req */

* Primtives used for XID and TEST operations

*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

ne
ne
ne
ne
ne
ne
ne
ne

DL_XI D_REQ 0x29
DL_XI D_| ND 0x2a
DL_XI D_RES 0x2b
DL_XI D_CON 0x2¢
DL_TEST_REQ ox2d
DL_TEST_I ND 0x2e
DL_TEST_RES ox2f
DL_TEST_CON 0x30

/*
/*
/*
/*
/*
/*
/*
/*

* Primtives to get and set the physica
* Statistics

*/

#def i
#def i
#def i
#def i
#def i

/*

ne
ne
ne
ne
ne

* DLP

*/
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

DL
DL_PHYS_ADDR
DL_SET_PHYS_ADDR REQ
DL_GET_STATI STI CS_REQ
DL STATI STI CS_ACK

interface states

DL_UNATTACHED
DL_ATTACH_PENDI NG
DL_DETACH_PENDI NG
DL_UNBOUND

DL_BI ND_PENDI NG
DL_UNBI ND_PENDI NG
DL_I DLE

DL_UDQOS_PENDI NG
DL_OUTCON_PENDI NG
DL_I NCON_PENDI NG
DL_CONN_RES_PENDI NG
DL_DATAXFER
DL_USER_RESET_PENDI NG
DL_PROV_RESET_PENDI NG
DL_RESET_RES_PENDI NG
DL_DI SCONS_PENDI NG

Revision: 2.0.0

0x31
0x32
0x33
0x34
0x35

0x04
0x05
0x06
0x00
0x01
0x02
0x03
0x07
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x0e
0x0f

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Page 158

addr ess

send an XID PDU */

of an XID PDU */

request to send a response Xl D PDU*/
Arrival of a response XID PDU */
TEST command request */

TEST response indication */

TEST response */

TEST Confirmation */

Request to

Arriva

and to get

Request to get physical addr */
Return physical addr */

set physical addr */

Request to get statistics */

Return statistics */

PPA not attached */

Wi ting ack of DL_ATTACH REQ */

Waiting ack of DL_DETACH REQ */

PPA attached, LLI compatibility */

Waiting ack of DL_BIND REQ LLI compatibility */
Wai ting ack of DL_UNBIND_REQ LLI compatibility */
dl sap bound, awaiting use, LLI conpatibility */
Waiting ack of DL_UDQOS REQ */

out goi ng connection, awaiting DL_CONN_CON */

i ncom ng connection, awaiting DL_CONN_RES */
Waiting ack of DL_CONNECT_RES */
connection-oriented data transfer */

user initiated reset, awaiting DL_RESET _CON */
provider initiated reset, awaiting DL_RESET_RES */
Wi ting ack of DL_RESET_RES */

Wai ting ack of DL_DI SC_REQ when in DL_OUTCON_PENDI NG */

August 20, 1991

#defi ne DL_DI SCON9_PENDI NG 0x10 /*
#define DL_DI SCON11_PENDI NG 0x11 /*
#define DL_DI SCON12_PENDI NG 0x12 /*
#define DL_DI SCON13_PENDI NG 0x13 /*
#define DL_SUBS_BI ND_PND 0x14 /*
#define DL_SUBS_UNBI ND_PND 0x15 /*
/ *
* DL_ERROR_ACK error return val ues
*
*/
#defi ne DL_ACCESS 0x02 /* | nproper
#defi ne DL_BADADDR 0x01
#defi ne DL_BADCORR 0x05
#defi ne DL_BADDATA 0x06
#defi ne DL_BADPPA 0x08
#defi ne DL_BADPRI M 0x09
#defi ne DL_BADQOSPARAM 0xOa
#define DL_BADQOSTYPE 0x0Ob
#defi ne DL_BADSAP 0x00
#defi ne DL_BADTOKEN 0x0c
#defi ne DL_BOUND 0x0d
/ *
#define DL_I NI TFAILED 0xOe /* Physi cal
#defi ne DL_NOADDR 0xOf /* Provider
#define DL_NOTINIT 0x10 /* Physica
#defi ne DL_QUTSTATE 0x03
#defi ne DL_SYSERR 0x04
#define DL_UNSUPPORTED 0x07
#defi ne DL_UNDELI VERABLE 0x11
#defi ne DL_NOTSUPPORTED 0x12
#defi ne DL_TOOVANY 0x13 /* limt exceeded
#defi ne DL_NOTENAB 0x14
#defi ne DL_BUSY 0x15
#defi ne DL_NOAUTO 0x16
#defi ne DL_NOXI DAUTO 0x17
#defi ne DL_NOTESTAUTO 0x18
#defi ne DL_XI DAUTO 0x19
#define DL_TESTAUTO Oxla
#defi ne DL_PENDI NG 0x1b
/ *
* NOTE: The range of error codes, 0x80 -
* i mpl enentation specific error codes
* codes will be defined by the DLS Provider.
*/
/ *
* DLPI nedia types supported
*/
#def i ne DL_CSMACD 0x0
#define DL_TPB 0x1
#define DL_TPR 0x2
#defi ne DL_METRO 0x3
#define DL_ETHER 0x4 /* Ethernet Bus
#define DL_HDLC 0x05
#defi ne DL_CHAR 0x06
#define DL_CTCA 0x07
#defi ne DL_FDDI 0x08 /* Fiber
#define DL_OTHER 0x09
Revision: 2.0.0

/* DLSAP address in inproper format or

Vi t
Vi t
Vi t
Vi t
Vi t
Vi t

ng
ng
ng
ng
ng
ng

ack
ack
ack
ack
ack
ack

of
of
of
of
of
of

DL_DI SC_REQ when
DL_DI SC_REQ when
DL_DI SC_REQ when
DL_DI SC_REQ when

0S| Work Group

in DL_I NCON_PENDI NG */

i n DL_DATAXFER */

in DL_USER RESET_PENDI NG */

in DL_DL_PROV_RESET_PENDI NG */

DL_SUBS_BI ND_REQ */
DL_SUBS_UNBI ND_REQ */

perm ssions for request, LLI conpatibility */

invalid */

/* Sequence nunber not from outstanding DL_CONN_I ND */
/* User data exceeded provider limt */
/* Specified PPA was invalid */

/* Primtive received is not known by DLS provider */
/* QOS paraneters contained invalid values */

/* QOS structure type is unknown or unsupported */

/* Bad LSAP sel ector

LLI

conpatibility */

/* Token used not associated with an active stream */
/* Attenpted second bind with dl _max_conind or */

dl _conn_mgnt > 0 on sane DLSAP or
Link initialization failed */
couldn’'t allocate alternate address */

Li nk not

initialized */

/* Primtive issued in inproper state, LL

/* UNI X system error

occurred, LL

PPA */

conpatibility */

conpatibility */

/* Requested service not supplied by provider */

/* Previous data unit could not be delivered */

/* Primtive is known but not supported by DLS provider */

*/

/* Prom scuous node not enabled */

/* Other streams for a particular PPAin the
post-attached state */

/* Autonmatic handling of

not supported */

/* Automatic handling
/* Automatic handling
/* Automatic handling
/* AUt onmatic handling

/* pendi ng outstandi ng connect

Oxf f

of
of
of
of

XID & TEST responses

XI D not supported */
TEST not supported */

XI D response */
TEST response*/

is reserved for
This reserved range of error

i ndi cations */

/* | EEE 802.3 CSMA/ CD network, LLI Conpatibility */

/* | EEE 802.4 Token Passing Bus, LLI Conpatibility */
/* | EEE 802.5 Token Passing Ring, LLI Conpatibility */
/* | EEE 802.6 Metro Net,

LLI
/* 1SO HDLC protoco

LLI Conpatibility */

Compatibility */
support,

/* Character Synchronous protocol support,
/* | BM Channel -t o- Channe
Distributed data interface */
/* Any other medi um not

Page 159

Adapter */

i sted above */

bit synchronous */

eg Bl SYNC */

August 20, 1991

Appendix G

/*

* DLPI provider service supported.

* These nust be allowed to be bitwi se-OR for dl _service_npde in
* DL_I NFO ACK.

*/

#define DL_CODLS 0x01 /* support connection-oriented service */
#define DL_CLDLS 0x02 /* support connectionless data |link service */
#define DL_ACLDLS 0x04 /* support acknow edged connectionl ess service*/
/*

* DLPI provider style.

* The DLPI provider style which determ nes whether a provider
* requires a DL_ATTACH REQ to informthe provider which PPA
* user nessages shoul d be sent/received on.

*/
#define DL_STYLEL 0x0500 /* PPAis inmplicitly bound by open(2) */
#define DL_STYLE2 0x0501 /* PPA nust be explicitly bound via DL_ATTACH REQ */
/ *

* DLPI Originator for Disconnect and Resets

*/
#defi ne DL_PROVI DER 0x0700
#define DL_USER 0x0701
/ *

* DLPI Disconnect Reasons

*/
#def i ne DL_CONREJ_DEST_UNKNOWN 0x0800
#define DL_CONREJ_DEST_UNREACH PERMANENT 0x0801
#def i ne DL_CONREJ DEST_UNREACH TRANSI ENT 0x0802
#defi ne DL_CONREJ_QOS_UNAVAI L_PERVANENT 0x0803
#define DL_CONREJ_QOS_UNAVAI L_TRANSI ENT 0x0804
#defi ne DL_CONREJ_ PERMANENT COND 0x0805
#def i ne DL_CONREJ_TRANSI ENT_COND 0x0806
#define DL_DI SC_ABNORVAL_ CONDI TI ON 0x0807
#def i ne DL_DI SC_NORVAL_CONDI TI ON 0x0808
#define DL_DI SC_PERVANENT CONDI TI ON 0x0809
#define DL_DI SC_ TRANSI ENT_CONDI TI ON 0x080a
#define DL_DI SC_UNSPECI FI ED 0x080b

/*
* DLPI Reset Reasons

*/

#defi ne DL_RESET_FLOW CONTROL 0x0900

#define DL_RESET_LI NK_ERROR 0x0901

#defi ne DL_RESET_RESYNCH 0x0902

/*

* DLPI status values for acknow edged connectionl ess data transfer

*/

#define DL_CMD_MASK 0oxOf /* mask for command portion of status */
#define DL_CMD_OK 0x00 /* Command Accepted */

#define DL_CMD_RS 0x01 /* Uninplerented or inactivated service */
#define DL_CMVMD_UE 0x05 /* Data Link User interface error */
#define DL_CMD_PE 0x06 /* Protocol error */

#define DL_CMD_I P 0x07 /* Permanent inplenentati on dependent error*/
#define DL_CVD_UN 0x09 /* Resources tenporarily unavail able */
#define DL_CMD_IT 0xOf /* Tenporary inplenmentati on dependent error */
#defi ne DL_RSP_MASK 0oxf 0 /* mask for response portion of status */
#define DL_RSP_K 0x00 /* Response DLSDU present */

#define DL_RSP_RS 0x10 /* Uni npl emented or inactivated service */
#define DL_RSP_NE 0x30 /* Response DLSDU never submitted */
#define DL_RSP_NR 0x40 /* Response DLSDU not requested */
#define DL_RSP_UE 0x50 /* Data Link User interface error */

Revision: 2.0.0 Page 160 August 20, 1991

0S| Work Group

#define DL_RSP_IP 0x70 /* Permanent inplenmentati on dependent error */
#define DL_RSP_UN 0x90 /* Resources tenporarily unavail able */
#define DL_RSP_IT oxf O /* Tenporary inplenmentati on dependent error */
/*

* Service Cass values for acknow edged connectionl ess data transfer

*/

#defi ne DL_RQST_RSP 0x01 /* Use acknow edge capability in MAC subl ayer*/
#define DL_RQST_NORSP 0x02 /* No acknow edgenment service requested */

/*

* DLPI address type definition

*/

#defi ne DL_FACT_PHYS_ADDR 0x01 /* factory physical address */
#defi ne DL_CURR_PHYS_ADDR 0x02 /* current physical address */

/*

* DLPI flag definitions

*/

#define DL_POLL_FI NAL 0x01 /* if set,indicates poll/final bit set*/
/*

* XI' D and TEST responses supported by the provider

*/

#define DL_AUTO XI D 0x01 /* provider will respond to XID */
#defi ne DL_AUTO_TEST 0x02 /* provider will respond to TEST */

/*
* Subsequent bind type

*/

#defi ne DL_PEER_BI ND 0x01 /* subsequent bind on a peer addr */
#defi ne DL_H ERARCHI CAL_BI ND 0x02 /* subs_bind on a hierarchical addr*/
/*

* DLPI prom scuous node definitions

*/

#defi ne DL_PROM SC_PHYS 0x01 /* prom scuous node at phys |evel */
#defi ne DL_PROM SC_SAP 0x02 /* prom scous node at sap |evel */
#defi ne DL_PROM SC_MJLTI 0x03 /* prom scuous node for multicast */
/*

* DLPI Quality O Service definition for use in QOS structure definitions.
* The QOS structures are used in connection establishnment, DL_I NFO ACK,

* and setting connectionless QOS val ues.

*/

/*
* Thr oughput
*
* This paraneter is specified for both directions.
*/
typedef struct {
| ong dl _target_val ue; /* desired bits/second desired */
| ong dl _accept _val ue; /* mn. acceptable bits/second */
} dl _through_t;

/
transit delay specification

This paraneter is specified for both directions.

expressed in mlliseconds assum ng a DLSDU size of 128 octets.

The scaling of the value to the current DLSDU size is provider dependent.

/

typedef struct {

| ong dl _target_val ue; /* desired val ue of service */

| ong dl _accept _val ue; /* mn. acceptable value of service */

Revision: 2.0.0 Page 161 August 20, 1991

E

Appendix G

} dl _transdel ay_t;

/*
* priority specification
* priority range is 0-100, with O being highest val ue.
*/
typedef struct {
| ong dl _mn;
| ong dl _max;
} dl _priority_t;

/*
* protection specification

*

*/
#defi ne DL_NONE 0x0B01 /* no protection supplied */
#define DL_MONI TOR 0x0B02 /* protection agai nst passive nonitoring */
#defi ne DL_MAXI MUM 0x0B03 /* protection against nodification, replay, */

/* addition, or deletion */

typedef struct {
| ong dl _mn;
| ong dl _max;
} dl _protect_t;

/*
* Resilience specification
* probabilities are scaled by a factor of 10,000 with a tine interval
* of 10,000 seconds.
*/
typedef struct {
| ong dl _di sc_prob; /* probability of provider init DISC */
| ong dl _reset_prob; /* probability of provider init RESET */
} dl _resilience_t;

QCS type definition to be used for negotiation with the

renote end of a connection, or a connectionless unitdata request.
There are two type definitions to handle the negotiation

process at connection establishnent. The typedef dl _qos_range_t
is used to present a range for paraneters. This is used

in the DL_CONNECT_REQ and DL_CONNECT_| ND nessages. The typedef

dl _qos_sel _t is used to select a specific value for the QOS
paraneters. This is used in the DL_CONNECT_RES, DL_CONNECT_CON,
and DL_I NFO _ACK nessages to define the selected QOS paraneters
for a connection.

NOTE
A Dat aLi nk provi der which has unknown values for any of the fields
will use a value of DL_UNKNOMW for all values in the fields.

NOTE
A QOCS paraneter value of DL_QOS DONT_CARE inforns the DLS
provi der the user requesting this value doesn't care
what the QOS paraneter is set to. This value becones the
| east possible value in the range of QOS paraneters.
The order of the QOS paraneter range is then:

ECE S R S N I R N S N S

*

DL_QOS_DONT_CARE < 0 < MAXI MUM QOS VALUE
*/

#defi ne DL_UNKNOWN -1

#defi ne DL_QOS_DONT_CARE -2

Revision: 2.0.0 Page 162 August 20, 1991

is in nessages.

E N

* The follow ng |ist
*/

#defi ne DL_QOS_CO RANGE1
#define DL_QOS_CO SEL1
#defi ne DL_QOS_CL_RANGEl
#define DL_QOS CL_SEL1

typedef struct {

ul ong

dl _through_t

dl _transdel ay_t
dl _through_t

dl _transdel ay_t
dl _priority_t
dl _protect _t

| ong

dl _resilience_t

} dl _qos_co_rangel_t;

typedef struct {

Every QOS structure has the first 4 bytes containing a type
field, denoting the definition of the rest of the structure.
This is used in the same manner

has the dl _primtive variable

0S| Work Group

is the defined QOS structure type val ues and structures.

0x0101 /* QOS range struct. for Connection nodeservice */
0x0102 /* QOS selection structure */

0x0103 /* QOS range struct. for connectionl ess*/
0x0104 /* QOS selection for connectionl ess node*/
dl _gos_type;

dl _rcv_throughput; /* desired and acceptabl e*/

dl _rcv_trans_del ay; /* desired and acceptabl e*/

dl _xnt _t hroughput;

dl _xnt _trans_del ay;

dl _priority; /* min and max val ues */

dl _protection; /* min and max val ues */

dl _residual _error;
dl _resilience;

ul ong dl _gos_type;
| ong dl _rcv_t hroughput;
| ong dl _rcv_trans_del ay;
| ong dl _xnt _t hr oughput ;
| ong dl _xnt_trans_del ay;
| ong dl _priority;
| ong dl _protection;
| ong dl _residual _error;
dl _resilience_t dl _resilience;
} dl _gos_co_sel 1 t;
typedef struct {
ul ong dl _qos_type;
dl _transdelay_t dl _trans_del ay;
dl _priority_t dl _priority;
dl _protect _t dl _protection;
| ong dl _residual _error;
} dl _qos_cl _rangel_t;
typedef struct {
ul ong dl _gos_type;
| ong dl _trans_del ay;
| ong dl _priority;
| ong dl _protection;
| ong dl _residual _error;
} dl _gos_cl _sel1_t;
/*
* DLPI interface primtive definitions.
*
* Each primtive is sent as a streamnmessage. It is possible that
* the messages may be viewed as a sequence of bytes that have the
* following formw thout any padding. The structure definition
* of the follow ng nessages may have to change depending on the
* underlying hardware architecture and crossing of a hardware
* boundary with a different hardware architecture.
* Fields in the primtives having a name of the form
* dl _reserved cannot be used and have the val ue of
*

bi nary zero,

Revision: 2.0.0

no bits turned on.

Page 163

August 20, 1991

Appendix G

*

* Each nmessage has the nane defined foll owed by the
* stream nessage type (M _PROTO, M PCPROTO, M DATA)

*/

/ *
* LOCAL MANAGEMENT SERVI CE PRI M TI VES
*/

/*
* DL_INFO REQ M PCPROTO type
*/
typedef struct {
ul ong
} dl _info_req_t;

dl _primtive;

/*
* DL_I NFO_ACK, M _PCPROTO type
*/

typedef struct {
ul ong dl _primtive;
ul ong dl _max_sdu;
ul ong dl _m n_sdu;
ul ong dl _addr _| engt h;
ul ong dl _mac_type;
ul ong dl _reserved;
ul ong dl _current_state;
| ong dl _sap_l engt h;
ul ong dl _servi ce_node;
ul ong dl _qos_I engt h;
ul ong dl _gos_of fset;
ul ong dl _qos_range_| engt h;
ul ong dl _qos_range_of f set;
ul ong dl _provider_style;
ul ong dl _addr_of fset;
ul ong dl _version;
ul ong dl _brdcst _addr_I engt h;
ul ong dl _brdcst _addr_of fset;
ul ong dl _grow h;

} dl _info_ack_t;

/*
* DL_ATTACH REQ M PROTO type

*/
typedef struct {
ul ong dl _primtive;
ul ong dl _ppa;

} dl _attach_req_t;

/*
* DL_DETACH REQ M PROTO type
*/
typedef struct {
ul ong dl _primtive;
} dl _detach_req_t;

/*
* DL_BIND_REQ M PROTO type

*/

typedef struct {
ul ong dl _primtive;
ul ong dl _sap; /*
ul ong dl _max_coni nd; /*
ushort dl _service_node; /*
ushort dl _conn_ngnt; /*

Revision: 2.0.0

Page 164

/* set to DL_I NFO REQ */

/* set to DL_I NFO ACK */

/* Max bytes in a DLSDU */

/* Mn bytes in a DLSDU */

/* length of DLSAP address */
/* type of medi um supported*/
/* value set to zero */

/* state of DLPI interface */
/*current |length of SAP part of
dl sap address */

/* CO CL or ACL */

/* length of gqos val ues */

/* offset frombeg. of block*/
/* avail abl e range of qos */
/* offset frombeg. of block*/
/* stylel or style2 */

/* offset of the dlsap addr */
/* version nunber */

/* length of broadcast addr */
/* offset frombeg. of block*/
/* set to zero */

/* set to DL_ATTACH REQ/
/* id of the PPA */

/* set to DL_DETACH REQ */

/* set to DL_BIND REQ */

info to identify dl sap addr*/
max # of outstanding con_ind*/
CO CL or ACL */

i f non-zero,

is con-nmgnt streant/
August 20, 1991

0S| Work Group

ul ong dl _xidtest_flg; /* if set to 1 indicates automatic
initiation of test and xid frames */
} dl _bind_req_t;

/*
* DL_BIND ACK, M PCPROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_BIND_ACK */
ul ong dl _sap; /* DLSAP addr info */
ul ong dl _addr_I engt h; /* length of conplete DLSAP addr */
ul ong dl _addr_of f set; /* of fset from begi nning of M PCPROTO*/
ul ong dl _max_coni nd; /* allowed max. # of con-ind */
ul ong dl _xidtest_flg; /* responses supported by provider*/

} dl _bind_ack_t;

/*

* DL_SUBS BIND_REQ M PROTO type

*/

typedef struct {
ulong dl _prinitive; /* DL_SUBS_BI ND REQ */
ul ong dl _subs_sap_of f set; /* offset of subs_sap */
ul ong dl _subs_sap_I engt h; /* length of subs_sap */
ul ong dl _subs_bi nd_cl ass; /* peer or hierarchical */

} dl _subs_bind_req_t;

/*

* DL_SUBS BI ND_ACK, M PCPROTO type

*/

typedef struct {
ulong dl _primtive; /* DL_SUBS_BI ND_ACK */
ul ong dl _subs_sap_of f set; /* offset of subs_sap */
ul ong dl _subs_sap_Il engt h; /* length of subs_sap */

} dl _subs_bind_ack_t;

/*
* DL_UNBIND_REQ M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_UNBI ND_REQ */
} dl _unbind_req_t;

/*
* DL_SUBS_UNBI ND_REQ M PROTO type

*/

typedef struct {
ul ong dl _primtive; /* DL_SUBS_UNBI ND_REQ */
ul ong dl _subs_sap_of fset; /* offset of subs_sap */
ul ong dl _subs_sap_I| engt h; /* length of subs_sap */

} dl _subs_unbind_req_t;

/ *
* DL_OK_ACK, M PCPROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_OK_ACK */
ul ong dl _correct_primtive; /* primtive being acknow edged */
} dl _ok_ack_t;
/ *
* DL_ERROR_ACK, M PCPROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_ERROR_ACK */
ul ong dl _error_primtive; /[* primtive in error */
ul ong dl _errno; /* DLPI error code */

Revision: 2.0.0 Page 165 August 20, 1991

Appendix G

ul ong dl _uni x_errno; /* UNI X systemerror code */
} dl _error_ack_t;

/*
* DL_ENABMULTI _REQ M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_ENABMULTI _REQ */
ul ong dl _addr_I engt h; /* length of multicast address */
ul ong dl _addr_of fset; /* offset frombeg. of MPROTO bl ock*/

} dl _enabmulti _req_t;

/*
* DL_DI SABMULTI _REQ M _PROTO type

*/
typedef struct {
ul ong dl _primtive; /* DL_DI SABMULTI _REQ */
ul ong dl _addr_I engt h; /* length of multicast address */
ul ong dl _addr_of fset; /* offset frombeg. of M PROTO bl ock*/

} dl _disabmulti_req_t;

/*
* DL_PROM SCON_REQ M PROTO type

*/
typedef struct {
ul ong dl _primtive; /* DL_PROM SCON_REQ */
ul ong dl _l evel; /* physical, SAP | evel or ALL multicast*/

} dl _prom scon_req_t

/ *
* DL_PROM SCOFF_REQ, M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_PROM SCOFF_REQ */
ul ong dl _level; /* Physical, SAP |l evel or ALL multicast*/

} dl _prom scoff_req_t

/ *
* Primtives to get and set the Physical address
*/
/ *
* DL_PHYS ADDR_REQ M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_PHYS_ADDR_REQ */
ul ong dl _addr_type; /* factory or current physical addr */

} dl _phys_addr _req_t;

/*
* DL_PHYS_ADDR ACK, M PCPROTO type

*/

typedef struct {
ul ong dl _primtive; /* DL_PHYS_ADDR_ACK */
ul ong dl _addr _| engt h; /* length of the physical addr */
ul ong dl _addr_of f set; /* offset frombeg. of block */

} dl _phys_addr_ack_t;

/*
* DL_SET_PHYS ADDR REQ M PROTO type
*/
typedef struct {
ulong dl _prinitive; /* DL_SET_PHYS ADDR REQ */

Revision: 2.0.0 Page 166 August 20, 1991

0S| Work Group

ul ong dl _addr _| engt h; /* length of physical addr */
ul ong dl _addr_of f set; /* offset frombeg. of block */
} dl _set_phys_addr_req_t;

/*
* Primtives to get statistics
*/

/*
* DL_GET_STATI STICS_REQ M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_CET_STATI STI CS_REQ */
} dl _get_statistics_req_t;

/*
* DL_GET_STATI STI CS_ACK, M PCPROTO type
*/

typedef struct {

ul ong dl _primtive; /* DL_CGET_STATI STI CS_ACK */
ul ong dl _stat_l ength; /* length of statistics structure*/
ul ong dl _stat_offset; /* offset frombeg. of block */

} dl _get_statistics_ack_t;

/ *

* CONNECTI ON- ORI ENTED SERVI CE PRI M Tl VES

*/

/ *

* DL_CONNECT_REQ M PROTO type

*/

typedef struct {
ul ong dl _primtive; /* DL_CONNECT_REQ */
ul ong dl _dest_addr_| engt h; /* len. of dlsap addr*/
ul ong dl _dest_addr_of fset; /* offset */
ul ong dl _gos_I engt h; /* len. of QOS parmval*/
ul ong dl _gos_of fset; /* offset */
ul ong dl _grow h; /* set to zero */

} dl _connect_req_t;

/*
* DL_CONNECT I ND, M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_CONNECT_I ND */
ul ong dl _correl ation; /* provider’s correl ati on token*/
ul ong dl _called_addr_length; /* length of called address */
ul ong dl _call ed_addr_offset; /* offset from beginning of block */
ul ong dl _calling_addr_length; /* length of calling address */
ul ong dl _calling_addr_offset; /* offset from beginning of block */

ul ong dl _qos_Il engt h; /* length of qos structure */
ul ong dl _gos_of fset; /* offset from begi nning of block */
ul ong dl _grow h; /* set to zero */

} dl _connect_ind_t;

/*

* DL_CONNECT_RES, M PROTO type

*/

typedef struct {
ul ong dl _primtive; /* DL_CONNECT_RES */
ul ong dl _correlation; /* provider's correlation token */
ul ong dl _resp_token; /* token associated with responding stream */
ul ong dl _qos_length; /* length of qos structure
ul ong dl _qos_offset; /* offset from beginning of block */
ul ong dl _growt h; /* set to zero */

} dl _connect_res_t;

Revision: 2.0.0 Page 167 August 20, 1991

Appendix G

/*

* DL_CONNECT_CON, M PROTO type
*/

typedef struct {

ul ong dl _primtive;

ul ong dl _resp_addr_| engt h;
ul ong dl _resp_addr_of fset;
ul ong dl _qos_I engt h;

ul ong dl _qos_of fset;

ul ong dl _grow h;

} dl _connect_con_t;

/*
* DL_TOKEN_REQ M PCPROTO type
*/
typedef struct {
ul ong dl _primtive;
} dl _token_req_t;

/*
* DL_TOKEN_ACK, M PCPROTO type
*/
typedef struct {
ul ong
ul ong

dl _primtive;
dl _t oken;

}dl _token_ack_t;

/*

* DL_DI SCONNECT_REQ M PROTO type
*/

typedef struct {

ul ong dl _primtive;
ul ong dl _reason;
ul ong dl _correlation;

} dl _di sconnect _req_t;

/*

* DL_DI SCONNECT_I ND, M PROTO type
*/

typedef struct {

ul ong dl _primtive;

ul ong dl _originator;
ul ong dl _reason;

ul ong dl _correlation;

} dl _di sconnect _ind_t;

/*
* DL_RESET_REQ M PROTO type
*/
typedef struct {
ul ong dl _primtive;
} dl _reset _req_t;

/*
* DL_RESET_IND, M PROTO type
*/
typedef struct {
ul ong dl _primtive;
ul ong dl _originator;
ul ong dl _reason;

} dl _reset_ind_t;

/*
* DL_RESET_RES, M PROTO type
*/

Revision: 2.0.0

/* DL_CONNECT_CON*/

/* length of responder’s address */
/* of fset from begi nning of bl ock*/
/* length of qos structure */

/* of fset from begi nning of bl ock*/
/* set to zero */

/* DL_TOKEN_REQ */

/* DL_TOKEN ACK */
/* Connection response token associ ated

with the stream */

/* DL_DI SCONNECT_REQ */
/*normal, abnormal, perm or transient*/
/* association with connect_ind */

/* DL_DI SCONNECT_I ND */

/* USER or PROVI DER */

/* permanent or transient */

/* association with connect_ind */

/* DL_RESET_REQ */

/* DL_RESET_IND */
/* Provider or User */

/* flow control, link error or resynch*/

Page 168 August 20, 1991

0S| Work Group

typedef struct {
ul ong dl _primtive; /* DL_RESET_RES */
} dl _reset _res_t;

/*
* DL_RESET_CON, M PROTO type
*/
typedef struct {
ul ong dl _primtive;
} dl _reset_con_t;

~

* DL_RESET_CON */

/*

* CONNECTI ONLESS SERVI CE PRI M TI VES

*/

/*

* DL_UNI TDATA_REQ M PROTO type, with M DATA bl ock(s)

*/

typedef struct {
ulong dl _prinitive; /* DL_UNI TDATA REQ */
ul ong dl _dest_addr_I ength; /* DLSAP |l ength of dest. user */
ul ong dl _dest_addr_of fset; /* offset frombeg. of block */
dl _priority_t dl _priority; /* priority value */

} dl _unitdata_req_t

/*

* DL_UNI TDATA_ I ND, M PROTO type, with M DATA bl ock(s)

*/

typedef struct {
ulong dl _prinitive; /* DL_UNI TDATA I ND */
ul ong dl _dest_addr_I| engt h; /* DLSAP |l ength of dest. user */
ul ong dl _dest_addr_of fset; /* offset frombeg. of block */
ul ong dl _src_addr_l ength; /* DLSAP addr |ength of sending user*/
ul ong dl _src_addr_offset; /* offset frombeg. of block */
ul ong dl _group_address; /* set to one if multicast/broadcast*/

} dl _unitdata_ind_t;

/*
* DL_UDERROR | ND, M PROTO type
* (or M_PCPROTO type if LLI-based provider)
*/
typedef struct {
ul ong dl _primtive; /* DL_UDERROR_I ND */
ul ong dl _dest_addr_| ength; /* Destination DLSAP */
ul ong dl _dest_addr_of f set; /* Offset frombeg. of block */
ul ong dl _uni x_errno; /* unix systemerror code*/
ul ong dl _errno; /* DLPI error code */

} dl _uderror_ind_t;

/*

* DL_UDQCS_REQ M PROTO type
*/

typedef struct {

ul ong dl _primtive; /* DL_UDQOS_REQ */
ul ong dl _gos_I engt h; /* length in bytes of requested qos*/
ul ong dl _gos_of fset; /* offset frombeg. of block */

} dl _udqos_req_t;

/ *
* Primtives to handle XID and TEST operations
*/
/ *
* DL_TEST_REQ M PROTO type
*
/
Revision: 2.0.0 Page 169 August 20, 1991

Appendix G

typedef struct {

ul ong dl _primtive

ul ong dl _flag

ul ong dl _dest_addr_| ength
ul ong dl _dest_addr_of fset;

} dl _test _req_t;

/*

* DL_TEST_IND, M PROTO type
*/

typedef struct {

ul ong dl _primtive

ul ong dl _flag

ul ong dl _dest_addr_| ength
ul ong dl _dest_addr_of fset;
ul ong dl _src_addr _l ength

ul ong dl _src_addr _of fset;

} dl _test_ind_t;

/ *
* DL_TEST_RES, M PROTO type
*/
typedef struct {
ul ong dl _primtive
ul ong dl _flag
ul ong dl _dest_addr _| ength
ul ong dl _dest_addr_of fset;

} dl _test_res_t;

/ *

* DL_TEST_CON, M PROTO type

*/

typedef struct {
ul ong dl _primtive
ul ong dl _flag
ul ong dl _dest_addr_| ength
ul ong dl _dest_addr_of fset;
ul ong dl _src_addr _l ength
ul ong dl _src_addr _offset;

} dl _test_con_t;

/*

* DL_XID REQ M PROTO type
*/

typedef struct {

ul ong dl _primtive

ul ong dl _flag

ul ong dl _dest_addr_| ength
ul ong dl _dest_addr_of fset;

} dl _xid_req_t;

/*

* DL_XID_IND, M PROTO type
*/

typedef struct {

ul ong dl _primtive

ul ong dl _flag

ul ong dl _dest_addr_| ength
ul ong dl _dest_addr_of f set;
ul ong dl _src_addr_l ength

ul ong dl _src_addr _offset;

} dl _xid_ind_t;

/ *
* DL_XI D RES, M PROTO type
*/

Revision: 2.0.0

/* DL_TEST_REQ */
/* poll/final */
/* DLSAP | ength of

/* offset from beg.

/* DL_TEST_IND */
/* poll/final */
/* dl sap | ength of

/* offset from beg.

/* dl sap | ength of

/* offset from beg.

/* DL_TEST_RES */
/* poll/final */
/* DLSAP | ength of

/* offset from beg.

/* DL_TEST_CON */
/* poll/final */
/* dl sap | ength of

/* offset from beg.

/* dlsap | ength of

/* offset from beg.

/* DL_XID REQ */
/* poll/final */
/* dlsap | ength of

/* of fset from beg.

/* DL_XID IND */
/* poll/final */
/* dlsap | ength of

/* of fset from beg.

/* dl sap | ength of

/* offset from beg.

Page 170

dest. user */
of block */

dest. user */
of block */
source user */
of block */

dest. user */
of block */

dest. user */
of block */
source user */
of block */

dest. user */
of block */

dest. user */
of block */
source user */
of block */

August 20, 1991

0S| Work Group

typedef struct {

ul ong dl _primtive; /* DL_XID RES */
ul ong dl _flag; /* poll/final */
ul ong dl _dest_addr_| engt h; /* DLSAP |l ength of dest. user */
ul ong dl _dest_addr_of fset; /* offset frombeg. of block */

} dl _xid_res_t;

/*

* DL_XI D _CON, M PROTO type

*/

typedef struct {
ul ong dl _primtive; /* DL_XID CON */
ul ong dl _flag; /* poll/final */
ul ong dl _dest_addr_| ength; /* dlsap length of dest. user */
ul ong dl _dest_addr_of fset; /* offset frombeg. of block */
ul ong dl _src_addr_l ength; /* dlsap | ength of source user */
ul ong dl _src_addr_of fset; /* offset frombeg. of block */

} dl _xid_con_t;

/ *
* ACKNOWLEDGED CONNECTI ONLESS SERVI CE PRI M Tl VES
*/
/ *
* DL_DATA ACK_REQ M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_DATA ACK REQ */
ul ong dl _correl ation; /* User’s correl ation token */
ul ong dl _dest_addr_I| engt h; /* length of destination addr */
ul ong dl _dest_addr_of fset; /* offset from begi nning of block */
ul ong dl _src_addr_I engt h; /* length of source address */
ul ong dl _src_addr_offset; /* offset from begi nning of block */
ul ong dl _priority; /* priority */
ul ong dl _service_cl ass; /* DL_RQST_RSP or DL_RQST_NORSP */

} dl _data_ack_req_t;

/*
* DL_DATA_ACK_ I ND, M _PROTO type

*/
typedef struct {
ul ong dl _primtive; /* DL_DATA ACK_IND */
ul ong dl _dest _addr _| engt h; /* length of destination addr */
ul ong dl _dest_addr_of f set; /* offset from begi nning of block */
ul ong dl _src_addr_I ength; /* length of source address */
ul ong dl _src_addr_of fset; /* offset from begi nning of block */
ul ong dl _priority; /* priority for data unit transm */
ul ong dl _service_cl ass; /* DL_RQST_RSP or DL_RQST_NORSP */
} dl _data_ack_ind_t;
/*
* DL_DATA ACK_STATUS IND, M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_DATA ACK_STATUS I ND */
ul ong dl _correl ation; /* User’s correl ation token */
ul ong dl _status; /* success or failure of previous reqg*/

} dl _data_ack_status_ind_t;

/*
* DL_REPLY_REQ M PROTO type
*/
typedef struct {
ul ong dl _primtive; /* DL_REPLY_REQ */
ul ong dl _correlation; /* User’s correl ation token */
ul ong dl _dest_addr_| ength; /* length of destination address */

Revision: 2.0.0 Page 171 August 20, 1991

Appendix G

ul ong dl _dest_addr_of fset;
ul ong dl _src_addr_l ength

ul ong dl _src_addr _of fset;
ul ong dl _priority;

ul ong dl _service_cl ass

} dl _reply_req_t;

/*

* DL_REPLY_IND, M PROTO type
*/

typedef struct {

/*
/*
/*
/*

of fset from beginning of block */
source address length */

of fset from begi nning of bl ock */
priority for data unit transm ssion*/

ul ong dl _primtive; /* DL_REPLY_IND */

ul ong dl _dest _addr _| engt h; /* length of destination address */

ul ong dl _dest_addr_of f set; /* of fset from begi nning of bl ock*/

ul ong dl _src_addr_I ength; /* length of source address */

ul ong dl _src_addr_of fset; /* offset from begi nning of block */

ul ong dl _priority; /* priority for data unit transm ssion*/
ul ong dl _service_cl ass; /* DL_RQST_RSP or DL_RQST_NORSP */

} dl _reply_ind_t;

/*
* DL_REPLY_STATUS | ND, M PROTO type
*/

typedef struct {

ul ong dl _primtive
ul ong dl _correlation
ul ong dl _status

} dl _reply_status_ind_t;

/*

* DL_REPLY_UPDATE_REQ M PROTO type
*/

typedef struct {

/*
/*
/*

DL_REPLY_STATUS_ I ND */
User’'s correl ation token */
success or failure of previous req*/

ul ong dl _primtive; /* DL_REPLY_UPDATE_REQ */

ul ong dl _correl ation; /* user’s correl ation token */

ul ong dl _src_addr_l ength; /* length of source address */

ul ong dl _src_addr_of fset; /* offset from begi nning of block */

} dl _reply_update req_t;

/*
* DL_REPLY_UPDATE STATUS | ND, M PROTO type
*/
typedef struct {
ul ong dl _primtive
ul ong dl _correlation
ul ong dl _status

} dl _reply_update_status_ind_t;

union DL_primtives {

/*
/*
/*

DL_REPLY_UPDATE_STATUS | ND */
User’'s correlation token */
success or failure of previous req*/

ul ong

dl _primtive

dl _info_req_t info_req;
dl _info_ack_t i nfo_ack
dl _attach_req_t attach_req;
dl _detach_req_t detach_req
dl _bind_req_t bi nd_req
dl _bind_ack_t bi nd_ack

dl _unbind_req_t
dl _subs_bind_req_t
dl _subs_bi nd_ack_t

dl _subs_unbind_req_t

dl _ok_ack_t

dl _error_ack_t
dl _connect _req_t
dl _connect _i nd_t
dl _connect _res_t
dl _connect _con_t

Revision: 2.0.0

unbi nd_r eq
subs_bind_req
subs_bi nd_ack
subs_unbi nd_r eq
ok_ack;
error_ack
connect _req
connect _i nd
connect _res
connect _con

Page 172

August 20, 1991

b

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

dl _token_req_t

dl _token_ack_t

dl _di sconnect _req_t

dl _di sconnect _i nd_t

dl _reset_req_t

dl _reset_ind_t

dl _reset_res_t

dl _reset_con_t

dl _unitdata_req_t

dl _unitdata_ind_t

dl _uderror_ind_t

dl _udqos_req_t

dl _enabrmulti _req_t

dl _disabmulti_req_t

dl _promi scon_req_t

dl _prom scoff_req_t

dl _phys_addr _req_t

dl _phys_addr _ack_t

dl _set _phys_addr _req_t
dl _get_statistics_req_t
dl _get_statistics_ack_t
dl _test_req_t

dl _test_ind_t

dl _test_res_t

dl _test_con_t
dl _xid_req_t
dl _xid_ind_t

dl _xid_ res_t

dl _xid_con_t

dl _data_ack_req_t

dl _data_ack_ind_t

dl _data_ack_status_ind_t
dl _reply_req_t

dl _reply_ind_t

dl _reply_status_ind_t

dl _reply_update_req_t

dl _reply_update_status_i

DL_I NFO_REQ S| ZE

DL_I NFO ACK_SI ZE
DL_ATTACH REQ Sl ZE
DL_DETACH REQ Sl ZE
DL_BI ND_REQ S| ZE

DL_BI ND_ACK_SI ZE
DL_UNBI ND_REQ SI ZE
DL_SUBS_BI ND_REQ SI ZE
DL_SUBS_BI ND_ACK_SI ZE
DL_SUBS_UNBI ND_REQ S| ZE
DL_OK_ACK_SI ZE
DL_ERROR ACK_SI ZE
DL_CONNECT_REQ S| ZE
DL_CONNECT_| ND_SI ZE
DL_CONNECT_RES_SI ZE
DL_CONNECT_CON_S| ZE
DL_TOKEN_REQ SI ZE
DL_TOKEN_ACK_SI ZE

DL_DI SCONNECT_REQ S| ZE
DL_DI SCONNECT_| ND_SI ZE
DL_RESET_REQ SI ZE
DL_RESET_|I ND_SI ZE
DL_RESET_RES SI ZE
DL_RESET_CON_SI ZE
DL_UNI TDATA_REQ SI ZE
DL_UNI TDATA_I ND_SI ZE
DL_UDERROR | ND_SI ZE

Revision: 2.0.0

token_req

t oken_ack

di sconnect _req

di sconnect _i nd

reset_req

reset _ind

reset_res

reset _con;

uni tdata_req

uni tdata_ind

uderror _ind

udqos_r eq

enabmul ti _req

di sabmul ti _req

prom scon_req

prom scoff_req

physaddr _req

physaddr _ack

set _physaddr_req

get_statistics_req

get _statistics_ack

test_req;

test_ind;

test_res;

test_con

xid_req

xi d_ind

xid_res;

xi d_con;

data_ack_req;

dat a_ack_i nd;
data_ack_status_ind

reply_req

reply_ind

reply_status_ind

reply_update_req

nd_t reply_update_status_ind

si zeof (dl _info_req_t)

si zeof (dl _info_ack_t)

si zeof (dl _attach_req_t)

si zeof (dl _detach_req_t)

si zeof (dl _bind_req_t)

si zeof (dl _bi nd_ack_t)

si zeof (dl _unbind_req_t)

si zeof (dl _subs_bind_req_t)
si zeof (dl _subs_bi nd_ack_t)
si zeof (dl _subs_unbind_req_t)
si zeof (dl _ok_ack_t)

si zeof (dl _error_ack_t)

si zeof (dl _connect _req_t)

si zeof (dl _connect _ind_t)

si zeof (dl _connect _res_t)

si zeof (dl _connect _con_t)

si zeof (dl _token_req_t)

si zeof (dl _t oken_ack_t)

si zeof (dl _di sconnect _req_t)
si zeof (dl _di sconnect _ind_t)
si zeof (dl _reset _req_t)

si zeof (dl _reset_ind_t)

si zeof (dl _reset _res_t)

si zeof (dl _reset_con_t)

si zeof (dl _unitdata_req_t)
si zeof (dl _unitdata_ind_t)
si zeof (dl _uderror_ind_t)

Page 173

0S| Work Group

August 20, 1991

Appendix G

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

DL_UDQOS_REQ Sl ZE si
DL_ENABMULTI _REQ Sl ZE si
DL_DI SABMULTI _REQ SI ZE si
DL_PROM SCON_REQ SI ZE si
DL_PROM SCOFF_REQ S| ZE si
DL_PHYS_ADDR REQ SI ZE si
DL_PHYS_ADDR ACK_SI ZE si
DL_SET_PHYS_ADDR REQ Sl ZE

DL_GET_STATI STI CS_REQ S| ZE
DL_GET_STATI STI CS_ACK_SI ZE

DL_XI D_REQ SI ZE si
DL_XI D_I ND_SI ZE si
DL_XI D_RES_SI ZE si
DL_XI D_CON_SI ZE si
DL_TEST_REQ S| ZE si
DL_TEST_I ND_SI ZE si
DL_TEST_RES_SI ZE si
DL_TEST_CON_ S| ZE si
DL_DATA ACK_REQ SIZE si

DL_DATA ACK_IND SI ZE si

DL_DATA_ACK_STATUS_I ND_SI ZE

DL_REPLY_REQ Sl ZE si
DL_REPLY_| ND_SI ZE si
DL_REPLY STATUS | ND_SI ZE
DL_REPLY_UPDATE_REQ SI ZE

DL_REPLY_UPDATE_STATUS | ND_SI ZE si zeof (dl _reply_update_status_ind_t)

#endif /* _SYS DLPI_H */

Revision: 2.0.0

zeof (dl _udqos_req_t)

zeof (dl _enabmul ti _req_t)

zeof (dl _di sabrmulti _req_t)

zeof (dl _promi scon_req_t)

zeof (dl _promi scoff_req_t)

zeof (dl _phys_addr _req_t)

zeof (dl _phys_addr _ack_t)
si zeof (dl _set _phys_addr _req_t)
si zeof (dl _get_statistics_req_t)
si zeof (dl _get_statistics_ack_t)

zeof (dl _xid_req_t)

zeof (dl _xid_ind_t)

zeof (dl _xid_res_t)

zeof (dl _xid_con_t)

zeof (dl _test _req_t)

zeof (dl _test_ind_t)

zeof (dl _test_res_t)

zeof (dl _test_con_t)

zeof (dl _data_ack_req_t)

zeof (dl _data_ack_ind_t)

si zeof (dl _data_ack_status_ind_t)

zeof (dl _reply_req_t)

zeof (dl _reply_ind_t)
si zeof (dl _reply_status_ind_t)
si zeof (dl _reply_update_req_t)

Page 174

August 20, 1991

0S| Work Group

PLEASE DISCARD THIS PAGE!!!

Revision: 2.0.0 - cIxxv - August 20, 1991

1. Introduction

Table of Contents

1.1 Document Organlzanon

2. Model of the Data Link Layer
2.1 Model of the Service Interface
2.2 Modes of Communication .
2.2.1 Connection-mode Service
2.2.2 Connectionless-mode Service .
2.2.3 Acknowledged Connectionless-mode Serwce .
2.3 DLPI Addressing .
2.3.1 Physica Attachment Identlflca'uon .
2.3.2 DatalLink User Identification
2.4 The Connection Management Stream

3. DLPI Services
3.1 Loca Management Serwces

311

Information Reporting Serwce

3.1.2 Attach Service

3.13

Bind Service

3.2 Connection-mode Services
3.2.1 Connection Establishment SerV|ce

322

Data Transfer Service .

3.2.3 Connection Release Service

324

Reset Service

3.3 Connectionless-mode Services
3.3.1 Connectionless Data Transfer SerV|ce
3.3.2 QOS Management Service

333

Error Reporting Service

3.34 XID and TEST Service
3.4 Acknowledged Connectionless-mode Serwces

3.4.1 Acknowledged Connectionless-mode Data Transfer Serwc&

3.4.2 QOS Management Service

3.4.3

Error Reporting Service

3.5 AnExample .

4. DLPI Primitives
4.1 Loca Management SerV|ce Prl mltlva

411
412
413
414
415
416
4.1.7
4138
419
4.1.10
4111
4112
4.1.13
4.1.14

Revision: 2.0.0

PPA Initialization / De-initialization . .

Message DL_INFO_REQ (dl_info req t) .

Message DL_INFO_ACK (dl_info_ack t) .

Message DL_ATTACH_REQ (dl_attach req t)

Message DL_DETACH_REQ (dl_detach _req t) .
Message DL_BIND_REQ (dl_bind req t)

Message DL_BIND_ACK (dl_bind ack t)

Message DL_UNBIND_REQ (dl_unbind req t) . .
Message DL_SUBS BIND_REQ (dl_subs bind req t)
Message DL_SUBS BIND_ACK (dl_subs bind ack t)

Message DL_SUBS UNBIND_REQ (dl_subs unbind req_t)

Message DL_ ENABMULTI_REQ (dI_enabmulti_req t)
Message DL_DISABMULTI_REQ (dI_disabmulti_req t)
Message DL_PROMISCON_REQ (dl_promiscon_req t)

~No oo oah~rbWW B~

9
11
11
11
11
14
14
16
17
18
21
21
21
21
22
23
23
24
24
25

27
28
28
29
30
33
35
36
39
41
42
a4
45
46
47
48

August 20, 1991

4.2

4.3

4.4

4.5

51

52

4.1.15 Message DL_PROMISCOFF_REQ (dI_promiscoff req_t)
4.1.16 Message DL_OK_ACK (dl_ok ack t) . . .
4.1.17 Message DL_ERROR_ACK (dl_error_ack t)
Connection-mode Service Primitives .

4.2.1 Multi-threaded Connection Establlshment .o

4.2.2 Message DL_CONNECT_REQ (dI_connect_req t)
4.2.3 Message DL_CONNECT _IND (dl_connect_ind_t)
424 Message DL_CONNECT_RES (dl_connect_res t)
425 Message DL_CONNECT_CON (dI_connect_con t) .
42,6 Message DL_TOKEN_REQ (dl_token req t)

42,7 Message DL_TOKEN_ACK (dl_token ack t)

4.2.8 Message DL_DATA_REQ .

4.29 Message DL_DATA_IND

4.2.10 Message DL_DISCONNECT_REQ (dI dlsconnect req_t) .

4.2.11 Message DL_DISCONNECT _IND (dl_disconnect_ind t)
4.2.12 Message DL_RESET _REQ (dl_reset_req t)

4.2.13 Message DL_RESET _IND (dl_reset_ind t)

4.2.14 Message DL_RESET RES(dl_reset res t)

4.2.15 Message DL_RESET_CON (dl_reset_con t)
Connectionless-mode Service Primitives . .

431 Message DL_UNITDATA_REQ (dI_ unltdata req_t)
4.3.2 Message DL_UNITDATA _IND (dl_unitdata_ind t) .
4.3.3 Message DL_UDERROR_IND (dl_uderror_ind t)
434 Message DL_UDQOS REQ (dl_udgos req t)
Primitives to handle XID and TEST operations

441 Message DL_TEST REQ(dI_test req t)

442 Message DL_TEST IND (dl_test_ind t)

443 Message DL_TEST RES(dl_test res t)

444 Message DL_TEST CON (dl_test con t) .

445 Message DL_XID_REQ (dl_xid req t)

446 Message DL_XID_IND (dl_xid_ind t) .

447 Message DL_XID_RES(dl_xid res t) .

448 Message DL_XID_CON (dl_xid con_t)
Acknowledged Connectionless-mode Service Primitives .
451 Message DL_DATA_ACK_REQ (dl_data_ack req t)
452 Message DL_DATA_ACK_IND (dl_data_ack ind t)

453 Message DL_DATA_ACK_STATUS IND (dl_data ack status md t)

454 Message DL_REPLY_REQ (dl_reply req t)
455 Message DL_REPLY_IND (dl_reply ind_t)

45.6 Message DL_REPLY_STATUS IND (dl_reply status md t)
457 Message DL_REPLY_UPDATE_REQ (dl_reply update req t)

458 Message DL_REPLY_UPDATE_STATUS IND
(dl_reply_update status ind t)

5. Quality of Data Link Service

Overview of Quality of Service
5.1.1 Connection-mode Service

5.1.2 QOSfor Connectionless-mode and Acknowledged Connectlonlessrmode

Service
QOS Parameter Defi nltlons
5.21 Throughput .
5.2.2 Transit Delay
5.2.3 Priority

Revision: 2.0.0 -i -

49
50
51
52
52
53
55
57
59
60
61
62
63
64
66
68
69
70
71
72
73
75
76
77
78
79
81
82
83
84
86
87
88
89
90
92
94
95
97
98
100

101

103
104
105

106
107
108
109
110

August 20, 1991

524 Protection . 11
525 Resduad ErrorRate 12

526 Reslience . 113

53 QOSDataStructures . 114
531 StructureDL_QOS CO RANGE1 115

532 StructureDL_ QOS CO SELI 116

533 StructureDL_QOS CL_RANGE1 17

534 StructureDL_ QOS CL_SEL1 118

5.4 Proceduresfor QOS Negotiation and Selection 119
5.4.1 Connection-mode QOS Negotiation e 1]

5.4.2 Connectionlessmode QOSSelection 123
REFERENCES s
Appendix A — Optional Primitivesto perform Essential Management Functions 125
A.1 Message DL_PHYS ADDR REQ (dl_phys addr reqt) 126
A.2 Message DL_PHYS ADDR ACK (dl_phys addr ack t) 127
A.3 Message DL_SET PHYS ADDR REQ (d_set phys addr reqt) 128
A.4 Message DL_GET_STATISTICS REQ (dl_get datisticsreqt) 129
A.5 Message DL_GET_STATISTICS ACK (dI_get_statisticsack t) 130
Appendix B — Allowable Sequence of DLPI Primitives 13
Bl DLPIStates 132
B.2 Variablesand Actions for State TransitionTable 135
B.3 DLPI User-Originated Events 1§
B.4 DLPI Provider-OriginatedEvents 137
B.5 DLPI State TransitionTable 138
Appendix C — Precedence of DLPI Primitives 143
C.1 WriteQueuePrecedence . 14
C.2 Read QueuePrecedence . 146
Appendix D — Glossary of DLPI Termsand Acronyms 149
Appendix E— Guidelines for Protocol Independent DLSUsers 151
Appendix F — Required Information for DLS Provider-SpecificAddenda 153
Appendix G— DLPI Header File . 157

Revision: 2.0.0 - il - August 20, 1991

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Figure 15.

Figure 16.
Figure 17.

Figure 18.

Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

Figure 24.
Figure 25.
Figure 26.
Figure 27.

Figure 28.

List of Figures

Abstract View of DLPI

Data Link Addressing Components

Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:

Attempt

Message Flow:

Attempt

Message Flow:
Message Flow:

is Sent

Message Flow:

Sent

Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:

Release

Message Flow:
Message Flow:
Message Flow:
Message Flow:

Reset

Message Flow:

Revision: 2.0.0

Information Reporting

Attaching a Stream to a Physical Line.

Detaching a Stream from a Physical Line.

Binding a Stream to aDLSAP.

Unbinding a Stream from a DLSAP.

Enabling a specific multicast address on a Stream.
Disabling a specific multicast address on a Stream.
Enabling promiscuous mode on a Stream. .
Disabling promiscuous mode on a Stream.
Successful Connection Establishment .

Token Retrieval

Called DL S User Rejection of Connection Establishment

DL S Provider Rejection of a Connection Establishment

Both Primitives are Destroyed by Provider

DL_DISCONNECT Indication Arrives before DL_CONNECT Response
DL_DISCONNECT Indication Arrives after DL_CONNECT Responseis
Normal Data Transfer

DL S User-Invoked Connection Release

Simultaneous DL S User Invoked Connection Release

DL S Provider Invoked Connection Release

Simultaneous DLS User & DL S Provider Invoked Connection

DL S User-Invoked Connection Reset
Simultaneous DL S User-Invoked Connection Reset .
DL S Provider-Invoked Connection Reset .

Simultaneous DLS User & DL S Provider Invoked Connection

Connectionless Data Transfer

-iv-

3

5
11
11
11
12
12
13
13
13
13
14
14

15

15
16

16

16
17
17
17
17

18
19
19
19

20
21

August 20, 1991

Figure 29. Message Flow: ConnectionlessData Transfer 21

Figure 30. Message Flow: XID Service 22
Figure 31. Message Flow: TEST Service 22
Figure 32. Message Flow: Acknowledged Connectionless-Mode Data Unit Transmission

service 28
Figure 33. Message Flow: Acknowledged Connectionless-Mode Data Unit Exchange

service 28
Figure 34. Message Flow: Acknowledged Connectionless-Mode Reply Data Unit Preparation

Service C e e e e e e e s 24
Figure 35. Message Flow: A Connection-mode Example 25

Revision: 2.0.0 -V- August 20, 1991

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLES.
TABLEG6.
TABLE?7.
TABLES.
TABLE9.

TABLE 10.
TABLE11.
TABLE 12.
TABLE 13.

List of Tables

Cross-Reference of DLS Services and Primitives

DLPI States

DPLI State Transition Table Variables .

DPLI State Transition Actions

DLPI User-Originated Events

DLPI Provider-Originated Events

DLPI State Transition Table - Local Management Phase

DLPI State Transition Table - Connectionless-mode Data Transfer Phase

DLPI State Transition Table - Acknowledged Connectionless-mode Data Transfer
Phase

DLPI State Transition Table - Connection Establishment Phase

DLPI State Transition Table - Connection-mode Data Transfer Phase
Write Queue Precedence .

Read Queue Precedence .

10
134
135
135
136
137
140
140

141
142
142
145
147

Revision: 2.0.0 - Vi - August 20, 1991

Revision: 2.0.0 - vii - August 20, 1991

