
Call Control Interface (CCI) Specification

Published by:
OpenSS7 Corporation
1469 Jeffreys Crescent

Edmonton, AB T6L 6T1
Canada

Copyright © 2001-2003, OpenSS7 Corporation

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appears in all copies and that both the copyright notice and this
permission notice appear in supporting documentation, and that the name OpenSS7 Corporation not be used in
advertising or publicity pertaining to distribution of the software without specific, written permission. OpenSS7
Corporation makes no representation about the suitability of this documentation for any purpose. It is provided
"as is" without express or implied warranty.

OPENSS7 CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS DOCUMENTA-
TION INCLUDING ALL IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS. IN NO
EVENT SHALL OPENSS& CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSE-
QUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DAT A
OR PROFITS. WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS AC-
TION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS DOCU-
MENTATION.

NOTICE
OpenSS7 Corporation is making this documentation available as a reference point for the industry. While
OpenSS7 Corporation believes that these interfaces are well defined in this release of the document, minor
changes may be made prior to products conforming to the interfaces being made available.

TRADEMARKS:

UNIX ® is a trademark.

Call Control Interface (CCI) Abstract OpenSS7 Corporation

Abstract
This document specifies a Call Control Interface (CCI) Specification in support of the OpenSS7 Integrated Ser-

vice Digital Network (ISDN) and ISDN User Part (ISUP) protocol stacks.1 It provides abstraction of the call con-
trol interface to these components as well as providing a basis for call control for other call control signalling
protocols.

1 As a future extension to the interface, BSSAP will be supported.

$Revision: 0.8.2.2 $ Page i April 15, 2003

Call Control Interface (CCI) Preface OpenSS7 Corporation

Preface
Abstract

This document specifies a Call Control Interface (CCI) Specification in support of the OpenSS7 Integrated

Service Digital Network (ISDN) and ISDN User Part (ISUP) protocol stacks.2 It provides abstraction of
the call control interface to these components as well as providing a basis for call control for other call
control signalling protocols.

Intent This document is intended to provide information for writers of OpenSS7 Call Control Interface (CCI) ap-
plications as well as writers of OpenSS7 Call Control Interface (CCI) Users.

Target Audience
The target audience is developers and users of the OpenSS7 SS7 and ISDN stack.

Disclaimer
Although the author has attempted to ensure that the information in this document is complete and cor-
rect, neither the Author nor OpenSS7 Corporation will take any responsibility in it.

Revision History
Take care that you are working with a current version of this document: you will not be informed of up-
dates. For a current version, please see the source documentation at http://www.openss7.org/.

$Log: cci.me,v $
Revision 0.8.2.2 2003/03/23 19:56:50 brian
Finalizing isdn.

Revision 0.8.2.1 2003/02/21 12:00:35 brian
Updated primitive interface and Q.764 conformance.

Revision 0.8 2002/11/17 15:06:36 brian
Added initial documentation for call control interface.

2 As a future extension to the interface, BSSAP will be supported.

$Revision: 0.8.2.2 $ Page ii April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

1. Introduction
This document specifies a STREAMS-based kernel-level instantiation of the ITU-T Call Control Interface defini-
tion. The Call Control Interface (CCI) enables the user of a call control service to access and use any of a variety
of conforming call control service providers without specific knowledge of the provider’s protocol. The service
interface is designed to support any network call control protocol and user call control protocol. This interface
only specifies access to call control service providers, and does not address issues concerning call control and cir-
cuit management, protocol performance, and performance analysis tools. The specification assumes that the
reader is familiar with ITU-T state machines and call control interfaces (e.g., Q.764, Q.931), and STREAMS.

1.1. Related Documentation
• 1993 ITU-T Q.764 Recommendation

• 1993 ITU-T Q.931 Recommendation

• System V Interface Definition, Issue 2 − Volume 3

1.1.1. Role
This document specifies an interface that supports the services provided by the Integrated Services Digital Net-
work (ISDN) and ISDN User Part (ISUP) for ITU-T applications as described in ITU-T Recommendation Q.931

and ITU-T Recommendation Q.764.3 These specifications are targeted for use by developers and testers of proto-
col modules that require call control service.

1.2. Definitions, Acronyms, and Abbreviations

3 In a later version of this document BSSAP will also be supported.

$Revision: 0.8.2.2 $ Page 1 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

2. The Call Control Layer
The Call Control Layer provides the means to manage the connection and disconnection of calls. It is responsi-
ble for the routing and management of call control signalling between call control-user entities.

2.1. Model of the CCI
The CCI defines the services provided by the call control layer to the call control-user at the boundary between
the call control layer and the call control layer user entity. The interface consists of a set of primitives defined as
STREAMS messages that provide access to the call control layer services, and are transferred between the CCS
user entity and the CCS provider. These primitives are of two types; ones that originate from the CCS user, and
others that originate from the CCS provider. The primitives that originate from the CCS user make requests to
the CCS provider, or respond to an indication of an event of the CCS provider. The primitives that originate from
the CCS provider are either confirmations of a request or are indications to the CCS user that the event has oc-
curred. Figure 2-1 shows the model of the CCI.

Call Control User

Call Control Provider

Request/Response
Primitives

Indication/Confirmation
Primitives

Figure 2-1. Model of the CCI

The CCI allows the CCS provider to be configured with any call control layer user (such as an ISDN user call
control application) that also conforms to the CCI. A cal control layer user can also be a user program that con-
forms to the CCI and accesses the CCS provide via "putmsg" and "getmsg" system calls.

2.2. CCI Services
The features of the CCI are defined in terms of the services provided by the CCS provider, and the individual
primitives that may flow between the CCS user and the CCS provider.

The services supported by the CCI are based on three distinct modes of communication, user-network interface
(UNI) User mode, user-network interface (UNI) Network mode, and network-network interface (NNI). In addi-
tion, the CCI supports services for local management.

2.2.1. UNI
The main features of the User-Network Interface mode of communication are:

(1) It is call oriented.

(2) It employs facility associated signalling in that the signalling interface and circuits which are controlled
by that signalling interface are bound by physical configuration. (For example, 23B+D, 2B+D).

(3) The protocol has two aspects to the interface: one side of the interface follows the User protocol whereas
the other side of the interface follows the Network protocol.

(4) The user side of the protocol has no formal maintenance or monitoring procedures and therefore reports
most if not all system events to the user.

$Revision: 0.8.2.2 $ Page 2 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

(5) The network side of the protocol has formal maintenance and monitoring procedures and therefore re-
ports most if not all system events to maintenance.

2.2.1.1. Address Formats
Addresses specifying all the calls and channels known to the provider are specified with scope
ISDN_SCOPE_DF and identifier zero (0).

2.2.1.1.1. Customer/Provider Group
A customer/provider group has a different interpretation on the User and Network side of the call control inter-
face. In User mode, the provider group is a group of all equipment groups which are serviced by the same net-
work provider. In Network mode, the customer group is a group of all equipment groups to which the same ser-
vice is provided to the same customer by the network.

Customer/provider groups are identifier using a unique customer/provider group identifier within the CCS
provider. Addresses specifying all of the equipment groups in a customer/provider group and specified with
scope ISDN_SCOPE_XG and the customer/provider group identifier.

2.2.1.1.2. Equipment Group
An equipment group is a group of all transmission groups (B- and D-channels) terminating at the same location.
For User mode this corresponds to all the B- and D-channels terminating on the same network provider ex-
change. For Network mode this corresponds to all the B- and D-channels terminating on the same customer site.

Equipment groups are identified using a unique equipment group identifier within the CCS provider. Addresses
specifying al lof the B- and D-channels making up an equipment group are specified with scope
ISDN_SCOPE_EG and the equipment group identifier.

2.2.1.1.3. Facility Group
A facility group is a group of D-channels (data links) controlling a set of B-channels. This corresponds to the
signalling interface. For regular interfaces, a signalling relation consists of a single signalling interface. Where
multiple signalling interfaces are used to control the same range of channels (e.g. primary and backup interfaces),
all signalling interfaces belong to the same facility group.

The B-channels which make up a facility group are channels which share the same dial plan and routing charac-
teristics for telephone calls. A facility group is associated with an equipment group.

Facility groups are identified using a unique facility group identifier within the CCS provider. Addresses specify-
ing all of the channels in a facility group are specified with scope ISDN_SCOPE_FG and the facility group iden-
tifier.

An ISDN Channel Identifier is only unique within a facility group.

2.2.1.1.4. Transmission Group
A transmission group is the group of all D- and B-Channels associated with a given Q.931 signalling interface.
For example, a typical PRI interface would consist of 23B+D, where there is one signalling interface (the D-
Channel) with 23 B-Channels associated with the D-Channel. The 1 D-Channel and 23 B-Channels form a sin-
gle transmission group associated with the physical interface. Every D- or B-Channel belongs to one tranmis-
sion group and occupies a single time slot within that transmission group.

Transmission groups are identified using a unique transmission group identifier within the CCS provider. Ad-
dresses specifying all of the channels in a transmission group are specified with scope ISDN_SCOPE_TG and
the transmission group identifier. Transmission groups can also be specified using scope ISDN_SCOPE_FG and
the Channel Identifier of one of the channels in the facility group.

2.2.1.1.5. Channel
A channel refers to a specific B-Channel within a transmission and facility group.

$Revision: 0.8.2.2 $ Page 3 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Channels are identified using a unique channel identifier within the CCS provider. Addresses specifying a spe-
cific channel are specified with scope ISDN_SCOPE_CH and the channel identifier. Channels can also be speci-
fied using scope ISDN_SCOPE_FG, the facility group identifier, and the Channel Identity of the channel within
the facility group.

2.2.1.1.6. Data Link
A data link corresponds to a specific D-channel used for the control of channels. Data links can be grouped into
facility groups.

Data links are identified using a unique data link identifier within the CCS provider. Addresses specifying all of
the channels controlled by a data link are specified with scope ISDN_SCOPE_DL and the data link identifier.

Facility
Group

Tr ansmission
Group

Tr ansmission
Group

Tr ansmission
Group

Tr ansmission
Group

Facility
Group

Equipment
Group

Equipment
Group

Customer/
Provider
Group

Data Links Data LinksChannels Channels Channels Channels

Figure 2-2. UNI Data Model

2.2.2. NNI
The main features of the Network-Network Interface mode of communication are:

(1) It is circuit oriented.

(2) It employs quasi-associated signalling in that the path taken by signalling and the path taken by the cir-
cuits are not necessarily related.

(3) The protocol has one aspect and is peer-to-peer: that is, both sides of a signalling interface follow the
same protocol in the same way.

(4) The network side of the protocol has formal maintenance and monitoring procedures and therefore re-
ports most if not all system events to maintenance.

2.2.2.1. Address Formats
Addresses specifying all of the circuits known to the provider are specified with scope ISUP_SCOPE_DF and
identifier zero (0).

$Revision: 0.8.2.2 $ Page 4 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

2.2.2.1.1. Signalling Points
A signalling point is the SS7 signalling point (central office) that the provider represents. A CCS provider can
represent more than one signalling point.

A signalling point is identifier using a unique signalling point identifier within the CCS provider. Addresses
specifying all of the circuits in signalling point are specified with scope ISUP_SCOPE_SP and the signalling
point identifier.

2.2.2.1.2. Signalling Relations
A signalling relation is a relationship between a local signalling point and a remote signalling point. A signalling
relation consists of a single signalling interface.

Signalling relations are identified using a unique signalling relation identifier within the CCS provider. Ad-
dresses specifying all of the circuits in a signalling relation are specified with scope ISUP_SCOPE_SR and the
signalling relation identifier.

An ISUP Circuit Identification Code is only unique within a signalling relation.

2.2.2.1.3. Trunk Groups
A trunk group is a group of circuits which share the same routing characteristics for telephone calls. A trunk
group is associated with a signalling relation. For the NNI, a signalling relation is the combination of local MTP
Point Code and remote MTP Point Code.

A trunk group is identified using a unique trunk group identifier within the CCS provider. Addresses specifying
all of the circuits in a trunk group are specified with scope ISUP_SCOPE_TG and the trunk group identifier.

2.2.2.1.4. Circuit Groups
A circuit group is a group of circuits which share the same common transmission facility (e.g, E1 span) and is
therefore impacted by any failure of the transmission facility. All of the individual channels of an E1 span which
are used to carry calls are members of the circuit group.

Circuits groups are identified using a unique circuit group identifier within the CCS provider. Addresses specify-
ing all of the circuits within a circuit group are specified with scope ISUP_SCOPE_CG and the circuit group
identifier. Circuit groups can also be specified using scope ISUP_SCOPE_SR and the Circuit Identification Code
of one of the circuits within the circuit group.

2.2.2.1.5. Circuits
A circuit refers to a specific time slot within a digital facility.

Circuits are identified using a unique circuit identifier within the CCS provider. Addresses specifying a specific
circuit are specified with scope ISUP_SCOPE_CT and the circuit identifier. Circuits can also be specified using
scope ISUP_SCOPE_CG, the circuit group identifier, and the Circuit Identification Code of the circuit within the
group. Circuits can also be specified using scope ISUP_SCOPE_SR, the signalling relation identifier, and the
Circuit Identification Code of the circuit within the signalling relation.

$Revision: 0.8.2.2 $ Page 5 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Signalling
Point

Message
Tr ansfer

Part

Cicuit
Group

Tr unk
Group

Tr unk
Group

Tr unk
Group

Tr unk
Group

Circuit
Group

Signalling
Relation

Signalling
Relation

Message
Tr ansfer

Part

Circuits Circuits

Figure 2-3. NNI Data Model

2.2.3. Local Management
The CCI specifications also define a set of local management functions that apply to UNI and NNI modes of
communication. These services have local significance only. Tables 1, 2 and 3 summarizes the CCI service
primitives by their state and service.

$Revision: 0.8.2.2 $ Page 6 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3. CCI Services Definition
This section describes the services of the CCI primitives. Time-sequence diagrams that illustrate the sequence of
primitives are included. (Conventions for the time-sequence diagrams are defined in ITU-T X.210.) The format
of the primitives will be defined later in this document.

Table1. CCI Service Primitives

Local Management Both CC_INFO_REQ, CC_INFO_ACK, CC_BIND_REQ,
CC_BIND_ACK, CC_UNBIND_REQ, CC_ADDR_REQ, CC_AD-
DR_ACK, CC_OPTMGMT_REQ, CC_OPTMGMT_ACK,
CC_OK_ACK, CC_ERROR_ACK

Call Setup Both CC_SETUP_REQ, CC_SETUP_IND, CC_CALL_REAT-
TEMPT_IND, CC_MORE_INFO_REQ, CC_MORE_INFO_IND,
CC_INFORMATION_REQ, CC_INFORMATION_IND, CC_SET-
UP_RES, CC_SETUP_CON

UNI CC_INFO_TIMEOUT_IND
NNI CC_CONT_REPORT_REQ, CC_CONT_REPORT_IND

Call Establishment Both CC_PROCEEDING_REQ, CC_PROCEEDING_IND, CC_ALERT-
ING_REQ, CC_ALERTING_IND, CC_PROGRESS_REQ,
CC_PROGRESS_IND, CC_CONNECT_REQ, CC_CON-
NECT_IND

Call Established Both CC_SUSPEND_REQ, CC_SUSPEND_RES, CC_SUSPEND_IND,
CC_SUSPEND_CON, CC_RESUME_REQ, CC_RESUME_RES,
CC_RESUME_IND, CC_RESUME_CON

UNI CC_SUSPEND_REJECT_REQ, CC_SUSPEND_REJECT_IND,
CC_RESUME_REJECT_REQ, CC_RESUME_REJECT_IND

Call Termination Both CC_CALL_FAILURE_IND, CC_IBI_REQ, CC_IBI_IND, CC_RE-
LEASE_REQ, CC_RELEASE_IND, CC_RELEASE_RES, CC_RE-
LEASE_CON

UNI CC_DISCONNECT_REQ, CC_DISCONNECT_IND
Provider Management UNI CC_RESTART_REQ, CC_RESTART_CON

NNI CC_RESET_REQ, CC_RESET_IND, CC_RESET_RES, CC_RE-
SET_CON, CC_BLOCKING_REQ, CC_BLOCKING_IND,
CC_BLOCKING_RES, CC_BLOCKING_CON, CC_UNBLOCK-
ING_REQ, CC_UNBLOCKING_IND, CC_UNBLOCKING_RES,
CC_UNBLOCKING_CON, CC_QUERY_REQ, CC_QUERY_IND,
CC_QUERY_RES, CC_QUERY_CON
CC_CONT_CHECK_REQ, CC_CONT_CHECK_IND,
CC_CONT_TEST_REQ, CC_CONT_TEST_IND, CC_CONT_RE-
PORT_REQ, CC_CONT_REPORT_IND

$Revision: 0.8.2.2 $ Page 7 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3.1. Local Management Services Definition
The services defined in this section are outside the scope of international standards. These services apply to UNI
(User and Network), and NNI modes of communication. They are invoked for the initialization/de-initialization
of a stream connected to the CCS provider. They are also used to manage options supported by the CCS provider
and to report information on the supported parameter values.

3.1.1. Call Control Information Reporting Service
This service provides information on the options supported by the CCS provider.

• CC_INFO_REQ: This primitive request that the CCS provider return the values of all the supported protocol
parameters. This request may be invoked during any phase.

• CC_INFO_ACK: This primitive is in response to the N_INFO_REQ primitive and returns the values of the
supported protocol parameters to the CCS user.

The sequence of primitive for call control information management is shown in Figure 3-1.

CC_INFO_REQ

CC_INFO_ACK

Figure 3-1. Sequence of Primitives: Call Control Information Reporting Service

3.1.2. CCS Address Service
This service allows a CCS user to determine the bound call control address and the connected call control adress
for a given call reference associated with a stream. It permits the CCS user to not necessarily retain this informa-
tion locally, and allows the CCS user to determine this information from the CCS provider at any time.

• CC_ADDR_REQ: This primitive requests that the CCS provider return information concerning which call
control address the CCS user is bound as well as the call control address upon which the CCS user is cur-
rently engaged in a call for the specified call reference.

• CC_ADDR_ACK: This primitive is in response to the CC_ADDR_REQ primitive and indicates to the CCS
user the requested information.

The sequence of primitives is shown in Figure 3-2.

$Revision: 0.8.2.2 $ Page 8 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_ADDR_REQ

CC_ADDR_ACK

Figure 3-2. Sequence of Primitives: Call Control User Address Service

3.1.3. CCS User Bind Service
This service allows a call control address to be associated with a stream. It allows the CCS user to negotiate the
number of setup indications that can remain unacknowledged for that CCS user (a setup indication is considered
unacknowledged while it is awaiting a corresponding setup response or release request from the CCS user). This
service also defines a mechanism that allows a stream (bound to a call control address of the CCS user) to be re-
served to handle incoming calls only. This stream is referred to as the listener stream.

• CC_BIND_REQ: This primitive request that the CCS user be bound to a particular call control address and
negotiate the number of allowable outstanding setup indications for that address.

• CC_BIND_ACK: This primitive is in response to the CC_BIND_REQ primitive and indicates to the user
that the specified CCS user has been bound to a call control address.

The sequence of primitives is shown in Figure 3-3.

CC_BIND_REQ

CC_BIND_ACK

Figure 3-3. Sequence of Primitives: Call Control User Bind Service

3.1.4. CCS User Unbind Service
This service allows the CCS user to be unbound from a call control address.

• CC_UNBIND_REQ: This primitive request that the CCS user be unbound from the call control address that
it had previously been bound to.

The sequence of primitives is shown in Figure 3-4.

$Revision: 0.8.2.2 $ Page 9 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_UNBIND_REQ

CC_OK_ACK

Figure 3-4. Sequence of Primitives: Call Control User Unbind Service

3.1.5. Receipt Acknowledgment Service
• CC_OK_ACK: This primitive indicates to the CCS user that the previous (indicated) CCS user originated

primitive was received successfully by the CCS provider.

An example showing the sequence of primitives for successful receipt acknowledgment is depicted in Figure 3-5.

*

CC_OK_ACK

*
CC_SETUP_REQ
CC_SETUP_RES
CC_ALERTING_REQ
CC_PROCEEDING_REQ
CC_PROGRESS_REQ
CC_CONT_REPORT_REQ
CC_SETUP_COMPLETE_REQ
CC_RELEASE_REQ
CC_RELEASE_IND
CC_SUSPEND_REQ
CC_RESUME_REQ

Figure 3-5. Sequence of Primitives: Call Control Receipt Acknowledgment Service

3.1.6. Options Management Service
This service allows the CCS user to manage options parameter values associated wtih the CCS provider.

• CC_OPTMGMT_REQ: This primitive allows the CCS user to select default values for options parameters
within the range supported by the CCS provider.

Figure 3-6 shows the sequence of primitives for call control options management.

CC_OPTMGMT_REQ

CC_OK_ACK

Figure 3-6. Sequence of Primitives: Call Control Options Management Service

$Revision: 0.8.2.2 $ Page 10 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3.1.7. Error Acknowledgment Service
• CC_ERROR_ACK: This primitive indicates to the CCS user that a non-fatal error has occurred in the last

CCS user originated request or response primitive (listed in Figure 3-7), on the stream.

Figure 3-7 shows the sequence or primitives for the error management primitive.

*
CC_SETUP_REQ
CC_SETUP_RES
CC_PROCEEDING_REQ
CC_ALERTING_REQ
CC_PROGRESS_REQ
CC_CONT_REPORT_REQ
CC_MORE_INFO_REQ
CC_SETUP_COMPLETE_REQ
CC_SUSPEND_REQ
CC_RESUME_REQ
CC_RELEASE_REQ
CC_RELEASE_RES

REQ/RES Primitive *

CC_ERROR_ACK

Figure 3-7. Sequence of Primitives: Call Control Error Acknowledgment Service

$Revision: 0.8.2.2 $ Page 11 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3.2. User-Network Interface Services Definition
This section describes the required call control service primitives that define the UNI interface.

The queue model for UNI is discussed in more detail in ITU-T Q.931. For Q.931 specific conformance consider-
ations, see Addendum 1.

The queue model represents the operation of a call control connection in the abstract by a pair of queues linking
the two call control addresses. There is one queue for each direction of signalling transfer. The ability of a user
to add objects to a queue will be determined by the behavior of the user removing objects from that queue, and
the state of the queue. The pair of queues is considered to be available for each potential call. Objects that are
entered or removed from the queue are either as a result of interactions at the two call control addresses, or as the
result of CCS provider initiatives.

• A queue is empty until a setup object has been entered and can be returned to this state, with loss of its con-
tents, by the CCS provider.

• Objects may be entered into a queue as a result of the action of the source CCS user, subject to control by the
CCS provider.

• Objects may also be entered into a queue by the CCS provider.
• Objects are removed from the queue under the control of the receiving CCS user.
• Objects are normally removed under the control of the CCS user in the same order as they were entered ex-

cept:
• if the object is of a type defined to be able to advance ahead of the preceding object, or
• if the following object is defined to be destructive with respect to the preceding object on the queue. If

necessary, the last object on the queue will be deleted to allow a destructive object to be entered − they
will therefore always be added to the queue. For example, "release" objects are defined to be destructive
with respect to all other objects.

Table 3 shows the ordering relationship among the queue model objects.

$Revision: 0.8.2.2 $ Page 12 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_SETUP_REQ

CC_SETUP_IND

SETUP

CC_PROGRESS_REQ

CC_PROGRESS_IND CC_OK_ACK

CC_ALERTING_REQ

CC_ALERTING_IND CC_OK_ACK

CC_PROCEEDING_REQ

CC_PROCEEDING_IND CC_OK_ACK

CALL PROCEEDING

ALERTING

PROGRESS

CONNECT

CONNECT ACKNOWLEDGE

CC_OK_ACK

CC_SETUP_COMPLETE_IND

CC_CONNECT_REQ

CC_OK_ACK

CC_CONNECT_IND
CC_SETUP_COMPLETE_REQ

(Network Side Only)

(User Side Only)

CC_OK_ACK

CC_SETUP_RES

CC_SETUP_CON

CC_MORE_INFO_REQ

CC_MORE_INFO_IND
CC_INFORMATION_REQ

CC_INFORMATION_IND

CC_INFORMATION_REQ

CC_INFORMATION_IND

CC_OK_ACK

CC_OK_ACK

CC_OK_ACK

SETUP ACKNOWLEDGE

INFORMATION

INFORMATION

CONNECT
PROGRESS
ALERTING

CALL PROCEEDING

Figure 3-8. Sequence of Primitives: Call Control UNI Overview

3.2.1. Call Setup Phase
A pair of queues is associated with a call between two call control addresses (facility group and channel(s)) when
the CCS provider receives a CC_SETUP_REQ primitive at one of the call control addresses resulting in a setup
object being entered into the queue. The queues will remain associated with the call until a CC_RE-
LEASE_REQ or CC_RELEASE_IND (resulting in a release object) is either entered into or removed from a
queue. Similarly, in the queue from the called CCS user, objects can be entered into the queue only after the
setup object associated with the CC_SETUP_RES has been entered into the queue. Alternatively, the called CCS
user can enter a release object into the queue instead of the setup object to terminate the call.

$Revision: 0.8.2.2 $ Page 13 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

The call establishment procedure will fail if the CCS provider is unable to establish the call, or if the destination
CCS user is unable to accept the CC_SETUP_IND (see call failure and call reject primitive definitions).

3.2.1.1. User Primitives for Successful Call Setup
• CC_SETUP_REQ: This primitive requests that the CCS provider setup a call to the specified destination

(called party number).

• CC_MORE_INFO_REQ: This primitive requests that the CCS provider provide more information to estab-
lish the call. This primitive is not issued for en bloc signalling mode.

• CC_INFORMATION_REQ: This primitive requests that the CCS provider provide more information (dig-
its) in addition to the destination (called party number) already specified in the CC_SETUP_REQ and subse-
quent CC_INFORMATION_REQ primitives. This primitive is not issued for en block signalling mode.

• CC_SETUP_RES: This primitive requests that the CCS provider accept a previous call setup indication on
the specified stream.

3.2.1.2. Provider Primitives for Successful Call Setup
• CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that an event has caused

call setup to fail on the selected address and that a reattempt should be made (or has been made) on another
call control address (facility group and channel(s)). This primitive is only issued by the CCS provider if the
CCS user is bound at the channel level rather than the facility group or equipment group levels.

• CC_SETUP_IND: This primitive indicates to the CCS user that a call setup request has been made by a user
at the specified call control address (facility group and channel(s)).

• CC_MORE_INFO_IND: This primitive indicates to the CCS user that more information is required to es-
tablish the call. This primitive is not issued for en block signalling mode.

• CC_INFORMATION_IND: This primitive indicates to the CCS user more information (digits) in addition
to the destination (called party number) already indicated in the CC_SETUP_IND and subsequent CC_IN-
FORMATION_IND primitives. This primitive is not issued for en block signalling mode.

• CC_INFO_TIMEOUT_IND: This primitive indicates to the called CCS user that a timeout occurred while
waiting for additional information (called party number). The receiving CCS User should determine whether
sufficient address digits have been received and either disconnect the call with the CCS_DISCON-
NECT_REQ primitive or continue the call with CC_SETUP_RES. This primitive is not issued for en block
signalling mode.

• CC_SETUP_CON: This primitive indicates to the CCS user that a call setup request has been confirmed on
the indicated call control address (channel(s)).

The sequence of primitives in a successful call setup is defined by the time sequence diagram shown in Figure
3-9. The sequence of primitives for the call response token value determination is shown in Figure 3-10 (proce-
dures for call response token value determination are discussed in section 4.1.3 and 4.1.4.)

$Revision: 0.8.2.2 $ Page 14 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

SETUP

CC_SETUP_IND

CC_SETUP_REQ

CC_MORE_INFO_REQ
SETUP ACKNOWLEDGE

INFORMATION

CC_INFORMATION_IND

CC_MORE_INFO_IND
CC_INFORMATION_REQ
CC_INFORMATION_REQ

INFORMATION

CC_INFORMATION_IND

CC_INFO_TIMEOUT_IND

CC_SETUP_COMPLETE_IND

CONNECT

CC_SETUP_RES

CC_OK_ACK
CC_SETUP_COMPLETE_REQ

CC_OK_ACK

CC_SETUP_CON

CONNECT ACKNOWLEDGE

T302

Figure 3-9. Sequence of Primitives: Call Control Call Setup Service

CC_BIND_REQ

CC_BIND_ACK

(swith TOKEN_REQUEST set)

(returns cc_token_value)

Figure 3-10. Sequence of Primitives: Call Control Token Request Service

If the CCS provider is unable to establish a call, it indicates this to the request by a CC_CALL_REAT-
TEMPT_IND. This is shown in Figure 3-11.

$Revision: 0.8.2.2 $ Page 15 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_SETUP_REQ

CC_REATTEMPT_IND

Figure 3-11. Sequence of Primitives: Call Reattempt − CCS Provider

The sequence of primitives for call reattempt on dual seizure are shown in Figure 3-12.

CC_SETUP_REQ

CC_REATTEMPT_IND

CC_SETUP_REQ

CC_SETUP_IND

CC_SETUP_IND

CC_SETUP_CON

CC_SETUP_RES

CC_OK_ACK

SETUP

SETUP

CONNECT

Figure 3-12. Sequence of Primitives: Call Reattempt − Dual Seizure

3.2.2. Call Establishment Phase
During the call establishment phase, a pair of queues has already been associated with the call between the se-
lected call control addresses (facility group and channel(s)) during the setup phase.

3.2.2.1. User Primitives for Successful Call Establishment
• CC_PROCEEDING_REQ: This primitive requests that the CCS provider indicate to the call control peer

that the call is proceeding and that all necessary information has been received.

• CC_ALERTING_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the terminating user is being alerted.

• CC_PROGRESS_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the specified progress event has occurred.

• CC_IBI_REQ (CC_DISCONNECT_REQ): This primitive requests that the CCS provider indicate to the
call control peer that in-band information is now available. This will also invite the peer to release the call.

• CC_CONNECT_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the call has been connected.

• CC_SETUP_COMPLETE_REQ: This primitive request that the CCS provider complete the call setup.

3.2.2.2. Provider Primitives for Successful Call Establishment
• CC_PROCEEDING_IND: This primitive indicates to the CCS user that the call control peer is proceeding

and that all necessary information has been received.

$Revision: 0.8.2.2 $ Page 16 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

• CC_ALERTING_IND: This primitive indicates to the CCS user that the terminating user is being alerted.

• CC_PROGRESS_IND: This primitive indicates to the CCS user that the specified progress event has oc-
curred.

• CC_IBI_IND (CC_DISCONNECT_IND): This primitive indicates to the CCS user that in-band informa-
tion is now available. It also invites the CCS user to release the call.

• CC_CONNECT_IND: This primitive indicates to the CCS user that the call has been connected.

• CC_SETUP_COMPLETE_IND: This primitive indicates to the CCS user that the call has completed setup.

3.2.2.3. Provider Primitives for Successful Call Setup
The sequence of primitives in a successful call establishment is defined by the time sequence diagrams as shown
in Figure 3-13.

CC_PROGRESS_REQ

CC_PROGRESS_IND CC_OK_ACK

CC_ALERTING_REQ

CC_ALERTING_IND CC_OK_ACK

CC_PROCEEDING_REQ

CC_PROCEEDING_IND CC_OK_ACK

CALL PROCEEDING

ALERTING

PROGRESS

CC_IBI_REQ

CC_OK_ACK

DISCONNECT

CC_IBI_IND

CONNECT

CONNECT ACKNOWLEDGE

CC_OK_ACK

CC_SETUP_COMPLETE_IND

CC_CONNECT_REQ

CC_OK_ACK

CC_CONNECT_IND
CC_SETUP_COMPLETE_REQ

(Network Side Only)

(User Side Only)

Figure 3-13. Sequence of Primitives: Call Control Successful Call Establishment Service

3.2.3. Call Established Phase
Flow control of the call is done by management of the queue capacity, and by allowing objects of certain types to
be inserted to the queues, as shown in Table X.

3.2.3.1. Suspend Service

$Revision: 0.8.2.2 $ Page 17 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3.2.3.1.1. User Primitives for Suspend Service
• CC_SUSPEND_REQ: This primitives requests that the CCS provider temporarily suspend a call at the net-

work, or indicate user suspension of a call.

• CC_SUSPEND_RES: This primitive indicates to the CCS provider that the CCS user (Network) is accepting
the request for suspension of the call.

• CC_SUSPEND_REJECT_REQ: This primitive indicates to the CCS provider that the CCS user (Network)
is rejecting the request for suspension of the call, and the cause for rejection.

3.2.3.1.2. Provider Primitives for Suspend Service
• CC_SUSPEND_IND: This primitive indicates to the CCS user that an established call has been temporarily

suspended at the network, or by the remote user.

• CC_SUSPEND_CON: This primitive confirms to the requesting CCS user (User) that the call has been tem-
porarily suspended at the network.

• CC_SUSPEND_REJECT_IND: This primitive indicates to the requesting CCS user (User) that the request
to suspend the call has been rejected by the network, and the cause for rejection.

Figure 3-14 and -15 show the sequence of primitives for suspend service. The sequence of primitives may re-
main incomplete if a CC_RESET or a CC_RELEASE primitive occurs.

The sequence of primitives to suspend a call is defined in the time sequence diagram as shown in Figure 3-14 and
Figure 3-15.

CC_SUSPEND_IND

CC_OK_ACK

CC_SUSPEND_REQ

CC_SUSPEND_RES

CC_SUSPEND_CON

SUSPEND

SUSPEND ACKNOWLEDGE

Figure 3-14. Sequence of Primitives: Call Control Network Suspend Service: Successful

CC_SUSPEND_IND

CC_OK_ACK

CC_SUSPEND_REQ

CC_SUSPEND_REJECT_REQ

CC_SUSPEND_REJECT_IND

SUSPEND

SUSPEND REJECT

Figure 3-15. Sequence of Primitives: Call Control Network Suspend Service: Unsuccessful

$Revision: 0.8.2.2 $ Page 18 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_SUSPEND_IND

CC_SUSPEND_REQ
NOTIFY

CC_SUSPEND_CON
CC_SUSPEND_RES

Figure 3-16. Sequence of Primitives: Call Control User Suspend Service

3.2.3.2. Resume Service

3.2.3.2.1. User Primitives for Resume Service
• CC_RESUME_REQ: This primitive request that the CCS provider resume a previously network suspended

call, or indicates that the user has resumed a call.

• CC_RESUME_RES: This primitive indicates to the CCS provider that the CCS user (Network) is accepting
the request for resumption of the call.

• CC_RESUME_REJECT_REQ: This primitive indicates to the CCS provider that the CCS user (Network)
is rejecting the request for resumption of the call, and the cause for rejection.

3.2.3.2.2. Provider Primitives for Resume Service
• CC_RESUME_IND: This primitive indicates to the CCS user that a previously suspended call has been re-

sumed at the network, or by the remote user.

• CC_RESUME_CON: This primitive confirms to the requesting CCS user (User) that the call has been re-
sumed at the network.

• CC_RESUME_REJECT_IND: This primitive indicates to the requesting CCS user (User) that the request
to resume the call has been rejected by the network, and the cause for rejection.

Figure 3-17 and -18 show the sequence of primitives for resume service. The sequence of primitives may remain
incomplete if a CC_RESET or a CC_RELEASE primitive occurs.

The sequence of primitives to resume a call is defined in the time sequence diagram as shown in Figure 3-17 and
Figure 3-18.

CC_RESUME_IND

CC_OK_ACK

CC_RESUME_REQ

CC_RESUME_RES

CC_RESUME_CON

RESUME

RESUME ACKNOWLEDGE

Figure 3-17. Sequence of Primitives: Call Control Resume Service: Successful

$Revision: 0.8.2.2 $ Page 19 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_RESUME_IND

CC_OK_ACK

CC_RESUME_REQ

CC_RESUME_REJECT_REQ

CC_RESUME_REJECT_IND

RESUME

RESUME REJECT

Figure 3-18. Sequence of Primitives: Call Control Resume Service: Unsuccessful

CC_RESUME_IND

CC_RESUME_REQ
NOTIFY

CC_RESUME_CON
CC_RESUME_RES

Figure 3-19. Sequence of Primitives: Call Control User Resume Service

The sequence of primitives as shown above may remain incomplete if a CC_RESET or CC_RELEASE primitive
occurs (see Table 3). A CCS user must not issue a CC_RESUME_REQ primitive if no CC_SUSPEND_REQ has
been sent previously. Following a reset procedure (CC_RESET_REQ or CC_RESET_IND), a CCS user may not
issue a CC_RESUME_REQ to resume a call suspended before the reset procedure was signaled.

3.2.4. Call Termination Phase

3.2.4.1. Call Reject Service

3.2.4.1.1. User Primitives for Call Reject Service
• CC_REJECT_REQ: This primitive indicates that the CCS user receiving the specified CC_SETUP_IND re-

quests that the specified call indication be rejected.

3.2.4.1.2. Provider Primitives for Call Reject Service
• CC_REJECT_IND: This primitive indicates to the calling CCS user that the call has been rejected.

The sequence of events for rejecting a call setup attempt at the UNI is defined in the time sequence diagram
shown in Figure 3-20.

$Revision: 0.8.2.2 $ Page 20 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_SETUP_IND

CC_OK_ACK

CC_SETUP_REQ

CC_REJECT_REQ

CC_REJECT_IND

SETUP

RELEASE COMPLETE

Figure 3-20. Sequence of Primitives: Rejecting a Call Setup

3.2.4.2. Call Failure Service

3.2.4.2.1. Provider Primitives for Call Failure Service
• CC_CALL_FAILURE_IND: This primitive indicates to the called CCS user that an event has caused the

call to fail and indicates the reason for the failure and the cause value associated with the failure. The CCS
user is required to release the call using the indicated cause value in a CC_DISCONNECT_REQ primitive.

The sequence of events for error indications is described in the time sequence diagram shown in Figure 3-21.

CC_CALL_FAILURE_IND

CC_DISCONNECT_REQ

CC_DISCONNECT_IND

DISCONNECT

DL_ESTABLISH_CON
STATUS

RESTART

Figure 3-21. Sequence of Primitives: Call Failure

3.2.4.3. Call Release Service
The call release procedure is initialized by the insertion of a release object (associated with a CC_DISCON-
NECT_REQ, CC_RELEASE_REQ, or CC_REJECT_REQ) in the queue. As shown in Table 3, the release pro-
cedure is destructive with respect to other objects in the queue, and eventually results in the emptying of queues
and termination of the call.

The Release procedure invokes the following interactions:

A. A CC_DISCONNECT_REQ from the CCS user, followed by a CC_RELEASE_IND from the CCS
provider and a subsequent CC_RELEASE_RES from the CCS user; or

B. A CC_DISCONNECT_IND from the CCS provider, followed by a CC_RELEASE_REQ from the
CCS user and a subsequent CCS_RELEASE_CON from the CCS provider.

The sequence of primitive depends on the origin of the release action. The sequence may be:

$Revision: 0.8.2.2 $ Page 21 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

(1) invoked by the CCS user, with a request from that CCS user, leading to interaction (A) with that CCS
user and interaction (B) with the peer CCS user;

(2) invoked by both CCS users, with a request from each of the CCS users, leading to interaction (A) with
both CCS users;

(3) invoked by the CCS provider, leading to interaction (B) with both CCS users.

(4) invoked independently by one CCS user and the CCS provider, leading to interaction (A) with the origi-
nating CCS user and (B) with the peer CCS user.

3.2.4.3.1. User Primitives for Release Service
• CC_DISCONNECT_REQ: This primitive request that the CCS provider disconnect the B-Channel or indi-

cate tones and announcements present. Tones and announcements should be requested in the CC_IBI_REQ
primitive rather than the CC_DISCONNECT_REQ primitive.

• CC_RELEASE_REQ: This primitive requests that the CCS provider disconnect the B-Channel (if not al-
ready disconnected) and release the call reference.

• CC_RELEASE_RES: This primitive indicates to the CCS provider that the CCS user has accepted a release
indication and has released the call reference.

3.2.4.3.2. Provider Primitives for Release Service
• CC_DISCONNECT_IND: Thi primitive indicates that the remote CCS user or provider has disconnected

the B-Channel or has made tones and announcements available. The CCS provider should indicate tones and
announcements present only with the CC_IBI_IND primitive rather than the CC_DISCONNECT_IND primi-
tive.

• CC_RELEASE_IND: This primitive indicates that the remote CCS has disconnected the B-Channel and re-
leased the call reference.

• CC_RELEASE_CON: This primitive confirms that the remove CCS has disconnected the B-Channel and
released the call reference.

The sequence of primitives as shown in Figure 3-22, -23, -24, and -25 may remain incomplete if a
CC_RESTART primitive occurs.

A CCS user can release a call establishment attempt by issuing a CC_DISCONNECT_REQ. The sequence of
ev ents is shown in Figure 3-22, -23, -24, and -25.

CC_DISCONNECT_IND

CC_DISCONNECT_REQ
DISCONNECT

CC_RELEASE_REQ

CC_RELEASE_IND

RELEASE

CC_RELEASE_RES

CC_OK_ACK

RELEASE COMPLETE

CC_RELEASE_CON

Figure 3-22. Sequence of Primitives: CCS User Invoked Release

$Revision: 0.8.2.2 $ Page 22 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_DISCONNECT_REQ CC_DISCONNECT_REQ

DISCONNECT

RELEASE

CC_RELEASE_CON CC_RELEASE_CON

Figure 3-23. Sequence of Primitives: Simultaneous CCS User Invoked Release

CC_DISCONNECT_IND

CC_RELEASE_CON

CC_DISCONNECT_IND

CC_RELEASE_CON

RELEASE

DISCONNECT

CC_RELEASE_REQCC_RELEASE_REQ

Figure 3-24. Sequence of Primitives: CCS Provider Invoked Release

CC_DISCONNECT_IND

CC_DISCONNECT_REQ

CC_RELEASE_CON

DISCONNECT

CC_RELEASE_REQ

RELEASE

CC_RELEASE_CON

Figure 3-25. Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release

3.2.5. Call Management

3.2.5.1. User Primitives for Call Management
• CC_RESTART_REQ: This primitive requests the CCS provider to restart all the call control addresses (sig-

nalling interface and channels) for the UNI interface.

$Revision: 0.8.2.2 $ Page 23 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3.2.5.2. Provider Primitives for Call Management
• CC_RESTART_CON: This primitive confirms to the requesting CCS user that all call control addresses

(signalling interface and channels) for the UNI interface have been restarted and all calls are in the
CCS_IDLE state.

• CC_MAINT_IND: This primitive indicates to CCS user that various events have occurred requiring mainte-
nance notification (e.g., restart indication).

$Revision: 0.8.2.2 $ Page 24 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3.3. Network-Network Interface Services Definition
This section describes the required call control service primitives that define the NNI interface.

The queue model for NNI is discussed in more detail in ITU-T Q.764. For Q.764 specific conformance consider-
ations, see Addendum 2. For ETSI EN 300 356-1 V3.2.2 specific conformance considerations, see Addendum 3.

IAM

CC_SETUP_REQ

CC_SETUP_IND
CC_MORE_INFO_REQ

CC_INFORMATION_REQ
CC_INFORMATION_REQ

CC_OK_ACK
CC_OK_ACK

SAM

SAM

CC_INFORMATION_IND
CC_INFORMATION_IND
CC_SETUP_RES

CC_OK_ACK
CC_PROCEEDING_REQ

CC_OK_ACK
CC_ALERTING_REQ

CC_OK_ACK
CC_PROGRESS_REQ

CC_OK_ACK
CC_IBI_REQ

CC_OK_ACK
CC_CONNECT_REQ

CC_OK_ACK

CON
CPG
ACM

CC_SETUP_CON

CC_PROCEEDING_IND

ACM/CPG

ACM

ACM/CPG

ACM/CPG

CON/ANM

CC_ALERTING_IND

CC_PROGRESS_IND

CC_IBI_IND

CC_CONNECT_IND

CC_MORE_INFO_IND

Figure 3-26. Sequence of Primitives: Call Control NNI Overview

3.3.1. Call Setup Phase
A pair of queues is associated with a call between the two call control addresses when the CCS provider receives
a CC_SETUP_REQ primitive at one of the call control addresses resulting in a setup object being entered into
the queue. The queues will remain associated with the call until a CC_RELEASE_REQ (resulting in a release
object) is either entered into or removed from a queue. Similarly, in the queue from the called CCS user, objects
can be entered into the queue only after the setup object associated with the CC_SETUP_RES has been entered
into the queue. Alternatively, the called CCS user can enter a release object into the queue instead of the setup
object to terminate the call.

$Revision: 0.8.2.2 $ Page 25 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

The call establishment procedure will fail if the CCS provider is unable to establish the call, or if the destination
CCS user is unable to accept the CC_SETUP_IND (see call release primitive definition).

3.3.1.1. User Primitives for Successful Call Setup
• CC_SETUP_REQ: This primitive requests that the CCS provider setup a call to the specified destination

(called party address).

• CC_MORE_INFO_REQ: This primitive requests that the CCS provider provide more information to estab-
lish the call. This primitive is not issued for en block signalling mode.

• CC_INFORMATION_REQ: This primitive requests that the CCS provider provide more information (dig-
its) in addition to the destination (called party number) already specified in the CC_SETUP_REQ and subse-
quent CC_INFORMATION_REQ primitives. This primitive is not issued for en block signalling mode.

• CC_SETUP_RES: This primitive requests that the CCS provider accept a previous call setup indication on
the specified stream.

3.3.1.2. Provider Primitives for Successful Call Setup
• CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that an event has caused

call setup to fail on the selected address and that a reattempt should be made (or has been made) on another
call control address (signalling interface and circuit(s)). This primitive is only issued by the CCS provider if
the CCS user is bound at the circuit level rather than the circuit group or trunk group level.

• CC_SETUP_IND: This primitive indicates to the CCS user that a call setup request has been made by a user
at the specified call control address (circuit(s)).

• CC_MORE_INFO_IND: This primitive indicates to the CCS user that more information is required to es-
tablish the call. This primitive is not issued for en block signalling mode.

• CC_INFORMATION_IND: This primitive indicates to the CCS user more information (digits) in addition
to the destination (called party number) already indicated in the CC_SETUP_IND and subsequent CC_IN-
FORMATION_IND primitives. This primitive is not issued for en block signalling mode.

• CC_INFO_TIMEOUT_IND: This primitive indicates to the called CCS user that a timeout occurred while
waiting for additional information (called party number). The receiving CCS User should determine whether
sufficient address digits have been received and either disconnect the call with the CCS_DISCON-
NECT_REQ primitive or continue the call with CC_SETUP_RES.

• CC_SETUP_CON: This primitive indicates to the CCS user that a call setup request has been confirmed on
the indicated call control address (circuits(s)).

The sequence of primitives in a successful call setup is defined by the time sequence diagrams as shown in Figure
3-27 and Figure 3-28. The sequence of primitives for the call response token value determination is shown in
Figure 3-29 (procedures for call response token value determination are discussed in section 4.1.3 and 4.1.4.)

Figure 3-27. Sequence of Primitives: Call Control Call Setup Service: En Bloc Sending

$Revision: 0.8.2.2 $ Page 26 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

IAM

CC_SETUP_IND

CC_SETUP_REQ

CC_MORE_INFO_REQ

SAM

CC_INFORMATION_IND

CC_INFORMATION_REQ
CC_INFORMATION_REQ

SAM

CC_INFORMATION_IND

CC_INFO_TIMEOUT_IND

CC_SETUP_COMPLETE_IND

CON

CC_SETUP_RES

CC_OK_ACK
CC_SETUP_COMPLETE_REQ

CC_OK_ACK

CC_SETUP_CON

T11

CC_MORE_INFO_IND

(no message)

(no message)

CC_OK_ACK
CC_OK_ACK

Figure 3-28. Sequence of Primitives: Call Control Call Setup Service: Overlap Sending

CC_BIND_REQ

CC_BIND_ACK

(swith TOKEN_REQUEST set)

(returns cc_token_value)

Figure 3-29. Sequence of Primitives: Call Control Token Request Service

If the CCS provider is unable to establish a call, it indicates this to the request by a CC_CALL_REAT-
TEMPT_IND. This is shown in Figure 3-30.

$Revision: 0.8.2.2 $ Page 27 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_SETUP_REQ

CC_REATTEMPT_IND

Figure 3-30. Sequence of Primitives: Call Reattempt − CCS Provider

The sequence of primitives for call reattempt on dual seizure are shown in Figure 3-31.

CC_SETUP_REQ

CC_REATTEMPT_IND

CC_SETUP_REQ

CC_SETUP_IND

CC_SETUP_IND

CC_SETUP_CON

CC_SETUP_RES

CC_OK_ACK

IAN

IAM

CON

Figure 3-31. Sequence of Primitives: Call Reattempt − Dual Seizure

3.3.2. Continuity Test Phase
The continuity test service is only applicable to the NNI.

During the continuity test phase, a pair of queues has already been associated with the call between the selected
call control addresses (signalling interface and circuit(s)) during the setup phase. The continuity test phase be-
gins when the CCS provider returns a CC_CONT_TEST_IND primitive in response to a CC_SETUP_REQ
primitive which had the ISUP_NCI_CONT_CHECK_REQUIRED flag set in the call flags. The continuity test
phase also begins when the CCS user responds with a CC_CONT_TEST_REQ primitive in response to a
CC_SETUP_IND primitive which had the ISUP_NCI_CONT_CHECK_REQUIRED flag set in the call flags.

Upon entering the continuity test phase, it is the responsibility of the CCS user to establish a loop back on the
call control address (signalling interface and circuit(s)) or to attach tone generation and detection devices to the
call control address (signalling interface and circuit(s)).

3.3.2.1. Continuity Test Successful

3.3.2.1.1. User Primitives for Successful Continuity Test
• CC_SETUP_REQ: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, requests that

the CCS provider setup a call and include a continuity check before the call is established.

• CC_CONT_CHECK_REQ: This primitive requests that the CCS provider perform a continuity check on
the specified call control address (signalling interface and circuit(s)). This primitive is only necessary for per-
forming continuity checks that are not in conjunction with a call.

$Revision: 0.8.2.2 $ Page 28 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

• CC_CONT_TEST_REQ: This primitive requests that the CCS provider accept an outstanding call setup in-
dication. When the CCS_SETUP_IND had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it indi-
cates to the CCS provider that the necessary loop back device has been install on the call control address (sig-
nalling interface and circuit(s)).

• CC_CONT_REPORT_REQ: This primitive requests that the CCS provider indicate to the remote CCS user
that the continuity test has succeeded (cc_result is set to ISUP_COT_SUCCESS).

3.3.2.1.2. Provider Primitives for Successful Continuity Test
• CC_SETUP_IND: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, indicates to

the CCS user that a call setup including a continuity check is requested.

• CC_CONT_CHECK_IND: This primitive indicates to the CCS user that a continuity check was requested
on the specified call control address (signalling interface and circuit(s)). This primitive is only necessary for
performing continuity checks that are not in conjunction with a call.

• CC_CONT_TEST_IND: This primitive indicates that the remote CCS user has accepted a call setup indica-
tion on the specified call control address (signalling interface and circuit(s)). When the CC_SETUP_IND
primitive had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it indicates to the CCS user that the nec-
essary loop back device has been installed on the remote end of the call control address (signalling interface
and circuit(s)). The CCS user receiving this primitive must attach the necessary tone generation and detec-
tion devices to the circuit(s) and perform the continuity test.

• CC_CONT_REPORT_IND: This primitive indicates to the CCS user that the continuity test was successful.

The sequence of primitives in a successful continuity test associated with call setup when continuity check is re-
quired on the circuit(s) is defined by the time sequence diagrams as shown in Figure 3-32.

(depending on protocol, the
CC_CONT_TEST_IND might be

returned from the local
CCS provider)

IAM(with ISUP_NCI_CONT_CHECK_REQUIRED)
CC_SETUP_REQ

(establish loopback)

CC_SETUP_IND
(with ISUP_NCI_CONT_CHECK_REQUIRED)

CC_CONT_TEST_REQ
LPA

(apply tone and check continuity)
CC_CONT_TEST_IND

SAM

CC_INFORMATION_REQ

CC_OK_ACK CC_INFORMATION_IND

CC_INFORMATION_REQ

CC_OK_ACK

SAM

CC_INFORMATION_IND

CC_CONT_REPORT_REQ

CC_OK_ACK

COT

CC_CONT_REPORT_IND
(remove loopback)

LPA

CC_SETUP_RES

CC_SETUP_CON

(success)

Figure 3-32. Sequence of Primitives: Call Setup Continuity Test Service: Required: Successful

The sequence of primitives in a successful continuity test associated with call setup when continuity check is be-
ing performed on a previous circuit is defined by the time sequence diagrams as shown in Figure 3-33.

$Revision: 0.8.2.2 $ Page 29 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

(with ISUP_NCI_CONT_CHECK_PREVIOUS)
CC_SETUP_IND

IAM

CC_SETUP_REQ
(with ISUP_NCI_CONT_CHECK_PREVIOUS)

CC_SETUP_RES
CC_CONT_REPORT_IND

COT

CC_CONT_REPORT_REQ

CC_OK_ACK

CC_OK_ACK CC_INFORMATION_IND

CC_INFORMATION_REQ
CC_INFORMATION_REQ

CC_OK_ACK

SAM

CC_INFORMATION_IND

SAM

CON

CC_SETUP_CON

(success)

Figure 3-33. Sequence of Primitives: Call Setup Continuity Test Service: Previous: Successful

The sequence of primitives in a successful continuity test not associated with call setup is defined by the time se-
quence diagrams as shown in Figure 3-34.

CC_CONT_CHECK_REQ

CC_CONT_CHECK_IND
(establish loopback)

CCR

(apply tone and check continuity)

LPA

CC_CONT_TEST_IND

CC_CONT_TEST_REQ

(depending on protocol, the
CC_CONT_CHECK_CON might be

returned from the local
CCS provider)

REL(success)
CC_RELEASE_REQ

CC_RELEASE_IND

RLC

CC_RELEASE_RES

CC_RELEASE_CON

(remove loopback)

Figure 3-34. Sequence of Primitives: Continuity Test Service: Successful

$Revision: 0.8.2.2 $ Page 30 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3.3.2.2. Continuity Test Unsuccessful

3.3.2.2.1. User Primitives for Unsuccessful Continuity Test
• CC_SETUP_REQ: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, requests that

the CCS provider setup a call and include a continuity check before the call is established.

• CC_CONT_TEST_REQ: This primitive requests that the CCS provider accept an outstanding call setup in-
dication. When the CCS_SETUP_IND had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it also in-
dicates to the CCS provider that the necessary loop back device has been install on the call control address
(signalling interface and circuit(s)).

• CC_CONT_REPORT_REQ: This primitiive requests that the CCS provider indicate to the remote CCS
user that the continuity test has failed (cc_result is set to ISUP_COT_FAILURE).

3.3.2.2.2. Provider Primitives for Unsuccessful Continuity Test
• CC_SETUP_IND: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, indicates to

the CCS user that a call setup including a continuity check is requested.

• CC_CONT_TEST_IND: This primitive indicates that the remote CCS user has accepted a call setup indica-
tion on the specified call control address (signalling interface and circuit(s)). When the CC_SETUP_IND
primitive had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it indicates to the CCS user that the nec-
essary loop back device hass been installed on the remote end of the call control address (signalling interface
and circuit(s)). The CCS user receiving this primitive must attach the necessary tone generation and detec-
tion devices to the circuit(s) and perform the continuity test.

• CC_CONT_REPORT_IND: This primitive indicates to the CCS user that the continuity test failed.

• CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that the continuity test
failed and that a reattempt should be made (or has been made) on another call control address (signalling in-
terface and circuit(s)). This primitive is only issued by the CCS provider if the CCS user is bound at the cir-
cuit level rather than the circuit group or trunk group level.

The sequence of primitives for an unsuccessful continuity test associated with a call setup is defined by the time
sequence diagrams as shown in Figure 3-35.

$Revision: 0.8.2.2 $ Page 31 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_SETUP_IND
(on a different circuit)

IAM

CC_SETUP_IND

IAM

CC_SETUP_REQ
(with ISUP_NCI_CONT_CHECK_REQUIRED)

(with ISUP_NCI_CONT_CHECK_REQUIRED)
(establish loopback)

CC_CONT_REPORT_REQ

CC_OK_ACK CC_CONT_REPORT_IND

CC_CALL_REATTEMPT_IND

COT
(failure)

(failure)

(apply tone and check continuity)

LPA

CC_CONT_TEST_IND
(depending on protocol, the

returned from the local
CCS provider)

CC_CONT_TEST_IND might be

CC_CONT_TEST_REQ

CC_SETUP_REQ
(with ISUP_NCI_CONT_CHECK_REQUIRED)

Figure 3-35. Sequence of Primitives: Call Setup Continuity Test Service: Unsuccessful

The sequence of primitives for an unsuccessful continuity test not associated with a call setup is defined by the
time sequence diagrams as shown in Figure 3-36.

CC_CONT_CHECK_REQ

CC_CONT_CHECK_IND
(establish loopback)

CCR

CC_CONT_REPORT_IND
(remove loopback)

CC_OK_ACK

CC_CONT_REPORT_REQ
COT

(apply tone and check continuity)

LPA

CC_CONT_TEST_IND

CC_CONT_TEST_REQ

(depending on protocol, the
CC_CONT_CHECK_CON might be

returned from the local
CCS provider)

(failure)

(failure)

Figure 3-36. Sequence of Primitives: Continuity Test Service: Unsuccessful

3.3.3. Call Establishment Phase
During the call establishment phase, a pair of queues has already been associated with the call between the se-
lected call control addresses (signalling interface and circuit(s)) during the setup phase. The call establishment

$Revision: 0.8.2.2 $ Page 32 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

phase begins when the CCS provider returns a CC_SETUP_CON primitive (or receives a CC_CONT_RE-
PORT_REQ primitive) in response to a CC_SETUP_REQ primitive (which had the
ISUP_NCI_CONT_CHECK_REQUIRED flag set). The call establishment phase also begins when the CCS user
responds with a CC_SETUP_RES primitive (or receives a CC_CONT_REPORT_IND primitive) in response to a
CC_SETUP_IND primitive (which had the ISUP_NCI_CONT_CHECK_REQUIRED flag set).

Upon entering the call establishment phase, it is the responsibility of the CCS user to remove any loop back from
the call control address (signalling interface and circuit(s)) or to remove tone generation and detection devices
from the call controll address (signalling interface and circuit(s)).

3.3.3.1. User Primitives for Successful Call Establishment
• CC_PROCEEDING_REQ: This primitive requests that the CCS provider indicate to the call control peer

that the call is proceeding.

• CC_ALERTING_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the terminating user is being alerted.

• CC_PROGRESS_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the specified progress event has occurred.

• CC_IBI_REQ: This primitive requests that the CCS provider indicate to the call control peer that interwork-
ing has been encountered and in-band information is now available. This will also inform the peer CCS user
that no connect indication is pending.

• CC_CONNECT_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the call has been connected.

• CC_SETUP_COMPLETE_REQ: This primitive requests that the CCS provider complete the call setup.
This primitive is used in NNI mode for interworking with UNI mode.

3.3.3.2. Provider Primitives for Successful Call Establishment
• CC_PROCEEDING_IND: This primitive indicates to the CCS user that the call control peer is proceeding.

• CC_ALERTING_IND: This primitive indicates to the CCS user that the terminating user is being alerted.

• CC_PROGRESS_IND: This primitive indicates to the CCS user that the specified progress event has oc-
curred.

• CC_IBI_IND: This primitive indicates to the CCS user that interworking has been encountered and in-band
information is now available. It also indicates to the CCS user that no connect indication is pending.

• CC_CONNECT_IND: This primitive indicates to the CCS user that the call has been connected.

• CC_SETUP_COMPLETE_IND: This primitive indicates to the CCS user that the call has completed setup.
This primitive is used in NNI mode for interworking with UNI mode.

The sequence of primitives in a successful call establishment is defined by the time sequence diagrams as shown
in Figure 3-37.

$Revision: 0.8.2.2 $ Page 33 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_IBI_REQ

CC_IBI_IND

CC_PROGRESS_IND

CC_PROGRESS_REQ

CC_ALERTING_IND

CC_ALERTING_REQ

CC_PROCEEDING_IND

CC_PROCEEDING_REQ

CC_OK_ACK

CC_OK_ACK

CC_OK_ACK

CC_OK_ACK

ACM

ACM/CPG

CPG

ACM/CPG

CC_OK_ACK

CC_CONNECT_REQ
ANM/CON

CC_CONNECT_IND

Figure 3-37. Sequence of Primitives: Call Control Successful Call Establishment Service

3.3.4. Call Established Phase
Flow control of the call is done by management of the queue capacity, and by allowing objects of certain types to
be inserted to the queues, as shown in Table X.

3.3.4.1. User Primitives for Established Calls
• CC_SUSPEND_REQ: This primitives requests that the CCS provider temporarily suspend a call.

• CC_RESUME_REQ: This primitive request that the CCS provider resume a previously suspended call.

3.3.4.2. Provider Primitives for Established Calls
• CC_SUSPEND_IND: This primitive indicates to the CCS user that an established call has been temporarily

suspended.

• CC_RESUME_IND: This primitive indicates to the CCS user that a previously suspended call has been re-
sumed.

Figure 3-38 shows the sequence of primitives for suspension and resumption of established calls. The sequence
of primitives may remain incomplete if a CC_RESET or a CC_RELEASE primitive occurs. The sequence of
primitives to successfully suspend and resume a call is defined in the time sequence diagram as shown in Figure
3-38.

$Revision: 0.8.2.2 $ Page 34 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

SUS

CC_SUSPEND_IND

CC_SUSPEND_REQ

CC_OK_ACK

RES

CC_RESUME_IND

CC_RESUME_REQ

CC_OK_ACK

Figure 3-38. Sequence of Primitives: Call Control Suspend and Resume Service

The sequence of primitives as shown above may remain incomplete if a CC_RESET or CC_RELEASE primitive
occurs (see Table 3). A CCS user must not issue a CC_RESUME_REQ primitive if no CC_SUSPEND_REQ has
been sent previously. Following a reset procedure (CC_RESET_REQ or CC_RESET_IND), a CCS user may not
issue a CC_RESUME_REQ to resume a call suspended before the reset procedure was signaled.

3.3.5. Call Termination Phase

3.3.5.1. Call Reject Service

3.3.5.1.1. User Primitives for Call Reject Service
• CC_REJECT_REQ: This primitive indicates that the CCS user receiving the specified CC_SETUP_IND re-

quests that the specified call indication be rejected.

3.3.5.1.2. Provider Primitives for Call Reject Service
• CC_REJECT_IND: This primitive indicates to the calling CCS user that the call has been rejected.

The sequence of events for rejecting a call setup attempt at the NNI is defined in the time sequence diagram
shown in Figure 3-39.

IAM

REL

CC_SETUP_IND

CC_SETUP_REQ

CC_REJECT_REQ

CC_REJECT_IND
RLC

Figure 3-39. Sequence of Primitives: CCS User Rejection of a Call Setup Attempt

3.3.5.2. Call Failure Service
The call error procedure is indicated by the removal of a reattempt or failure object (associated with a local event)
from the queue. The error procedure is destructive with respect to other objects in the queue, and eventually re-
sults in the emptying of queues and termination of the call.

$Revision: 0.8.2.2 $ Page 35 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

3.3.5.2.1. Provider primitives for the Call Failure Service
• CC_CALL_FAILURE_IND: This primitive indicates to the CCS user that an event has caused the call to

fail and indicates the reason for the failure and the cause value associated with the failure. The CCS user is
required to immediately disconnect the circuit(s) and release the call on any previous legs using the indicated
cause value in the primitive.

The sequence of primitives for call failure are shown in Figure 3-40.

Unexpected Message
Timeout

BLO/CGB/RSC/GRS

CC_CALL_FAILURE_IND

exchanged automatically.)
(Other messages are possibly

Figure 3-40. Sequence of Primitives: Call Failure

3.3.5.3. Call Release Service
The call release procedure is initialized by the insertion of a release object (associated with a CC_RE-
LEASE_REQ) into the queue. As shown in Table 3, the release procedure is destructive with respect to other ob-
jects in the queue, and eventually results in the emptying of queues and termination of the call.

The release procedure invokes the following interactions:

A. a CC_RELEASE_REQ from the CCS user, followed by a CC_RELEASE_CON from the CCS provider; or

B. A CC_RELEASE_IND from the CCS provider, followed by a CC_RELEASE_REQ from the CCS user.

The sequence of primitives depends on the origin of the release action. The sequence may be:

(1) invoked by one CCS user, with a request from that CCS user, leading to interaction (A) with that CCS
user and interaction (B) with the peer CCS user;

(2) invoked by both CCS users, with a request from each of the CCS users, leading to interaction (A) with
both CCS users;

(3) invoked by the CCS provider, leading to interaction (B) with both CCS users;

(4) invoked independently by on CCS user and the CCS provider, leading to interaction (A) with the origi-
nating CCS user and (B) with the peer CCS user.

3.3.5.3.1. User primitives for the Release Service
• CC_RELEASE_REQ: This primitive request that the CCS provider release the call.

• CC_RELEASE_RES: This primitive indicates to the CCS provider that the CCS user has accepted a release
indication.

3.3.5.3.2. Provider primitives for the Release Service
• CC_RELEASE_IND: This primitive indicates to the CCS user that the call has been released.

• CC_RELEASE_CON: This primitive indicates to the CCS user that the release request has been confirmed.

The sequence of primitives as shown in Figure 3-41, -42, -43, and -44 may remain incomplete if a CC_RESET
primitive occurs.

$Revision: 0.8.2.2 $ Page 36 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

A CCS user can release a call establishment attempt by issuing a CC_RELEASE_REQ. The sequence of events
is shown in Figure 3-41, -42, -43, and -44.

REL

RLC

CC_RELEASE_IND

CC_OK_ACK

CC_RELEASE_REQ

CC_RELEASE_RES

CC_RELEASE_CON

Figure 3-41. Sequence of Primitives: CCS User Invoked Release

CC_RELEASE_REQCC_RELEASE_REQ

REL

RLC

CC_RELEASE_CONCC_RELEASE_CON

Figure 3-42. Sequence of Primitives: Simultaneous CCS User Invoked Release

CC_RELEASE_IND

REL

CC_CALL_FAILURE_IND

CC_OK_ACK

CC_RELEASE_RES
RLC

Figure 3-43. Sequence of Primitives: CCS Provider Invoked Release

$Revision: 0.8.2.2 $ Page 37 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_RELEASE_REQ
CC_CALL_FAILURE_IND

REL

RLCCC_RELEASE_IND

Figure 3-44. Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release

3.3.6. Circuit Management Services

3.3.6.1. Reset Service
The reset service is used by the CCS user or management to resynchronize the use of the call, or by the CCS
provider to report detected loss of a unrecoverable call.

The reset service is only applicable to the NNI.

The reset procedure invokes the following interactions:

A. a CC_RESET_REQ from the CCS user, followed by a CC_RESET_CON from the CCS provider; or

B. a CC_RESET_IND from the CCS provider, followed by a CC_RESET_RES from the CCS user.

The complete sequence of primitives depends upon the origin of the reset action. The reset service may be:

(1) invoked by one CCS user, leading to interaction (A) with that CCS user and interaction (B) with the peer
CCS user.

(2) invoked by both CCS users, leading to interaction (A) with both CCS users;

(3) invoked by the CCS provider, leading to interaction (B) with both CCS users;

(4) invoked by one CCS user and the CCS provider, leading to interaction (A) with the originating CCS user
and (B) with the peer CCS user.

3.3.6.1.1. User Primitives for Reset Service
• CC_RESET_REQ: This primitive requests that the CCS provider reset the specified call control address (cir-

cuit or circuit group).

• CC_RESET_RES: This primitive indicates to the CCS provider that the CCS user has accepted a reset indi-

cation and has performed local reset of the specified call control address (circuit or circuit group).4

3.3.6.1.2. Provider Primitives for Reset Service
• CC_RESET_IND: This primitive indicates to the CCS user that the user should reset the specified call con-

trol address (circuit or circuit group).

• CC_RESET_CON: This primitive indicates to the CCS user that the specified call control address (circuit or
circuit group) has been successfully reset by the peer.

The sequence of primitives are shown in Figure 3-45, -46, -47, and -48.

4 Note that the CC_RESET_RES primitive is not required and is only provided for completeness. The CCS provider is allowed to ac-
knowledge the reset request to the peer CCS user upon receipt of the necessary protocol messages. This permits automatic completion of the
reset service at the receiving CCS provider without he presence or involvement of a management entity associated with the receiving provider.

$Revision: 0.8.2.2 $ Page 38 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_RESET_IND

CC_OK_ACK

CC_RESET_REQ

CC_RESET_RES

CC_RESET_CON

RSC/GRS

RLC/GRA

Figure 3-45. Sequence of Primitives: CCS User Invoked Reset5

CC_RESET_REQCC_RESET_REQ

RLC/GRA

RSC/GRS

CC_RESET_CON CC_RESET_CON

Figure 3-46. Sequence of Primitives: Simultaneous CCS User Invoked Reset6

CC_RESET_IND

CC_OK_ACK

CC_RESET_RES

CC_RESET_IND

CC_OK_ACK

CC_RESET_RES

RSC

RLC

Figure 3-47. Sequence of Primitives: CCS Provider Invoked Reset7

5 Note that in Figure 3-45 additional primitives may be issued by the CCS provider to a CCS call control user if a CCS call control user is
engaged in a call.

6 Note that in Figure 3-46 additional primitives may be issued by the CCS provider to a CCS call control user if a CCS call control user is
engaged in a call.

7 Note that in Figure 3-47 additional primitives may be issued by the CCS provider to a CCS call control user if a CCS call control user is
engaged in a call.

$Revision: 0.8.2.2 $ Page 39 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_RESET_IND

CC_RESET_REQ

RSC

CC_OK_ACK

CC_RESET_RESRLC

CC_RESET_CON

Figure 3-48. Sequence of Primitives: Simultaneous CCS user and CCS Provider Invoked

Reset8

3.3.6.2. Blocking Service
The blocking service is used by the CCS user or management to effect local maintenance or hardware blocking
on circuits, or by the CCS provider to indicate to CCS user or management the remote maintenance or hardware
blocking of circuits.

The blocking service is only applicable to the NNI.

The blocking service provides for the local and remote blocking of call control addresses (signalling interface
and circuit or circuit group) either for maintenance oriented or hardware failure purposes.

Blocking should only be invoked from streams which are listening on a circuit group which include the circuits
for which blocking is requested, or the CC_DEFAULT_LISTENER. Maintenance blocking will also only be in-
dicated on streams which are listening on circuit group which include the circuits for which blocking is re-
quested, or in the absence of such a stream, the CC_DEFAULT_LISTENER. When no stream is available to re-
port maintenance blocking indications, the indication should be responded to by the CCS provider without user
or management indication.

3.3.6.2.1. User Primitives for Blocking Service
• CC_BLOCKING_REQ: This primitive requests that the specified call control address(es) (signalling inter-

face and circuit or circuit group) be locally blocked either for maintenance oriented or hardware failure pur-
poses.

• CC_BLOCKING_RES: This primitive accepts a request and indicates the call control address(es) (circuit or

circuit group) that were remotely blocked for maintenance oriented or hardware failure purposes.9

3.3.6.2.2. Provider Primitives for Blocking Service
• CC_BLOCKING_IND: This primitive indicates that the CCS user has requested that the specified call con-

trol address(es) (signalling interface and circuit or circuit group) be remotely blocked either for maintenance
oriented or hardware failure purposes.

8 Note that in Figure 3-48 additional primitives may be issued by the CCS provider to a CCS call control user if a CCS call control user is
engaged in a call.

9 Note that the CC_BLOCKING_RES primitive is not required and is only provided for completeness. The CCS provider is allowed to
acknowledge the blocking request to the peer CCS user upon receipt of the necessary protocol messages. This permits automatic completion of
the blocking service at the receiving CCS provider without he presence or involvement of a management entity associated with the receiving
provider.

$Revision: 0.8.2.2 $ Page 40 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

• CC_BLOCKING_CON: This primitive indicates that the remote CCS user has confirmed the specified call
control address(es) (signalling interfaces and circuit or circuit group) as locally blocked either for mainte-
nance oriented or hardware failure purposes

The sequence of primitives are shown in Figure 3-49.

CC_BLOCKING_IND

CC_OK_ACK

CC_BLOCKING_REQ

CC_BLOCKING_RES

CC_BLOCKING_CON

BLO/CGB

BLA/CGBA

Figure 3-49. Sequence of Primitives: Successful Blocking Service

3.3.6.3. Unblocking Service
The unblocking service is only applicable to the NNI.

The unblocking service provides for the local and remote unblocking of call control addresses (signalling inter-
face and circuit or circuit group) either for maintenance oriented or hardware failure purposes.

3.3.6.3.1. User Primitives for Unblocking Service
• CC_UNBLOCKING_REQ: This primitive requests that the specified call control address(es) (signalling in-

terfaces and circuit or circuit groups) be locally unblocked either for maintenance oriented or hardware fail-
ure purposes.

• CC_UNBLOCKING_RES: This primitive accepts a request and indicates the call control address(es) (cir-

cuit or circuit group) that were remotely unblocked for maintenance oriented or hardware failure purposes.10

3.3.6.3.2. Provider Primitives for Unblocking Service
• CC_UNBLOCKING_IND: This primitive indicates that the CCS user has requested that the specified call

control address(es) (signalling interface and circuit or circuit group) be remotely blocked either for mainte-
nance oriented or hardware failure purposes.

• CC_UNBLOCKING_CON: This primitive indicates that the remote CCS user has confirmed the specified
call control address(es) (signalling interfaces and circuit or circuit group) as locally unblocked either for
maintenance oriented or hardware failure purposes.

The sequence of primitives are shown in Figure 3-50.

10 Note that the CC_UNBLOCKING_RES primitive is not required and is only provided for completeness. The CCS provider is allowed
to acknowledge the unblocking request to the peer CCS user upon receipt of the necessary protocol messages. This permits automatic comple-
tion of the unblocking service at the receiving CCS provider without he presence or involvement of a management entity associated with the re-
ceiving provider.

$Revision: 0.8.2.2 $ Page 41 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_UNBLOCKING_IND

CC_OK_ACK

CC_UNBLOCKING_REQ

CC_UNBLOCKING_RES

CC_UNBLOCKING_CON

UBL/CGU

UBA/CGUA

Figure 3-50. Sequence of Primitives: Successful Unblocking Service

3.3.6.4. Query Service
The query service is only applicable to the NNI.

The query service provides for the query of the remote state and blocking level of call control addresses (sig-
nalling interface and circuit group).

3.3.6.4.1. User Primitives for Query Service
• CC_QUERY_REQ: This primitive request that the specified call control address(es) (signalling interfaces

and circuit group) be queried for remote state and blocking level.

• CC_QUERY_RES: This primitive accepts a request and indicates the local state and blocking level for the

previously requested specified call control addresses (circuit group).11

3.3.6.4.2. Provider Primitives for Query Service
• CC_QUERY_IND: This primitive indicates that the CCS user has requested that the local state and blocking

level for the call control address(es) (signalling interface and circuit group).

• CC_QUERY_CON: This primitive indicates that the remote CCS user has confirmed the specified call con-
trol addresses (signalling interface and circuit group) and has returned the remote state and blocking level for
each address.

The sequence of primitives are shown in Figure 3-51.

11 Note that the CC_QUERY_RES primitive is not required and is only provided for completeness. The CCS provider is allowed to ac-
knowledge the query request to the peer CCS user upon receipt of the necessary protocol messages. This permits automatic completion of the
query service at the receiving CCS provider without he presence or involvement of a management entity associated with the receiving provider.

$Revision: 0.8.2.2 $ Page 42 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_QUERY_IND

CC_OK_ACK

CC_QUERY_REQ

CC_QUERY_RES

CC_QUERY_CON

CQM

CQR

Figure 3-51. Sequence of Primitives: Successful Query Service

$Revision: 0.8.2.2 $ Page 43 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4. CCI Primitives
This section describes the format and parameters of the CCI primitives (Appendix A shows the mapping of CCI
primitives fo the primitives defined in Q.931 and Q.764). In addition, it discusses the states the primitive is valid
in, the resulting state, and the acknowledgment that the primitive expects. (The state/event tables for these primi-
tives are shown in Appendix B. The precedence tables for the CCI primitives are shown in Appendix C.) Rules
for ITU-T conformance are described in Addendum 1 to this document.

Tables 5, 6, and 7 provide a summary of the CCS primitives and their parameters.

4.1. Management Primitives
These primitives apply to UNI (User and Network) and NNI.

4.1.1. Call Control Information Request

CC_INFO_REQ
This primitive request the CCS provider to return the values of all supported protocol parameters (see under
CC_INFO_ACK) , and also the current state of the CCS provider (as defined in Appendix B). This primitive
does not affect the state of the CCS provider and does not appear in the state tables.

Format
The format of the message is one M_PCPROT O message block and its structure is as follows:

typedef struct CC_info_req {
ulong cc_primitive; /* always CC_INFO_REQ */

} CC_info_req_t;

Parameters
cc_primitive: Indicates the primitive type.

Valid States
This primitive is valid in any state where a local acknowledgment is not pending.

New State
The new state remains unchanged.

Acknowledgments
This primitive requires the CCS provider to generate one of the following acknowledgments upon receipt of the
primitive:

• Successful: Acknowledgment of the primitive via the CC_INFO_ACK primitive.
• Non-fatal errors: There are no errors associated with the issuance of this primitive.

$Revision: 0.8.2.2 $ Page 44 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.2. Call Control Information Acknowledgment

CC_INFO_ACK
This primitive indicates to the CCS user any relevant protocol-dependent parameters. It should be initiated in re-
sponse to the CC_INFO_REQ primitive described above.

Format
The format of this message is one M_PCPROT O message block and its structure is as follows:

typedef struct CC_info_ack {
ulong cc_primitive; /* always CC_INFO_ACK */
/* FIXME ... more ... */

} CC_info_ack_t;

Parameters
The above fields have the following meaning:

cc_primitive: Indicates the primitive type.

Flags

Valid States
This primitive is valid in any state in response to a CC_INFO_REQ primitive.

New State
The state remains the same.

$Revision: 0.8.2.2 $ Page 45 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.3. Protocol Address Request

CC_ADDR_REQ
This primitive requests that the CCS provider return information concerning the call control addresses upon
which the CCS user is bound or engage in a call.

The format of the message is one M_PROT O message block and its structure is as follows:

typedef struct CC_addr_req {
ulong cc_primitive; /* always CC_ADDR_REQ */
ulong cc_call_ref; /* call reference */

} CC_addr_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference for which to obtain the connected address.

Valid States This primitive is valid in any state.

New State The new state is CCS_WACK_AREQ.

Rules
• If the call reference is specified as zero (0), then no connected address information will be returned in the

CC_ADDR_ACK.

Acknowledgments
The CCS provider will generate on of the following acknowledgments upon receipt of the CC_ADDR_REQ
primitive:

• Successful: Correct acknowledgment of the primitive is indicated via the CC_ADDR_ACK primitive.
• Unsuccessful (Non-fatal errors): These errors will be indicated via the CC_ERROR_ACK primitive. The

applicable non-fatal errors are as follows:

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 46 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.4. Protocol Address Acknowledgment

CC_ADDR_ACK
This primitive acknowledges the corresponding request primitive and is used by the CCS provider to return infor-
mation concerning the bound and connected protocol addresses for the stream.

The format of the message is one M_PROT O message block and its structure is as follows:

typedef struct CC_addr_ack {
ulong cc_primitive; /* always CC_ADDR_ACK */
ulong cc_bind_length; /* length of bound address */
ulong cc_bind_offset; /* offset of bound address */
ulong cc_call_ref; /* call reference */
ulong cc_conn_length; /* length of connected address */
ulong cc_conn_offset; /* offset of connected address */

} CC_addr_ack_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_bind_length: Indicates the length of the bound call control address.

cc_bind_offset: Indicates the offset of the bound call control address.

cc_call_ref: Indicates the call reference for the connected call control address.

cc_conn_length: Indicates the length of the connected call control address.

cc_conn_offset: Indicates the offset of the connected call control address.

Valid State
This primitive is valid in state CC_WACK_AREQ.

New State
The new state is the state previous to the CC_ADDR_REQ.

Rules
• If the requesting stream is not bound to a call control address, the CCS provider will code the cc_bind_length

and cc_bind_offset fields to zero. Otherwise, the CCS provider will return the same call control address that
was returned in the CC_BIND_ACK.

• If the requesting stream is not connected to a call, the CCS provider will code the cc_conn_length and
cc_conn_offset fields to zero. Otherwise, the CCS provider will indicate the call control address (circuit)
upon which the call is connected.

$Revision: 0.8.2.2 $ Page 47 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.5. Bind Protocol Address Request

CC_BIND_REQ
This primitive requests that the CCS provider bind a CCS user entity to a call control address (circuit, circuit
group) and negotiate the number of setup indications allowed to be outstanding by the CCS provider for the spec-
ified CCS user entity being bound.

Format
The format of the message is one M_PROT O message block and its structure is as follows:

typedef struct CC_bind_req {
ulong cc_primitive; /* always CC_BIND_REQ */
ulong cc_addr_length; /* length of address */
ulong cc_addr_offset; /* offset of address */
ulong cc_setup_ind; /* req # of setup inds to be queued */
ulong cc_bind_flags; /* bind options flags */

} CC_bind_req_t;
/* Flags associated with CC_BIND_REQ */
#define CC_DEFAULT_LISTENER 0x000000001UL
#define CC_TOKEN_REQUEST 0x000000002UL
#define CC_MANAGEMENT 0x000000004UL
#define CC_TEST 0x000000008UL
#define CC_MAINTENANCE 0x000000010UL

Parameters
cc_primitive: Is the primitive type.

cc_addr_length: Is the length in bytes of the call control (circuit, circuit group) address to be bound to
the stream.

cc_addr_offset: Is the offset from the beginning of the M_PROT O block where the call control (circuit,
circuit group) address begins.

cc_setup_ind: Is the requested number of setup indications (simultaneous incoming calls) allowed to
be outstanding by the CCS provider for the specified protocol address. (If the number of
outstanding setup indications equals cc_setup_ind, the CCS provider need not discard
further incoming setup indications, but may choose to queue them internally until the
number of outstanding setup indications drops below the cc_setup_ind number.) Only
one stream per call control address is allowed to have a cc_setup_ind number value
greater than zero. This indicates to the CCS provider that this stream is the listener
stream for the CCS user. This stream will be used by the CCS provider for setup indica-
tions for that call control address.

if a stream is bound as a listener stream, it is still able to initiate outgoing call setup re-
quests.

cc_bind_flags: See "Flags" below.

Flags
CC_DEFAULT_LISTENER:

When set, this flag specifies that this stream is the "default listener stream." This stream
is used to pass setup indications (or continuity check requests) for all incoming calls that
contain protocol identifiers that are not bound to any other listener, or when a listener
stream with cc_setup_ind value of greater than zero is not found. Also, the default lis-
tener will receive all incoming call indications that contain no user data (i.e., test calls)
and all maintenance indications (i.e., CC_MAINT_IND). Only one default listener
stream is allowed per occurrence of CCI. An attempt to bind a default listener stream
when one is already bound should result in an error (of type CCADDRBUSY).

$Revision: 0.8.2.2 $ Page 48 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_TOKEN_REQUEST:
When set, this flag specifies to the CCS provider that the CCS user has requested that a
"token" be assigned to the stream (to be used in the call response message), and the to-
ken value be returned to the CCS user via the CC_BIND_ACK primitive. The token as-
signed by the CCS provider can then be used by the CCS user in a subsequent
CC_SETUP_RES primitive to identify the stream on which the call is to be established.

CC_MANAGEMENT: When set, this flag specifies to the CCS provider that this stream is to be used for circuit
management indications for the specified addresses.

CC_TEST: When set, this flag specifies to the CCS provider that this stream is to be used for conti-
nuity and test call indications for the specified addresses.

CC_MAINTENANCE: When set, this flag specifies to the CCS provider that this stream is to be used for main-
tenance indications for the specified addresses.

Valid States
This primitive is valid in state CCS_UNBND (see Appendix B).

New State
The new state is CCS_WACK_BREQ.

Acknowledgments
The CCS provider will generate one of the following acknowledgments upon receipt of the CC_BIND_REQ
primitive:

• Successful: Correct acknowledgment of the primitive is indicated via the CC_BIND_ACK primitive.
• Non-fatal errors: These errors will be indicated via the CC_ERROR_ACK primitive. The applicable non-

fatal errors are as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADADDR: The call control address was in an incorrect format or the address contained illegal
information. It is not intended to indicate protocol errors.

CCNOADDR: The CCS user did not provide a call control address and the CCS provider could not
allocate an address to the user.

CCADDRBUSY: The CCS user attempted to bind a second stream to a call control address with the
cc_setup_ind number set to a non-zero value, or attempted to bind a second stream
with the CC_DEFAULT_LISTENER flag value set to non-zero.

CCBADFLAG: The flags were invalid or unsupported, or the combination of flags was invalid. This
error is returned if more than one of CC_TEST, CC_MANAGEMENT, or
CC_MAINTENANCE flags are set.

CCBADPRIM: The primitive format was incorrect (i.e. too short).

CCACCESS: The user did not have proper permissions.

$Revision: 0.8.2.2 $ Page 49 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.6. Bind Protocol Address Acknowledgment

CC_BIND_ACK
This primitive indicates to the CCS user that the specified call control user entity has been bound to the requested
call control address and that the specified number of connect indications are allowed to be queued by the CCS
provider for the specified network address.

Format
The format of the message is one M_PCPROT O message block, and its structure is the following:

typedef struct CC_bind_ack {
ulong cc_primitive; /* always CC_BIND_ACK */
ulong cc_addr_length; /* length of address */
ulong cc_addr_offset; /* offset of address */
ulong cc_setup_ind; /* setup indications */
ulong cc_token_value; /* setup response token value */

} CC_bind_ack_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_addr_length: Is the length of the call control address that was bound.

cc_addr_offset: Is the offset from the beginning of the M_PCPROT O block where the call control ad-
dress begins.

cc_setup_ind: Is the accepted number of setup indications allowed to be outstanding by the CCS
provider for the specified call control address. If its value is zero, this stream cannot ac-
cept CC_SETUP_IND messages. If its value is greater than zero, then the CCS user can
accept CC_SETUP_IND messages up to the value specified in this parameter before
having to respond with a CC_SETUP_RES or a CC_DISCON_REQ message.

cc_token_value: Conveys the value of the "token" assigned to this stream that can be used by the CCS
user in a CC_SETUP_RES primitive to accept a call on this stream. It is a non-zero
value, and is unique to all streams bound to the CCS provider.

The proper alignment of the address in the M_PCPROT O message block is not guaranteed.

Rules
The following rules apply to the binding of the specified call control address to the stream:

• If the cc_addr_length field in the CC_BIND_REQ primitive is zero, then the CCS provider is to assign a call
control address to the user.

• The CCS provider is to bind the call control address as specified in the CC_BIND_REQ primitive. If the CCS
provider cannot bind the specified address, it may assign another call control address to the user. It is the call
control user’s responsibility to check the call control address returned in the CC_BIND_ACK primitive to see
if it is the same as the one requested.

The following rules apply to negotiating cc_setup_ind argument:

• The cc_setup_ind number in the CC_BIND_ACK primitive must be less than or equal to the corresponding
requested number as indicated in the CC_BIND_REQ primitive.

• Only one stream that is bound to the indicated call control address may have a negotiated accepted number of
maximum setup indications greater than zero. If a CC_BIND_REQ primitive specifies a value greater than
zero, but another stream has already bound itself to the given call control address with a value greater than
zero, the CCS provider should assign another protocol address to the user.

• If a stream with cc_setup_ind number greater than zero is used to accept a call, the stream will be found busy
during the duration of that call and no other streams may be bound to that call control address with a
cc_setup_ind number greater than zero. This will prevent more than one stream bound to the identical call

$Revision: 0.8.2.2 $ Page 50 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

control address from accepting setup indications.
• A stream requesting a cc_setup_ind number of zero should always be legal. This indicates to the CCS

provider that the stream is to be used to request call setup only.
• A stream with a negotiated cc_setup_ind number greater than zero may generate setup requests or accept

setup indications.

If the above rules result in an error condition, then the CCS provider must issue a CC_ERROR_ACK primitive to
the CCS user specifying the error as defined in the description of the CC_BIND_REQ primitive.

Valid States
This primitive is in response to a CC_BIND_REQ primitive and is valid in the state CCS_WACK_BREQ.

New State
The new state is CCS_IDLE.

$Revision: 0.8.2.2 $ Page 51 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.7. Unbind Protocol Address Request

CC_UNBIND_REQ
This primitive request that the CCS provider unbind the CCS user entity that was previously bound to the call
control address.

Format
The format of the message is one M_PROT O block, and its structure is as follows:

typedef struct CC_unbind_req {
ulong cc_primitive; /* always CC_UNBIND_REQ */

} CC_unbind_req_t;

Parameters
cc_primitive: Indicates the primitive type.

Valid States
This primitive is valid in the CCS_IDLE state.

New State
The new state is CCS_WACK_UREQ.

Acknowledgments
This primitive requires the CCS provider to generate the following acknowledgments upon receipt of the primi-
tive:

• Successful: Correct acknowledgment of the primitive is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): These errors will be indicated via the CC_ERROR_ACK primitive. The

applicable non-fatal errors are as follows:

CCOUTSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 52 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.8. Call Processing Options Management Request

CC_OPTMGMT_REQ
This primitive allows the CCS user to manage the call processing parameter values associated with the stream.

Format
The format of the message is one M_PROT O message block, and its structure is as follows:

typedef struct CC_optmgmt_req {
ulong cc_primitive; /* always CC_OPTMGMT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* length of option values */
ulong cc_opt_offset; /* offset of option values */
ulong cc_opt_flags; /* option flags */

} CC_optmgmt_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference for which to manage options.

cc_opt_length: Specifies the length of the default values of the options parameters as selected by the
CCS user. These values will be used in subsequent CC_SETUP_REQ primitives on the
stream that do not specify values for these options. If the CCS user cannot determine
the value of an option, it value should be set to CC_UNKNOWN. If the CCS user does
not specify any option paramter values, the length of this field should be set to zero.

cc_opt_offset: Specifies the offset of the options parameters from the beginning of the M_PROT O mes-
sage block.

cc_opt_flags: See "Flags" below.

Flags

Valid States
This primitive is valid in the CCS_IDLE state.

New State
The new state is CCS_WACK_OPTREQ.

Acknowledgments
The CC_OPTMGMT_REQ primitive requires the CCS provider to generate one of the following acknowledg-
ments upon receipt of the primitive:

• Successful: Acknowledgment is via the CC_OK_ACK primitive. At successful completions, the resulting
state is CCS_IDLE.

• Non-fatal errors: These errors are indicated in the CC_ERROR_ACK primitive. The resulting state remains
unchanged. The applicable non-fatal errors are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADOPT: The option parameter values specified are outside the range supported by the CCS
provider.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The flags were invalid or unsupported, or the combination of flags was invalid.

$Revision: 0.8.2.2 $ Page 53 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADPRIM: The primitive format was incorrect (i.e. too short).

CCACCESS: The user did not have proper permissions.

$Revision: 0.8.2.2 $ Page 54 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.9. Call Processing Options Management Acknowledgment

CC_OPTMGMT_ACK
This primitive allows the CCS user to manage the call processing parameter values associated with the stream.

Format
The format of the message is one M_PCPROT O message block, and it structure is as follows:

typedef struct CC_optmgmt_ack {
ulong cc_primitive; /* always CC_OPTMGMT_ACK */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* length of option values */
ulong cc_opt_offset; /* offset of option values */
ulong cc_opt_flags; /* option flags */

} CC_optmgmt_ack_t;

Parameters

Flags

Valid States
This primitive is valid in any state.

New State
The new state is unchanged.

Acknowledgments

$Revision: 0.8.2.2 $ Page 55 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.10. Error Acknowledgment

CC_ERROR_ACK
This primitive indicates to the CCS user that a non-fatal error has occurred in the last CCS user originated primi-
tive. This may only be initiated as an acknowledgment for those primitives that require one. It also indicates to
the user that no action was taken on the primitive that caused the error.

Format
The format of the mssage is one M_PCPROT O message block, and its structure is as follows:

typedef struct CC_error_ack {
ulong cc_primitive; /* always CC_ERROR_ACK */
ulong cc_error_primitive; /* primitive in error */
ulong cc_error_type; /* CCI error code */
ulong cc_unix_error; /* UNIX system error code */
ulong cc_state; /* current state */
ulong cc_call_ref; /* call reference */

} CC_error_ack_t;

Parameters
cc_primitive: Identifies the primitive type.

cc_error_primitive: Identifies the primitive type that cause the error.

cc_error_type: Contains the Call Control Interface error code.

cc_unix_error: Contains the UNIX system error code. This may only be non-zero if the cc_error_type
is equal to CCSYSERR.

cc_state: Identifies the state of the interface at the time that the CC_ERROR_ACK primitive was
issued by the CCS provider.

cc_call_ref: Identifies the CCS provider or CCS user call reference associated with the request or re-
sponse primitive that was in error. If no call reference is associated with the request or
response primitive that caused the error, this field is coded zero (0) by the CCS provider.

Valid Error Codes
The following error codes are allows to be returned:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADADDR: The call control address as specified in the primitive was in an incorrect format, or the
address contained illegal information.

CCBADDIGS: The digits provided in the called party number or subsequent number specified in the
primitive are of an incorrect format or are invalid.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they con-
tained illegal information.

CCNOADDR: The CCS provider could not allocate an address.

CCADDRBUSY: The CCS provider could not use the specified address because the specified address is
already in use.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADTOK: Token used is not associated with an open stream.

CCBADFLAG: The flags specified in the primitive were incorrect or illegal.

CCNOTSUPP: Specified primitive type is not known to the CCS provider.

$Revision: 0.8.2.2 $ Page 56 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out of range).

CCACCESS: The user did not have proper permissions.

Valid States
This primitive is valid in all states that have a pending acknowledgment or confirmation.

New State
The new stat is the same as the one from which the acknowledged request or response was issued.

$Revision: 0.8.2.2 $ Page 57 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.1.11. Successful Receipt Acknowledgments

CC_OK_ACK
The primitive indicates to the CCS user that the previous call control user originated primitive was received suc-
cessfully by the call control provider. It does not indicate to the CCS user any call control protocol action taken
due to the issuance of the last primitive. The CC_OK_ACK primitive may only be initiated as an acknowledg-
ment for those user-originated primitives that have no other means of confirmation.

Format
The format of the message is one M_PCPROT O message block, and its structure is as follows:

typedef struct CC_ok_ack {
ulong cc_primitive; /* always CC_OK_ACK */
ulong cc_correct_prim; /* primitive being acknowledged */
ulong cc_state; /* current state */
ulong cc_call_ref; /* call reference */

} CC_ok_ack_t;

Parameters
cc_primitive: Identifies the primitive.

cc_correct_prim: Identifies the successfully received primitive type.

cc_state: Identifies the state of the interface at the time that the CC_OK_ACK primitive was is-
sued by the CCS provider.

cc_call_ref: Identifies the CCS provider or CCS user call reference associated with the request or re-
sponse primitive that was in error. If no call reference is associated with the request or
response primitive that caused the error, this field is coded zero (0) by the CCS provider.

Valid States
This primitive is issued in states CCS_WACK_UREQ and CCS_WACK_OPTREQ.

New State
The resulting state depends on the current state (see Appendix B, Tables B-7 and B-8.).

$Revision: 0.8.2.2 $ Page 58 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2. Primitive Format and Rules
This section describes the format of the UNI (User and Newtork) and NNI primitives and the rules associated
with these primitives. The default values of the options parameters associated with a call may be selected via the
CC_OPTMGMT_REQ primitive.

4.2.1. Call Setup Phase
The following call control service primitives pertain to the setup of a call, provided the CCS users exist, and are
known to the CCS provider.

4.2.1.1. Call Control Setup Request

CC_SETUP_REQ
This primitive requests that the CCS provider make a call to the specified destination.

Format
The format of the message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_setup_req {
ulong cc_primitive; /* always CC_SETUP_REQ */
ulong cc_user_ref; /* user call reference */
ulong cc_call_type; /* call type */
ulong cc_call_flags; /* call flags */
ulong cc_cdpn_length; /* called party number length */
ulong cc_cdpn_offset; /* called party number offset */
ulong cc_opt_length; /* optional parameters length */
ulong cc_opt_offset; /* optional parameters offset */
ulong cc_addr_length; /* connect to address length */
ulong cc_addr_offset; /* connect to address offset */

} CC_setup_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_user_ref: Specifies a reference number known to the CCS user that uniquely identifies the current
setup request. When this value is non-zero, it permits the CCS User to have multiple
outstanding setup requests pending on the same stream. Responses made by the CCS
provider to the CC_SETUP_REQ primitive will contain this CCS user call attempt ref-
erence.

cc_call_type: Specifies the type of call to be set up. Call types supported are dependent upon the CCS
provider and protocol, see the addendum for call types for specific protocols.

cc_call_flags: Specifies a bit field of call options. Call flags supported are depeddent upon the CCS
provider and protocol, see the addendum for call flags for specific protocols.

cc_cdpn_length: Specifies the length of the called party number parameter that conveys an address identi-
fying the CCS user to which the call is to be established. This field will accommodate
variable length numbers within a range supported by the CCS provider. If no called
party address is provided by the CCS user, this field must be coded to zero. The coding
of the called party number is protocol and provider-specific.

cc_cdpn_offset: Is the offset of the called party number from the beginning of the M_PROT O message
block.

cc_opt_length: Specifies the length of optional parameters to be conveyed in the call setup. This field
will accomodate variable length addresses within a range supported by the CCS
provider. If no optional parameters are provided by the CCS user, this field must be

$Revision: 0.8.2.2 $ Page 59 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

coded to zero. The format of optional parameters are protocol and provider-specific, see
the addendum for the format of optional parameters for specific protocols.

cc_opt_offset: Specifies the offset of the optional parameters from the beginning of the M_PROT O
message block.

cc_addr_length: Specifies the length of the call control address parameter that conveys the call control
address (circuit, circuit group) of the CCS user entity to which the call is to be estab-
lished. The semantics of the values in the CC_SETUP_REQ is identical to the values in
the CC_BIND_REQ.

cc_addr_offset: Specifies the offset of the call control address from the beginning of the M_PROT O
message block.

Rules
The following rules apply to the setup of calls to the specified addresses:

• If the cc_cdpn_length field in the CC_SETUP_REQ primitive is zero, then the CCS provider is to select a
called party number for the call. If the CCS provider cannot select a called party number for the call, the CCS
provider responds with a CC_ERROR_ACK primitive with error CCNOADDR.

• If the cc_cdpn_length field in the CC_SETUP_REQ primitive is non-zero, the CCS provider is to setup the
call to the specified number. If the CCS provider cannot setup a call of the specified call type to the specified
number the call will fail and the CCS provider will return a CC_ERROR_ACK with the appropriate error
value (e.g., CCBADADDR).

The following rules apply to the call control addresses (trunk groups and circuit identifiers):

• If the CCS user does not specify a call control address (i.e. cc_addr_length is set to zero), then the CCS
provider may attempt to assign a call control address, assign it a call reference and associate it with the stream
for the duration of the call.

The following rules apply to the CCS user call attempt reference:

• If the CCS user does not specify a call attempt reference (i.e. the cc_user_ref is set to zero), then the CCS
provider can only support one outstanding outgoing call attempt for the stream. If the CCS user specifies a
call attempt reference, all replies made by the CCS provider to this CC_SETUP_REQ primitive will contain
the CCS user specified call attempt reference until either the call fails or is released, or after the CCS provider
sends a CC_SETUP_CON primitive.

Valid States
This primitive is valid in state CCS_IDLE.

New State
The new state depends upon the information provided in the CC_SETUP_REQ message as follows:

• If the setup request specifies that a continuity check was performed on a previous circuit, the new state is
CCS_WREQ_CCREP (awaiting report of the result of continuity test performed on the previous circuit).

• If the setup request specifies that a continuity check is required on the circuit, the new state is
CCS_WIND_CTEST (awaiting indication of remote loop back on the circuit).

• If the setup request specifies that no continuity test is required on this or a previous circuit and that the called
party address contains partial information, the new state is CCS_WIND_MORE (awaiting the indication that
more information is required).

• If the setup request specifies that no continuity test is required on this or a previous circuit and that the called
party address contains complete information, the new state is CCS_WCON_SREQ (awaiting confirmation of
the setup request).

$Revision: 0.8.2.2 $ Page 60 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Acknowledgments
The following acknowledgments are valid for this primitive:

• Successful Call Establishment: This is indicated via the CC_SETUP_CON primitive. This results in the
Call Establishment state. For CC_SETUP_REQ primitives where ISUP_NCI_CONT_CHECK_REQUIRED
is set, or where the CCS provider otherwise determines that a continuity check is required on the circuit, suc-
cess is still indicated via the CC_SETUP_CON primitive. In this case, the CC_SETUP_CON primitive is not
sent by the CCS provider unless the continuity check is successful. For CCS_SETUP primitives where
ISUP_NCI_CONT_CHECK_PREVIOUS is set, the CC_SETUP_CON primitive is not sent by the CCS
provider until the CCS user sends a CC_CONT_REPORT_REQ primitive indicating that continuity check on
the previous circuit has been successful. Receipt of the CC_SETUP_CON primitive always results in the Call
Establishment state.

• Unsuccessful Call Establishment: This is indicated via the CC_CALL_REATTEMPT_IND,
CC_CALL_FAILURE_IND, or CC_RELEASE_IND primitives. For example, a call may be rejected because
either the called CCS user cannot be reached, or the CCS provider and/or the called CCS user did not agree
on the specified call type or options. This results in the Idle state. Where the CC_CALL_REATTEMPT_IND
or CC_RELEASE_IND primitives are sent before the CC_SETUP_CON primitive, the CC_CALL_REAT-
TEMPT_IND or CC_RELEASE_IND primitives will contain the CCS user specified call attempt reference.

• Non-fatal errors: These are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system eror is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADADDR: The call control address as specified in the primitive was in an incorrect format, or
the address contained illegal information.

CCBADDIGS: The called party number was in the incorrect format, or contained illegal informa-
tion. This is used only to handle coding errors of the number and is not intended to
provide for protocol errors. Protocol errors should be conveyed in the
CC_CALL_REATTEMPT_IND, CC_CALL_FAILURE_IND or CC_RE-
LEASE_IND primitives.

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

CCNOADDR: The user did not provide a called party address field and one was required by the call
type. The CCS provider could not select a called party address.

CCADDRBUSY: The CCS provider could not use the specified address because the specified address
is already in use.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal (not unique).

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out of range).

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

$Revision: 0.8.2.2 $ Page 61 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.1.2. Call Control Setup Indication

CC_SETUP_IND
This primitive indicates to the destination CCS user that a call setup request has been made by the user at the
specified source address.

Format
The format of the message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_setup_ind {
ulong cc_primitive; /* always CC_SETUP_IND */
ulong cc_call_ref; /* call reference */
ulong cc_call_type; /* call type */
ulong cc_call_flags; /* call flags */
ulong cc_cdpn_length; /* called party number length */
ulong cc_cdpn_offset; /* called party number offset */
ulong cc_opt_length; /* optional parameters length */
ulong cc_opt_offset; /* optional parameters offset */
ulong cc_addr_length; /* connecting address length */
ulong cc_addr_offset; /* connecting address offset */

} CC_setup_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Identifies the call reference that can be used by the CCS user to associate this message
with the CC_SETUP_RES or CC_RELEASE_REQ primitive that is to follow. This
value must be unique among the outstanding CC_SETUP_IND messages.

cc_call_type: Indicates the type of call to be set up. Call types supported are dependent upon the CCS
provider and protocol, see the addendum for call types for specific protocols.

cc_call_flags: Indicates a bit field of call options. Call flags supported are dependent upon the CCS
provider and protocol, see the addendum for call flags for specific protocols.

cc_cdpn_length: Indicates the length of the called party number address parameter that conveys an ad-
dress identifying the CCS user to which the call is to be established. This field will ac-
commodate variable length addresses within a range supported by the CCS provider.

cc_cdpn_offset: Is the offset of the called party number address from the beginning of the M_PROT O
message block.

cc_opt_length: Indicates the length of the optional parameters that were used in the call setup.

cc_opt_offset: Indicates the offset of the optional parameters from the beginning of the M_PROT O
message block.

cc_addr_length: Indicates the length of the connecting address parameter that conveys the call control
address the CCS user entity (circuit) on which the call is being established. The seman-
tics of the values in the CC_SETUP_IND is identical to the values in the
CC_BIND_ACK.

cc_addr_offset: Indicates the offset of the connecting address from the beginning of the M_PROT O
message block.

Valid States
This primitive is valid in state CCS_IDLE for the indicated call reference.

$Revision: 0.8.2.2 $ Page 62 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

New State
The new state depends upon the information provided in the CC_SETUP_IND message as follows:

• If the setup indication indicates that a continuity check was performed on a previous circuit, the new state is
CCS_WIND_CCREP (awaiting the report of continuity test results).

• If the setup indication indicates that a continuity check is required on the circuit, the new state is
CCS_WREQ_CTEST (awaiting confirmation of installation of loop back device on the circuit).

• If the setup indication indicates that no continuity tests are required on this or a previous circuit and that the
called party number contains partial information, the new state is CCS_WREQ_MORE (awaiting the request
for more information to confirm the partial address).

• If the setup indication indicates that no continuity tests are required on this or a previous circuit and that the
called party number contains complete information, the new state is CCS_WRES_SIND (awaiting response to
the setup indication).

In any event, the number of outstanding setup indications waiting for user response is incremented by one.

Rules
The rules for issuing the CC_SETUP_IND primitive are as follows:

• This primitive will only be issued to streams that have been bound with a non-zero negotiated maximum num-
ber of setup indications (i.e. on a listening stream), and where the number of outstanding setup indications
(call references) for the stream is less than the negotiated maximum number of setup indications.

• If the call setup indicated is for a normal call, the stream upon which it is indicated was not bound with the
CC_TEST, CC_MANAGEMENT or CC_MAINTENANCE flags set.

• If the call setup indicated is for an ISUP test call, the stream upon which it is indicated was bound with the
CC_TEST flag set and a non-zero number of negotiated maximum setup indications.

$Revision: 0.8.2.2 $ Page 63 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.1.3. Call Control Setup Response

CC_SETUP_RES
This primitive allows the destination CCS user to request that the call control provider accept a previous setup in-
dication. This primitive also indicates that overlap receiving is complete. The CCS use is still expected to com-
plete the setup process by issuing the CCS_PROCEED_REQ, CCS_ALERTING_REQ, CCS_PROGRESS_REQ,
CCS_IBI_REQ, CCS_CONNECT_REQ, or CCS_DISCONNECT_REQ messages.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_setup_res {
ulong cc_primitive; /* always CC_SETUP_RES */
ulong cc_call_ref; /* call reference */
ulong cc_token_value; /* call response token value */

} CC_setup_res_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the CC_SETUP_RES message. It is used by the CCS
provider to associated the CC_SETUP_RES message with an outstanding
CC_SETUP_IND message. An invalid call reference should result in error with the er-
ror type CCBADCLR.

cc_token_value: Is used to identify the stream that the CCS user wants to establish the call on. (Its value
is determined by the CCS user by issuing a CC_BIND_REQ primitive with the CC_TO-
KEN_REQUEST flag set. The token value is returned in the CC_BIND_ACK.) The
value of this field should be non-zero when the CCS user wants to establish the call on a
stream other than the stream on which the CC_SETUP_IND arrived. If the CCS user
wants to establish a call on the same stream that the CC_SETUP_IND arrived on, then
the value of this field should be zero.

Valid States
This primitive is valid in state CCS_WRES_SIND.

New State
The new state is CCS_WREQ_PROCEED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccesful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADTOK: The token specified is not associated with an open stream.

CCBADPRIM: The primitive format was incorrect (i.e. too short).

$Revision: 0.8.2.2 $ Page 64 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.1.4. Call Control Setup Confirm

CC_SETUP_CON
This primitive indicates to the calling CCS user that the call control setup request has been sent on the specified
call control address (circuit, circuit group). For calls that were requested setup with the
ISUP_NCI_CONT_CHECK_REQUIRED flag set in the CC_SETUP_REQ, or for which the CCS provider has
otherwise decide to perform continuity check, this also confirms that the continuity check was successful.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_setup_con {
ulong cc_primitive; /* always CC_SETUP_CON */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* connecting address length */
ulong cc_addr_offset; /* connecting address offset */

} CC_setup_con_t;

Parameters
cc_primitive: Indicates the primitives type.

cc_user_ref: Indicates the CCS user call attempt reference value which was provided by the CCS
user in the CC_SETUP_REQ message. This permits the CCS user to associate this
CC_SETUP_CON primitive with the previous CC_SETUP_REQ primitive and permits
multiple outstanding CC_SETUP_REQ primitives.

cc_call_ref: Indicates the CCS provider assigned call reference. If the CCS user wishes to establish
more than one simultaneous call on a given stream, the CCS user must use this CCS
provider indicated call reference in subsequent call control primitives sent to the CCS
provider. This permits the CCS provider to associate a CCS user primitive with one of
multiple simultaneous calls associated with a given stream.

cc_addr_length: Indicates the length of the connecting address parameter that conveys the call control
address of the CCS user entity (circuit) on which the call is being established. The se-
mantics of the values in the CC_SETUP_CON is identical to the values in the
CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the connecting address from the beginning of the M_PROT O
message block.

Valid States
This primitive is valid in state CCS_WCON_SREQ and state CCS_WREQ_CCREP.

New State
The new state depends on whether an end-of-pulsing signal was present in the called party number in the associ-
ated CC_SETUP_REQ primitive. If an ST signal was present, the new state is CCS_WREQ_PROCEED, other-
wise the new state is CCS_WREQ_MORE. In either case, the call enters the Call Establishment Phase.

$Revision: 0.8.2.2 $ Page 65 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.1.5. Call Control Reattempt Indication

CC_CALL_REATTEMPT_IND
This primitive indicates to the calling CCS user that the selected address (circuit) is unavailable and that a reat-
tempt should be made on a new call control address (circuit).

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_call_reattempt_ind {
ulong cc_primitive; /* always CC_CALL_REATTEMPT_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_reason; /* reason for reattempt */

} CC_call_reattempt_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_user_ref: Indicates the CCS user call attempt reference value which was provided by the CCS
user in the CC_SETUP_REQ message. This permits the CCS user to associate this
CC_CALL_REATTEMPT_IND primitive with the previous CC_SETUP_REQ primi-
tive and permits multiple outstanding CC_SETUP_REQ primitives.

cc_reason: Indicates the cause of the reattempt. the cc_reason field is protocol and implementation
specific. See the Addendum for protocol-specific values.

Valid Modes
This primitive is only valid in NNI mode.

Valid States
This primitive is valid in states CCS_WCON_SREQ, CCS_WREQ_CCREP, CCS_WIND_MORE
CCS_WREQ_INFO and CCS_WIND_PROCEED.

New State
The new state is CCS_IDLE.

Rules
• The CC_CALL_REATTEMPT_IND indicates that call repeat attempt should be made by the CCS user, and

the reason for the reattempt.
• If the CC_CALL_REATTEMPT_IND is issued before the CC_SETUP_CON primitive, the user reference

value will be the same value as appeared in the corresponding CC_SETUP_REQ primitive, and the call refer-
ence value will be zero.

• If the CC_CALL_ATTEMPT_IND primitive is issued subsequent to the CC_SETUP_CON primitive, the user
reference value will be zero, and the call reference value will be the same as appeared in the corresponding
CC_SETUP_CON primitive.

$Revision: 0.8.2.2 $ Page 66 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.2. Continuity Check Phase
The following call control service primitives pertain to the continuity check phase of a call.

4.2.2.1. Call Control Continuity Check Request

CC_CONT_CHECK_REQ
This primitive requests that the CCS provider perform a continuity check procedure.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_cont_check_req {
ulong cc_primitive; /* always CC_CONT_CHECK_REQ */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_check_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_addr_length: Specifies the length of the call control address (circuit identifier) upon which the CCS
user is requesting a continuity check.

cc_addr_offset: Specifies the offset of the call control address from the beginning of the M_PROT O
message block.

Rules
The following rules apply to the continuity check of call control addresses (circuit identifiers):

• If the CCS user does not specify a call control address (i.e, cc_addr_length is set to zero), then the CCS
provider may attempt to assign a call control address and associate it with the stream for the duration of the
continuitu test procedure. This can be useful for automated continuity testing.

Valid Modes
This primitive is only valid in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the selected circuit.

New State
The new state is CKS_WIND_CTEST for the selected address.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_CONT_TEST_IND primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCNOADDR: The call control address was not provided (cc_addr_length coded zero).

CCBADADDR: The call control address contained in the primitive were poorly formatted or con-
tained invalid information.

$Revision: 0.8.2.2 $ Page 67 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling address
was provided in the call control address or the address was issued to a UNI CCS
provider.

CCACCESS: The user did not have sufficient permission to perform the operation on the specified
call control addresses.

$Revision: 0.8.2.2 $ Page 68 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.2.2. Call Control Continuity Check Indication

CC_CONT_CHECK_IND
This primitive indicates to the CCS user that a continuity check is being requested by the CCS user peer on the
specified call control address(es) (signalling interface and circuit identifiers). Upon receipt of this primitive, the
CCS user should establish a loop back device on the specified channel and issues the CC_CONT_TEST_REQ
primitive confirming the loop back. The CCS user should then wait for the CC_CONT_REPORT_IND indicat-
ing the success or failure of the continuity check.

This primitive is only delivered to listening streams listening on the specified call control addresses or to a stream
bound as a default listener in the same manner as the CC_SETUP_IND. (A continuity test indication is treated as
a special form of call setup.)

This primitive is only issued to CCS users that successfully bound using the CC_BIND_REQ primitive with flag
CC_TEST set and a non-zero number of setup indications was provided in the CC_BIND_REQ and returned in
the CC_BIND_ACK.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_cont_check_ind {
ulong cc_primitive; /* always CC_CONT_CHECK_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_check_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Identifies the call reference that can be used by the CCS user to associate this message
with the CC_CONT_TEST_REQ or CC_RELEASE_REQ primitive that is to follow.
This value must be unique among the outstanding CC_CONT_CHECK_IND messages.

cc_addr_length: Indicates the length of the call control address (circuit identifier) upon which a continu-
ity check is indicated.

cc_addr_offset: Indicates the offset of the requesting address from the beginning of the M_PROT O mes-
sage block.

Valid Modes
This primitive is only valid for addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the specified addresses.

New State
The new state is CKS_WREQ_CTEST for the specified addresses.

$Revision: 0.8.2.2 $ Page 69 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.2.3. Call Control Continuity Test Request

CC_CONT_TEST_REQ
This message is used either to respond to a CC_SETUP_IND primitive which contains the
ISUP_NCI_CONT_CHECK_REQUIRED flag, or to respond to a CC_CONT_CHECK_IND primitive. Before
responding to either primitive, the CCS User should install a loop back device on the requested channel and then
respond with this response primitive to confirm the loop back.

Format
The format of this message is on M_PROT O message block. The structure of the M_PROT O block is as follows:

typedef struct CC_cont_test_req {
ulong cc_primitive; /* always CC_CONT_TEST_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_token_value; /* token value */

} CC_cont_test_req_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the CC_CONT_TEST_REQ message. It is used by the
CCS provider to associate the CC_CONT_TEST_REQ message with an outstanding
CC_SETUP_IND message. An invalid call reference should result in error with the er-
ror type CCBADCLR.

cc_token_value: Is used to identify the stream that the CCS user wants to establish the continuity check
call on. (Its value is determined by the CCS user by issuing a CC_BIND_REQ primi-
tive with the CC_TOKEN_REQUEST flag set. The token value is returned in the
CC_BIND_ACK.) The value of this field should be non-zero when the CCS user wants
to establish the call on a stream other than the stream on which the
CC_CONT_CHECK_IND arrived. If the CCS user wants to establish a call on the same
stream that the CC_CONT_CHECK_IND arrived on, then the value of this field should
be zero.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CKS_WREQ_CTEST.

New State
The new state is CKS_WIND_CCREP.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_CONT_REPORT_IND in the case that the primi-
tive was issued in response to a CC_SETUP_IND, or CC_RELEASE_IND primitive in the case that the prim-
itive was issued in response to the CC_CONT_CHECK_IND primitive.

• Unsuccessful: Unsuccessful completion is indicated via the CC_CONT_REPORT_IND primitive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 70 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCACCESS: The user did not have proper permissions for the operation.

CCNOTSUPP: The CCS provider does not support the operation.

$Revision: 0.8.2.2 $ Page 71 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.2.4. Call Control Continuity Test Indication

CC_CONT_TEST_IND
This message confirms to the testing CCS user that a loop back device has been (or will be) installed on the spec-
ified call control address (circuit). Upon receiving this message, the testing CCS user should connect tone gener-
ation and detection equipment to the specified circuit, perform the continuity test and issue a report using the
CC_CONT_REPORT_REQ primitive.

This primitive will only be issued to streams successfully bound with the CC_BIND_REQ primitive with a non-
zero number of setup indications and the CC_TEST bind flag set.

Format
The format of this message is on M_PROT O message block. The structure of the M_PROT O block is as follows:

typedef struct CC_cont_test_ind {
ulong cc_primitive; /* always CC_CONT_TEST_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_test_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference associated with the continuity check call for the specified
call control address (circuit identifier).

cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identifier)
upon which a continuity check is confirmed. The semantics of the values in the
CC_CONT_TEST_IND is identical to the values in the CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the connecting address from the beginning of the M_PROT O
message block.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WCON_CREQ.

New State
The new state is CCS_WAIT_COR.

$Revision: 0.8.2.2 $ Page 72 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.2.5. Call Control Continuity Report Request

CC_CONT_REPORT_REQ
This primitive requests that the CCS provider indicate to the called CCS user that the continuity check succeeded
or failed. The CCS user should remove any continuity test tone generator/detection device from the circuit and
verify silent code loop back before issuing this primitive.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_cont_report_req {
ulong cc_primitive; /* always CC_CONT_REPORT_REQ */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC_cont_report_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_user_ref: Specifies the CCS user reference of the associated CC_SETUP_REQ primitive. This
value is non-zero when the CC_CONT_REPORT_REQ primitive is issued subsequent
to a CC_SETUP_REQ primitive which had the flag ISUP_NCI_CONTINU-
ITY_CHECK_PREVIOUS set to indicate the result of the continuity check on the previ-
ous circuit. Otherwise, this value is coded zero.

cc_call_ref: Specifies the call reference of the associated CC_CONT_TEST_IND primitive for the
continuity check call. This value is non-zero when the CC_CONT_REPORT_REQ
primitive is issued in response to a CC_CONT_TEST_IND primitive. Otherwise, this
value is coded zero.

cc_result: Specifies the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CCREP.

New State
When issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE. When issued
subsequent to a CC_SETUP_REQ primitive, the new state is either CCS_WREQ_MORE or CCS_WREQ_PRO-
CEED, depending upon whether the sent address contain an ST pulse.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 73 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADPRIM: The primitive format was incorrect.

$Revision: 0.8.2.2 $ Page 74 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.2.6. Call Control Continuity Report Indication

CC_CONT_REPORT_IND
This primitive indicates to the called CCS user that the continuity check succeeded or failed. The called CCS
user can remove the loop back or tone generation/detection devices from the circuit and the call either moves to
the idle state or a call setup state.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_cont_report_ind {
ulong cc_primitive; /* always CC_CONT_REPORT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC_cont_report_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference associated with the continuity check report as it appeared in
the associated CC_CONT_CHECK_IND primitive.

cc_result: Indicates the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CTEST or CCS_WIND_CCREP.

New State
If the primitive is issued subsequent to the CC_SETUP_REQ, the new state is CCS_WCON_SREQ. If the prim-
itive is issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE.

$Revision: 0.8.2.2 $ Page 75 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.3. Collecting Information Phase
The following call control service primitive pertain to the collecting information phase of a call. During this
phase requests for more information are issued and indicated, and additional information is provided.

4.2.3.1. Call Control More Information Request

CC_MORE_INFO_REQ
This message request more information (digits in the called party address, or optional parameters) from the call-
ing CCS user. This specifies to the CCS provider that overlap receiving is in effect and the number of digits re-
ceived are not sufficient to complete the call.

Format
The format of this message is on M_PROT O message block. The structure of the M_PROT O block is as follows:

typedef struct CC_more_info_req {
ulong cc_primitive; /* always CC_MORE_INFO_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_req_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference for the CC_MORE_INFO_REQ message. It is used by the
CCS provider to associated the CC_MORE_INFO_REQ message with an previous
CC_SETUP_IND message and identify the incoming call.

cc_opt_length: Indicates the length of the optional parameters associated with the nore information re-
quest.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (User and Network) mode and for compatibility in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_MORE.

New State
The new state is CCS_WIND_INFO.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_INFORMATION_IND and CC_INFO_TIME-
OUT_IND primitives.

• Unsuccessful: Unsuccessful completion is indicated by the CC_CALL_FAILURE_IND primitive with a pro-
tocol specific reason indicating that additional information was not provided within a sufficient period of time.

• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 76 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCNOTSUPP: The CCS provider does not support the operation.

CCACCESS: The user did not have proper permissions for the operation.

CCBADPRIM: The primitive was incorrectly formatted (i.e. the M_PROT O message block was too
short).

$Revision: 0.8.2.2 $ Page 77 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.3.2. Call Control More Information Indication

CC_MORE_INFO_IND
This message indicates that the calling CCS user needs to provide additional information (called party address
digits) to complete call processing. The CCS user should generate CC_INFORMATION_REQ primitives, if pos-
sible. This is also an indication that overlap receiving is in effect. Appropriate protocol timers will be started.

In contrast to the the CC_INFORMATION_REQ primitive(s) which are sent by the CCS user in response to this
message, the CC_MORE_INFO_IND message is normally only issued once per call setup.

Format
The format of this message is on M_PROT O message block. The structure of the M_PROT O block is as follows:

typedef struct CC_more_info_ind {
ulong cc_primitive; /* always CC_MORE_INFO_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_user_ref: Indicates the user call reference of the CC_MORE_INFO_IND message. It is used by
the CCS user to associate the CC_MORE_INFO_IND message with an outstanding
CC_SETUP_REQ message.

cc_opt_length: Indicates the length of the optional parameters associated with the more information in-
dication. If no optional parameters are associated with the more information indica-
tions, this parameter must be coded zero by the CCS provider.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (Network and User) mode, and for compatibility in NNI mode.

Valid States
This primitive is valid in state CCS_WIND_MORE.

New State
The new state is CCS_WREQ_INFO.

4.2.3.3. Call Control Information Request

CC_INFORMATION_REQ
This message request that the CCS provider include the subsequent number information in addition to the called
party number information previously supplied with a CC_SETUP_REQ primitive.

Format
The format of this message is on M_PROT O message block. The structure of the M_PROT O block is as follows:

typedef struct CC_information_req {
ulong cc_primitive; /* always CC_INFORMATION_REQ */
ulong cc_user_ref; /* call reference */
ulong cc_subn_length; /* subsequent number length */

$Revision: 0.8.2.2 $ Page 78 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

ulong cc_subn_offset; /* subsequent number offset */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_information_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_user_ref: Specifies the user call reference. It is used by the CCS user to associate the message
with an outstanding CC_SETUP_REQ message.

cc_subn_length: Specifies the length of the subsequent called party address parameter that conveys more
of an address identifying the CCS user to which the call is to be established. This field
will accommodate variable length addresses within a range supported by the CCS
provider. If no subsequent called party address is provided by the CCS user, this field
must be coded to zero. The coding of the subsequent called party address is protocol
and provider-specific.

cc_subn_offset: Is the offset of the subsequent called party address from the beginning of the M_PROT O
message block.

cc_opt_length: Specifies the length of the optional parameters associated with the alerting indication.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (both User and Network) and NNI.

Valid States
This primitive is valid in state CCS_WIND_MORE and CCS_WREQ_INFO.

New State
The new state is CCS_WIND_MORE if the subsequent number still does not contain complete address informa-
tion or CCS_WIND_PROCEED if it does.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCNOADDR: The user did not provide a subsequent called party address field and one was re-
quired by the call type. The CCS provider could not select a called party address.

CCSYSERR: A system error has occurred and the UNIX system eror is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The specified call reference was invalid.

CCBADADDR: The subsequent called party address was in the incorrect format, or contained illegal
information. This is used only to handle coding errors of the address and is not in-
tended to provide for protocol errors. Protocol errors should be conveyed in the
CC_CALL_FAILURE_IND or CC_RELEASE_IND primitives.

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

$Revision: 0.8.2.2 $ Page 79 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the
M_PROT O block.

$Revision: 0.8.2.2 $ Page 80 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.3.4. Call Control Information Indication

CC_INFORMATION_IND
Format

The format of this message is on M_PROT O message block. The structure of the M_PROT O block is as follows:

typedef struct CC_information_ind {
ulong cc_primitive; /* always CC_INFORMATION_IND */
ulong cc_call_ref; /* call reference */
ulong cc_subn_length; /* subsequent number length */
ulong cc_subn_offset; /* subsequent number offset */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_information_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the message. It is used by the CCS provider to associated
the message with an preceding CC_SETUP_IND message.

cc_subn_length: Indicates the length of the subsequent called party address parameter that conveys more
of an address identifying the CCS user to which the call is to be established. This field
will accommodate variable length addresses within a range supported by the CCS
provider. If no subsequent called party address is provided by the CCS user, this field
must be coded to zero. The coding of the subsequent called party address is protocol
and provider-specific.

cc_subn_offset: Is the offset of the subsequent called party address from the beginning of the M_PROT O
message block.

cc_opt_length: Indicates the length of the optional parameters associated with the alerting indication.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (both User and Network) and NNI.

Valid States
This primitive is valid in state CCS_WREQ_MORE or CCS_WIND_INFO.

New State
The new state is CCS_WREQ_MORE if more information is still pending, or CCS_WREQ_PROCEED if the in-
formation is complete.

$Revision: 0.8.2.2 $ Page 81 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.3.5. Call Control Information Timeout Indication

CC_INFO_TIMEOUT_IND
This message indicates that a timeout has occurred while waiting for additional digits. It is up to the CCS user to
decide whether the digits collected are sufficient, in which case the call can proceed; or, to decide that the digits
collected are insufficient and begin tearing down the call with a CC_DISCONNECT_REQ or CC_RE-
LEASE_REQ with cause value CC_CAUS_ADDRESS_INCOMPLETE.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_info_timeout_ind {
ulong cc_primitive; /* always CC_INFO_TIMEOUT_IND */
ulong cc_call_ref; /* call reference */

} CC_info_timeout_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the CC_SETUP_IND when the CC_INFO_TIME-
OUT_IND primitive is used in response to the CC_SETUP_IND on a listening stream.
Otherwise, this parameter is coded zero and is ignored by the CCS provider.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid State
This primitive is valid in state CCS_WIND_INFO or CCS_WREQ_INFO.

New State
The new state is unchanged.

$Revision: 0.8.2.2 $ Page 82 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4. Call Establishment Phase
The following call control service primitives pertain to the establishment of a call.

4.2.4.1. Call Control Proceeding Request

CC_PROCEEDING_REQ
This primitive requests that the CCS provider indicate to the calling CCS user that the call is proceeding towards
the called CCS user. This also means that there is sufficient called party address information to complete the call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_proceeding_req {
ulong cc_primitive; /* always CC_PROCEEDING_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* proceeding flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference for the request. The call reference is used by the CCS
provider to identify the call.

cc_flags: Specifies proceeding flags associated with the proceeding request. Proceeding flags are
protocol specific (see the Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the alerting indication.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in state CCS_ICC_WAIT_ACM.

New State
The new state is CCS_WREQ_MORE or CCS_WIND_PROCEED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The specified flags were incorrect or unsupported.

$Revision: 0.8.2.2 $ Page 83 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the
M_PROT O block.

$Revision: 0.8.2.2 $ Page 84 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.2. Call Control Proceeding Indication

CC_PROCEEDING_IND
This primitive indicates to the calling CCS user that the call is proceeding to the called CCS user. This also
means that there is sufficient called party address information to complete the call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_proceeding_ind {
ulong cc_primitive; /* always CC_PROCEEDING_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* proceeding flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. It is used by the CCS provider to indicate the call.

cc_flags: Indicates the proceeding flags associated with the proceeding indication. Proceeding
flags are protocol specific (see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the proceeding indica-
tion.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_MORE or CCS_WIND_PROCEED.

New State
The new state is CCS_WIND_ALERTING.

$Revision: 0.8.2.2 $ Page 85 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.3. Call Control Alerting Request

CC_ALERTING_REQ
This primitive requests that the CCS provider indicate to the calling CCS user that the called CCS user is being
alerted.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_alerting_req {
ulong cc_primitive; /* always CC_ALERTING_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* alerting flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. It is used by the CCS provider to identify the call.

cc_flags: Specifies the alerting flags associated with the alerting request. Alerting flags are proto-
col specific (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the alerting indication.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primiitve is valid in states CCS_WREQ_MORE, CCW_WREQ_PROCEED and CCS_WREQ_ALERTING
states.

New State
The new state is CCS_WREQ_PROGRESS.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The specified flags contained incorrect or unsupported information.

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

$Revision: 0.8.2.2 $ Page 86 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the
M_PROT O block.

$Revision: 0.8.2.2 $ Page 87 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.4. Call Control Alerting Indication

CC_ALERTING_IND
This primitive indicates to the calling CCS user that the called CCS user is being alerted.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_alerting_ind {
ulong cc_primitive; /* always CC_ALERTING_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* alerting flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags: Indicates the alerting flags.

cc_opt_length: Indicates the length of the optional parameters associated with the alerting indication. If
no optional parameters are associated with the alerting indication, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in states CCS_WREQ_MORE, CCS_WIND_PROCEED and CCS_WIND_ALERTING.

New State
The new state is CCS_WIND_PROGRESS.

$Revision: 0.8.2.2 $ Page 88 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.5. Call Control Progress Request

CC_PROGRESS_REQ
This primitive requests that the CCS provider indicate to the calling CCS user that the call is progressing towards
the called CCS user, with the specified event.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_progress_req {
ulong cc_primitive; /* always CC_PROGRESS_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_event; /* progress event */
ulong cc_flags; /* progress flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_event: Specifies the progress event. Progress ev ents are protocol specific (see Addendum).

cc_flags: Indicates progress flags. Progress flags are protocol specific (see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the progress request. If
no optional parameters are associated with the progress request, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in states CCS_WREQ_PROGRESS.

New State
The new state is CCS_WREQ_PROGRESS.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The specified flags contained incorrect or unsupported information.

$Revision: 0.8.2.2 $ Page 89 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the
M_PROT O block.

$Revision: 0.8.2.2 $ Page 90 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.6. Call Control Progress Indication

CC_PROGRESS_IND
This primitive indicates to the calling CCS user that the call is progressing towards the called CCS user with the
specified progress event.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_progress_ind {
ulong cc_primitive; /* always CC_PROGRESS_IND */
ulong cc_call_ref; /* call reference */
ulong cc_event; /* progress event */
ulong cc_flags; /* progress flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_event: Indicates the progress event. Progress ev ents are protocol speccific (see Addendum).

cc_flags: Indicates progress flags. Progress flags are protocol specific (see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the progress request. If
no optional parameters are associated with the progress request, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid instates CCS_WIND_PROGRESS.

New State
The new state is CCS_WIND_PROGRESS.

$Revision: 0.8.2.2 $ Page 91 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.7. Call Control In-Band Information Request

CC_IBI_REQ
This primitive request that the CCS provider indicate to the calling CCS user that the in-band information is now
available.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_ibi_req {
ulong cc_primitive; /* always CC_IBI_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* ibi flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags: Specifies the flags associated with the primitive. In band information flags are protocol
specific (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the in-band information
request. If no optional parameters are associated with the in band information request,
then this parameter must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in NNI mode and in UNI (User and Network) mode for compatibility with the NNI.

Valid States
This primitive is valid in states CCS_WREQ_MORE, CCS_WREQ_PROCEED, CCS_WREQ_ALERTING,
CCS_WREQ_PROGRESS and CCS_WREQ_CONNECT.

New State
The new state is CCS_WREQ_CONNECT.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The specified flags contained incorrect or unsupported information.

$Revision: 0.8.2.2 $ Page 92 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the
M_PROT O block.

$Revision: 0.8.2.2 $ Page 93 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.8. Call Control In-Band Information Indication

CC_IBI_IND
This primitive indicates to the calling CCS user that there is in-band information now available in the voice chan-
nel.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_ibi_ind {
ulong cc_primitive; /* always CC_IBI_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* ibi flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags: Indicates the flags associated with the primitive. In band information flags are provider
and protocol specific (see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the in-band information
indication. If no optional parameters are associated with the in band information re-
quest, then this parameter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in NNI mode and in UNI (User and Network) mode for compatibility with the NNI.

Valid States
This primitive is valid in states CCS_WIND_MORE, CCS_WIND_PROCEED, CCS_WIND_ALERTING and
CCS_WIND_PROGRESS.

New State
The new state is CCS_WIND_CONNECT.

$Revision: 0.8.2.2 $ Page 94 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.9. Call Control Connect Request

CC_CONNECT_REQ
This primitive requests that the CCS provide indicate to the remote CCS user that the call control setup has com-
plete and the called CCS use is connected on the call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_connect_req {
ulong cc_primitive; /* always CC_CONNECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* connect flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call. The call reference is the same value which was indicated in the corresponding
CC_SETUP_IND primitive for the incoming call.

cc_flags: Specifies the connect flags associated with the primitive. Connect flags are protocol
specific (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the connect request. If
no optional parameters are associated with the connect request, then this parameter must
be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in NNI mode and in UNI (User) mode.

Valid States
This primitive is only valid for incoming calls in the CCS_WREQ_MORE, CCS_WREQ_PROCEED,
CCS_WREQ_ALERTING, CCS_WREQ_PROGRESS, CCS_WREQ_CONNECT states.

New State
The new state is CCS_WIND_SCOMP (waiting for indication of setup complete).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_SETUP_COMPLETE_IND primitive.
• Unsuccessful: Unsuccessful completion is indicated via the CC_CALL_FAILURE_IND, CC_DISCON-

NECT_IND or CC_RELEASE_IND primitives.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.2.2 $ Page 95 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The specified flags contained incorrect or unsupported information.

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the
M_PROT O block.

$Revision: 0.8.2.2 $ Page 96 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.10. Call Control Connect Indication

CC_CONNECT_IND
This primitive indicates that the called CCS user has connected to the call. Upon receving this primitive the CCS
user operating in UNI (Network) mode should connect the calling CCS user to the call and acknowledge connec-
tion of the calling CCS user by responding with the CC_SETUP_COMPLETE_REQ primitive.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_connect_ind {
ulong cc_primitive; /* always CC_CONNECT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* connect flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call. The call reference is the same value which was indicated in the corresponding
CC_SETUP_CON primitive for the outgoing call.

cc_flags: Indicates the connect flags associated with the primitive. Connect flags are protocol
specific (see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the connect indication. If
no optional parameters are associated with the connect indication, then this parameter is
coded zero by the CCS provider.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in NNI mode and in UNI (Network) mode.

Valid States
This primitive is valid in state CCS_WIND_SCOMP.

New State
The new state is CCS_CONNECTED.

$Revision: 0.8.2.2 $ Page 97 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.11. Call Control Setup Complete Request

CC_SETUP_COMPLETE_REQ
This primitive request that the CCS provider indicate to the remote CCS user that the call control setup has com-
pleted (the calling CCS user is connected) by the requesting CCS user. It is used in response to the CC_CON-
NECT_IND primitive.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_setup_complete_req {
ulong cc_primitive; /* always CC_SETUP_COMPLETE_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length: Specifies the length of the optional parameters associated with the setup complete re-
quest. If no optional parameters are associated with the setup complete request, then
this parameter must be coded zero. The CCS provider may include additional protocol-
specific optional parameters.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI mode (Network only) and NNI mode for compatibility.

Valid States
This primitive is valid in state CCS_WREQ_SCOMP.

For compatibility between NNI mode and UNI Network mode, the CCS provider in NNI mode should acknowl-
edge this primitive with a CC_OK_ACK if it is issued in the CCS_CONNECTED state.

New State
The new state is CCS_CONNECTED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out of range).

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

$Revision: 0.8.2.2 $ Page 98 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.2.2 $ Page 99 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.4.12. Call Control Setup Complete Indication

CC_SETUP_COMPLETE_IND
This primitive indicates to the called CCS user, operating in UNI (User) mode, that the call control setup was
completed (the call is answered and connected) by the calling CCS user. In UNI (User) mode, the CCS user may
defer connecting the receive path to the called CCS user until this message is received. In response to this primi-
tive, the CCS user should connect the receive path to the called CCS user and consider the call connected.

CCS users operating in UNI (Network) mode or NNI mode should ignore this primitive if issued by the CCS
provider.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_setup_complete_ind {
ulong cc_primitive; /* always CC_SETUP_COMPLETE_IND */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_ind_t;

Parameters
cc_primitive: Indicates the primitives type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length: Indicates the length of the optional parameters associated with the setup complete indi-
cation. If no optional parameters were associated with the setup complete indication,
then this parameter must be coded zero. The CCS provider may include additional op-
tional protocol-specific optional parameters.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (User only) mode.

Valid States
This primitive is valid in states CCS_WIND_SCOMP and CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

$Revision: 0.8.2.2 $ Page 100 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5. Call Established Phase
The following call control service primitives pertain to the Established phase of a call.

4.2.5.1. Forward Transfer Request

CC_FORWXFER_REQ
This message requests that the CCS provider forward transfer an established call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_forwxfer_req {
ulong cc_primitive; /* always CC_FORWXFER_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length: Specifies the length of the optional parameters associated with the forward transfer re-
quest. If no optional parameters were associated with the forward transfer request, then
this parameter must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes This primitive is only valid in NNI mode.

Valid States
This primitive is valid in state CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

Acknowledgements
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCOUTSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 101 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.2. Forward Transfer Indication

CC_FORWXFER_IND
This primitive indicates to the CCS user that the peer CCS user has requested a forward transfer of an established
call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_forwxfer_ind {
ulong cc_primitive; /* always CC_FORWXFER_IND */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length: Specifies the length of the optional parameters associated with the forward transfer indi-
cation. If no optional parameters were associated with the forward transfer indication,
then this parameter must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in NNI mode only.

Valid States
This primitive is valied in state CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

$Revision: 0.8.2.2 $ Page 102 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.3. Call Control Suspend Request

CC_SUSPEND_REQ
This message requests that the CCS provider suspend an established call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_suspend_req {
ulong cc_primitive; /* always CC_SUSPEND_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* suspend flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags: Specifies the suspend flags associated with the suspend request. Suspend flags specify
whether the request is for a user suspend or a network suspend. Suspend flags are
provider and protocol specific (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the suspend request. If
no optional parameters were associated with the suspend request, then this parameter
must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in mode UNI (User) and NNI.

Valid States
This primitive is valid in state CCS_CONNECTED.

New State
The new state is CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_SUSPEND_CON primitive.
• Unsuccessful: Unsuccessful completion is indicated via the CC_SUSPEND_REJECT_IND or CC_RE-

LEASE_IND primitive. The cause value in the CC_SUSPEND_REJECT_IND or CC_RELEASE_IND prim-
itive indicates the cause of failure.

• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCOUTSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 103 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.4. Call Control Suspend Indication

CC_SUSPEND_IND
This message indicates to the CCS user that the peer CCS user has requested the suspension of an establisehd
call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_suspend_ind {
ulong cc_primitive; /* always CC_SUSPEND_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* suspend flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags: Indicates the options associated with the suspend. Suspend flags are mode and protocol
dependent, see the addendum. Indicates the suspend flags associated with the suspend
indication. Suspend flags indicate whether the request is for a user suspend or a network
suspend. Suspend flags are provider and protocol specific (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the suspend indication.
If no optional parameters were associated with the suspend indication, then this parame-
ter must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in mode UNI (Network) and NNI.

Valid States
This primitive is valid in state CCS_CONNECTED or CCS_SUSPENDED.

New State
The new state is CCS_WRES_SUSIND for UNI and CCS_SUSPENDED for NNI.

$Revision: 0.8.2.2 $ Page 104 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.5. Call Control Suspend Response

CC_SUSPEND_RES
This message requests that the CCS provider accept a previous suspend indication.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_suspend_res {
ulong cc_primitive; /* always CC_SUSPEND_RES */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_res_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length: Specifies the length of the optional parameters associated with the suspend response. If
no optional parameters were associated with the suspend response, then this parameter
must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_WRES_SUSIND.

New State
The new state is CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCOUTSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 105 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.6. Call Control Suspend Confirmation

CC_SUSPEND_CON
This message indicates to the CCS user that the CCS provider has confirmed the CCS user request to suspend an
established call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_suspend_con {
ulong cc_primitive; /* always CC_SUSPEND_CON */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_con_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length: Indicates the length of the optional parameters associated with the suspend indication.
If no optional parameters were associated with the suspend indication, then this parame-
ter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State
The new state is CCS_SUSPENDED.

$Revision: 0.8.2.2 $ Page 106 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.7. Call Control Suspend Reject Request

CC_SUSPEND_REJECT_REQ
This message request that the CCS provider reject a previous suspend indication with the specified cause.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_suspend_reject_req {
ulong cc_primitive; /* always CC_SUSPEND_REJECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS user to identify the
call. Its value should be the same as the value returned by the CCS provider in the
CC_SETUP_IND or CC_SETUP_CON primitive.

cc_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the suspend reject re-
quest. If no optional parameters are associated with the suspend reject request, then this
parameter must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameter are associated with the suspend reject request, then this
parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_WRES_SUSIND.

New State
The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.2.2 $ Page 107 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.2.2 $ Page 108 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.8. Call Control Suspend Reject Confirmation

CC_SUSPEND_REJECT_IND
This message indicates to the requesting CCS user that a previous suspend request for an established call was re-
jected and the cause for rejection.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_suspend_reject_ind {
ulong cc_primitive; /* always CC_SUSPEND_REJECT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the suspend reject indica-
tion. If no optional parameters are associated with the suspend reject indication, then
this parameter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameter are associated with the suspend reject indication, then
this parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State
The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

$Revision: 0.8.2.2 $ Page 109 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.9. Call Control Resume Request

CC_RESUME_REQ
This message requests that the CCS provider resume a previously suspended call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_resume_req {
ulong cc_primitive; /* always CC_RESUME_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* suspend flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS user to identify the
call to the CCS provider. The value should be the same as the value indicated by the
CCS provider in a previous CC_SETUP_IND or CC_SETUP_CON primitive.

cc_flags: Specifies the options associated with the resume. Resume flags are provider and proto-
col dependent (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the resume request. If no
optional parameters are associated with the resume request, then this parameter must be
coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameter are associated with the resume request, then this param-
eter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User) and NNI.

Valid States
This primitive is valid in state CCS_SUSPENDED.

New State
The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.2.2 $ Page 110 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.2.2 $ Page 111 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.10. Call Control Resume Indication

CC_RESUME_IND
This message indicates to the CCS user that the peer CCS user has requested that a previously suspended call be
resumed.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_resume_ind {
ulong cc_primitive; /* always CC_RESUME_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* suspend flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags: Indicates the options associated with the resume. Resume flags are mode and protocol
dependent, see the addendum.

cc_opt_length: Indicates the length of the optional parameters associated with the resume indication. If
no optional parameters are associated with the resume indication, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameter are associated with the resume indication, then this pa-
rameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (Network) and NNI.

Valid States
This primitive is valid in state CCS_SUSPENDED.

New State
The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or in another
sense (network or user), otherwise the new state remains CCS_SUSPENDED.

$Revision: 0.8.2.2 $ Page 112 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.11. Call Control Resume Response

CC_RESUME_RES
This message requests that the CCS provider accept a previous request to resume a suspended call.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_resume_res {
ulong cc_primitive; /* always CC_RESUME_RES */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_res_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS user to identify the
call to the CCS provider. Its value should be the same as the value indicated by a previ-
ous CC_SETUP_IND or CC_SETUP_CON primitive for the call.

cc_opt_length: Specifies the length of the optional parameters associated with the resume response. If
no optional parameters are associated with the resume response, then this parameter
must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameter are associated with the resume response, then this pa-
rameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (Network) and for compatibility in NNI mode.

Valid States
This primitive is valid in state CCS_WRES_SUSIND.

For compatibility with UNI, NNI should ignore, yet positively acknowledge, this primitive if received in the
CCS_CONNECTED or CCS_SUSPENDED states where the all is not suspended in the sense confirmed.

New State
The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

$Revision: 0.8.2.2 $ Page 113 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.2.2 $ Page 114 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.12. Call Control Resume Confirmation

CC_RESUME_CON
This message indicates to the requesting CCS user that a previous request to resume a suspended call has been
confirmed.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_resume_con {
ulong cc_primitive; /* always CC_RESUME_CON */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_con_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length: Indicates the length of the optional parameters associated with the resume confirmation.
If no optional parameters are associated with the resume confirmation, then this parame-
ter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameter are associated with the resume confirmation, then this
parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State
The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

$Revision: 0.8.2.2 $ Page 115 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.13. Call Control Resume Reject Request

CC_RESUME_REJECT_REQ
This message requests that the CCS provider reject a previous requst to resume a suspended call with the speci-
fied cause.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_resume_reject_req {
ulong cc_primitive; /* always CC_RESUME_REJECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS user to identify the
call to the CCS provider. Its value should be the same as the value indicated in a previ-
ous CC_SETUP_IND or CC_SETUP_CON primitive by the CCS provider for the call.

cc_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the resume reject request.
If no optional parameters are associated with the resume reject request, then this param-
eter must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameters are associated with the resume reject request, then this
parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_WRES_SUSIND.

New State
The new state is CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.2.2 $ Page 116 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.2.2 $ Page 117 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.5.14. Call Control Resume Reject Indication

CC_RESUME_REJECT_IND
This message indicates to the requesting CCS user that a previous request to resume a suspended call has been
rejected and the cause for rejection.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_resume_reject_ind {
ulong cc_primitive; /* always CC_RESUME_REJECT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the resume reject indica-
tion. If no optional parameters are associated with the resume reject indication, then
this parameter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameters are associated with the resume reject indication, then
this parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State
The new state is CCS_SUSPENDED.

$Revision: 0.8.2.2 $ Page 118 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6. Call Termination Phase
The following call control service primitives pertain to the Termination phase of a call.

4.2.6.1. Call Control Reject Request

CC_REJECT_REQ
This message is used to reject a call before any request for more information, or request for indication of pro-
ceeding, alerting, progress, or in-band information has been attempted. The message also includes the cause of
the rejection.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_reject_req {
ulong cc_primitive; /* always CC_REJECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference of the CC_SETUP_IND when the CC_REJECT_REQ prim-
itive is used in response to the CC_SETUP_IND on a listening stream. Otherwise, this
parameter is coded zero and is ignored by the CCS provider.

cc_cause: Specifies the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the reject request. If no
optional parameters are associated with the reject request, then this parameter must be
coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameters are associated with the reject request, then this parame-
ter must be coded zero.

Valid Modes
This primitive is only valid in the UNI mode (User or Network). (NNI users should use the CC_RE-
LEASE_REQ primitive in the same situation.)

Valid State
This primitive is valid in state CCS_WRES_SIND.

New State
The new state is CCS_IDLE.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

$Revision: 0.8.2.2 $ Page 119 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.2.2 $ Page 120 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6.2. Call Control Reject Indication

CC_REJECT_IND
This message indicates to the CCS user that a previous setup request has been rejected by the peer CCS user and
indicates the cause of the rejection.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_reject_ind {
ulong cc_primitive; /* always CC_REJECT_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_user_ref: Indicates the CCS user reference of the associated CC_SETUP_REQ primitive that was
rejected.

cc_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the reject indication. If
no optional parameters are associated with the reject indication, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameters are associated with the reject indication, then this pa-
rameter must be coded zero.

Valid Modes
This primitive is only valid in the UNI mode (User or Network).

Valid State
This primitive is valid in state CCS_WCON_SREQ.

New State
The new state is CCS_IDLE.

$Revision: 0.8.2.2 $ Page 121 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6.3. Call Control Call Failure Indication

CC_CALL_FAILURE_IND
This primitive indicates to the CCS user that the call on the selected address (circuit, circuit group) has failed.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_call_failure_ind {
ulong cc_primitive; /* always CC_CALL_FAILURE_IND */
ulong cc_call_ref; /* call reference */
ulong cc_reason; /* reason for failure */
ulong cc_cause; /* cause to use in release */

} CC_call_failure_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_reason: Indicates the reason for the failure. Reasons are provider and protocol specific (see Ad-
dendum).

cc_cause: Indicates the cause value for the failure. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length: Indicates the length of the optional parameters associated with the call failure indication.
If no optional parameters are associated with the call failure indication, then this param-
eter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block. If no optional parameters are associated with the call failure indication, then this
parameter must be coded zero.

Valid Modes"

Valid Modes
This primitive is valid in NNI mode only.

Valid States
This primitive is valid in any state other than CCS_IDLE, CCS_WIND_MORE, CCS_WREQ_INFO,
CCS_WCON_SREQ, and CCS_WIND_PROCEED. In the aforementioned states (other than CCS_IDLE), a
CC_CALL_REATTEMPT_IND should be issued instead.

New State
The new state is CCS_IDLE.

$Revision: 0.8.2.2 $ Page 122 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6.4. Call Control Disconnect Request

CC_DISCONNECT_REQ
This primitive request that the CCS provider indicate to the calling CCS user that in-band information may now
be available in the voice channel reflecting the specified cause. The CC_DISCONNECT_REQ primitive is an in-
vitation to the remote CCS user to release the call channel.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_disconnect_req {
ulong cc_primitive; /* always CC_DISCONNECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_req_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the CC_DISCONNECT_REQ message. It is used by the
CCS provider to associated the CC_DISCONNECT_REQ message with an outstanding
CC_SETUP_IND message. An invalid call reference should result in error with the er-
ror type CCBADCLR.

cc_cause: Indicates the cause value for the disconnect.

cc_opt_length: Indicates the length of the optional parameters associated with the disconnect request.
If no optional parameters are associated with the disconnect request, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid only in UNI (Network or User) mode.

Valid States
This primitive is valid in states CCS_WREQ_MORE, CCS_WREQ_PROCEED, CCS_WREQ_ALERTING and
CCS_WREQ_PROGRESS.

New State
The new state is CCS_WREQ_CONNECT.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out

$Revision: 0.8.2.2 $ Page 123 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.2.2 $ Page 124 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6.5. Call Control Disconnect Indication

CC_DISCONNECT_IND
This primitive indicates to the calling CCS user that there is in-band information now available in the voice chan-
nel.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_disconnect_ind {
ulong cc_primitive; /* always CC_DISCONNECT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_cause: Indicates the cause value for the disconnect.

cc_opt_length: Indicates the length of the optional parameters associated with the in-band information
request. If no optional parameters are associated with the in band information request,
then this parameter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid States
This primitive is valid in states CCS_WIND_MORE, CCS_WREQ_INFO, CCS_WIND_PROCEED,
CCS_WIND_ALERTING, CCS_WIND_PROGRESS and CCS_WIND_CONNECT.

New State
The new state is CCS_WIND_CONNECT

$Revision: 0.8.2.2 $ Page 125 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6.6. Call Control Release Request

CC_RELEASE_REQ
This primitive request that the CCS provider release the call and provide the specified cause value to the remote
CCS user.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_release_req {
ulong cc_primitive; /* always CC_RELEASE_REQ */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_user_ref: Specifies the user call reference of the CC_SETUP_REQ when the CC_RE-
LEASE_REQ primitive is used in response to the CC_SETUP_REQ and before a
CC_SETUP_CON is issued. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc_call_ref: Specifies the call reference of the CC_SETUP_IND when the CC_RELEASE_REQ
primitive is used in response to the CC_SETUP_IND on a listening stream. Otherwise,
this parameter is coded zero and is ignored by the CCS provider.

cc_cause: Specifies the cause of the release. Cause values are CCS provider and protocol specific.
See the addendum for protocol specific values.

cc_opt_length: Specifies the length of the optional parameters associated with the release request. If no
optional parameters are associated with the release request, then this parameter must be
coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (User or Network) and NNI modes.

Valid States
This primitive is valid from any call state other than CCS_IDLE and CCS_WCON_RELREQ.

New State
If the current state is CCS_WRES_RELIND, the new state is CCS_IDLE. If the current state is other than
CCS_WRES_RELIND, the new state is CCS_WCON_RELREQ.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_RELEASE_IND or CC_RELEASE_CON primi-
tives.

• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

$Revision: 0.8.2.2 $ Page 126 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.2.2 $ Page 127 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6.7. Call Control Release Indication

CC_RELEASE_IND
This primitive indicates that the remote CCS user or CCS provider hsa released the call with the specified cause
value.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_release_ind {
ulong cc_primitive; /* always CC_RELEASE_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_user_ref: Indicates the user call reference of the CC_SETUP_REQ when the CC_RE-
LEASE_IND primitive is used in response to the CC_SETUP_REQ and before a
CC_SETUP_CON is issued. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc_call_ref: Indicates the call reference of the CC_SETUP_IND when the CC_RELEASE_IND
primitive is used in response to the CC_SETUP_IND on a listening stream. Otherwise,
this parameter is coded zero and is ignored by the CCS provider.

cc_cause: Indicates the cause of the release. Cause values are CCS provider and protocol specific.
See the addendum for protocol specific values.

cc_opt_length: Indicates the length of the optional parameters associated with the release indication. If
no optional parameters are associated with the release indication, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (User or Network) and NNI modes.

Valid States
This primitive is valid in any setup or established call state other than CCS_IDLE and CCS_WRES_RELIND.

New State
If the current state is CCS_WCON_RELREQ, the new state is CCS_IDLE. If the current state is other than
CCS_WCON_RELREQ, then new state is CCS_WRES_RELIND.

$Revision: 0.8.2.2 $ Page 128 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6.8. Call Control Release Response

CC_RELEASE_RES
This primitive indicates to the CCS provider that the release of the associated circuit is complete.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_release_res {
ulong cc_primitive; /* always CC_RELEASE_RES */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_res_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_user_ref: Specifies the user call reference of the CC_SETUP_REQ when the CC_RE-
LEASE_REQ primitive is used in response to the CC_SETUP_REQ and before a
CC_SETUP_CON is issued. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc_call_ref: Specifies the call reference of the CC_SETUP_IND when the CC_RELEASE_REQ
primitive is used in response to the CC_SETUP_IND on a listening stream. Otherwise,
this parameter is coded zero and is ignored by the CCS provider.

cc_opt_length: Specifies the length of the optional parameters associated with the release response. If
no optional parameters are associated with the release response, then this parameter
must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (User or Network) and NNI modes.

Valid States
This primitive is valid in state CCS_WRES_RELIND.

New State
The new state is CCS_IDLE.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCOUTSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 129 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.2.6.9. Call Control Release Confirmation

CC_RELEASE_CON
This primitive indicates to the releasing CCS user that the release of the associated circuit is complete.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_release_con {
ulong cc_primitive; /* always CC_RELEASE_CON */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_con_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_user_ref: Indicates the user call reference of the CC_SETUP_REQ when the CC_RE-
LEASE_IND primitive is used in response to the CC_SETUP_REQ and before a
CC_SETUP_CON is issued. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc_call_ref: Indicates the call reference of the CC_SETUP_IND when the CC_RELEASE_IND
primitive is used in response to the CC_SETUP_IND on a listening stream. Otherwise,
this parameter is coded zero and is ignored by the CCS provider.

cc_opt_length: Indicates the length of the optional parameters associated with the release confirmation.
If no optional parameters are associated with the release confirmation, then this parame-
ter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROT O message
block.

Valid Modes
This primitive is valid in UNI (User or Network) and NNI modes.

Valid States
This primitive is valid in state CCS_WCON_RELREQ.

New State
The new state is CCS_IDLE.

$Revision: 0.8.2.2 $ Page 130 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3. Management Primitive Formats and Rules
This section describes the format of the UNI (Network and User) and NNI management primitives and rules as-
sociated with these primitives.

4.3.1. Interface Management Primitives

4.3.1.1. Interface Management Restart Request

CC_RESTART_REQ
This primitive request the CCS provider to restart all the call control addresses (signalling interaface and chan-
nels) for the specified UNI interface.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_restart_req {
ulong cc_primitive; /* always CC_RESTART_REQ */
ulong cc_flags; /* restart flags */
ulong cc_addr_length; /* adddress length */
ulong cc_addr_offset; /* adddress offset */

} CC_restart_req_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identi-
fiers) upon which a restart was requested. The semantics of the values in the CC_RE-
SET_REQ is identical to the values in the CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the reporting address from the beginning of the M_PROT O mes-
sage block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

$Revision: 0.8.2.2 $ Page 131 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.1.2. Interface Management Restart Confirmation

CC_RESTART_CON
This primitive confirms to the requesting CCS user that the restart of the requested call control addresses (sig-
nalling interface and channels) for the specified UNI interace is complete.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_restart_ind {
ulong cc_primitive; /* always CC_RESTART_IND */
ulong cc_flags; /* restart flags */
ulong cc_addr_length; /* adddress length */
ulong cc_addr_offset; /* adddress offset */

} CC_restart_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identi-
fiers) upon which a restart was requested. The semantics of the values in the CC_RE-
SET_REQ is identical to the values in the CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the reporting address from the beginning of the M_PROT O mes-
sage block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

$Revision: 0.8.2.2 $ Page 132 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2. Circuit Management Primitives

4.3.2.1. Circuit Management Reset Request

CC_RESET_REQ
This primitive requests that the CCS provider reset the specified call control address(es) (signalling interface and
circuit identifiers) with the CCS user peer. For the NNI this primitive supports both the Circuit Reset Service as
well as the Circuit Group Reset Service.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_reset_req {
ulong cc_primitive; /* always CC_RESET_REQ */
ulong cc_flags; /* reset flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_req_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identi-
fiers) upon which a reset is requested. The semantics of the values in the CC_RE-
SET_REQ is identical to the values in the CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the reporting address from the beginning of the M_PROT O mes-
sage block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules
The following rules apply to the reset of call control addresses (signalling interface and circuit identifiers):

• The call control address must contain a signalling interface identifier and one or more circuit identifiers.
• The signalling interface identifier must identify an NNI signalling interface.
• When the call control address contains one circuit identifier, a non-group reset will be performed.
• When the call control address contains more than one circuit identifier, the CCS provider may either issue in-

dividual circuit resets, or may issue one or more group circuit resets.

Valid Modes
This primitive is only valid for call control address(es) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

New State
The new state is CCS_WCON_RESREQ for the specified address(es).

$Revision: 0.8.2.2 $ Page 133 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_RESET_CON primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCACCESS: The user did not have sufficient permission to perform the operation on the specified
call control addresses.

CCNOADDR: The call control address was not provided (cc_addr_length coded zero).

CCBADADDR: The call control address(es) contained in the primitive were poorly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state for the requested address(es).

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 134 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.2. Circuit Management Reset Indication

CC_RESET_IND
This primitive indicates that the peer CCS user has requested that the specified call control address(es) (signalling
interface and circuit identifiers) be reset.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_reset_ind {
ulong cc_primitive; /* always CC_RESET_IND */
ulong cc_flags; /* reset flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) that the peer CCS user has requested be reset.

cc_addr_offset: Indicates the offset of the call control address(es) (signalling interface and circuit identi-
fiers) from the beginning of the M_PROT O message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will not be issued for call control addresses in modes other than NNI mode.

Valid States
This primitive will only be issued for call control addresses for which no reset indication (CCS_IDLE) is already
pending.

New State
The new state is CCS_WRES_RESIND.

$Revision: 0.8.2.2 $ Page 135 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.3. Circuit Management Reset Response

CC_RESET_RES
This primitive request the CCS provider to complete the reset operation for the specified call control address(es)
(signalling interface and circuit identifiers) which was previously indicated with a CC_RESET_IND.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_reset_res {
ulong cc_primitive; /* always CC_RESET_RES */
ulong cc_flags; /* reset flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_res_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_flags: Indicates options flags for the operation. (See "Flags" below.)

cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) upon which the CCS user has accepted a reset.

cc_addr_offset: Indicates the offset of the call control address(es) (signalling interface and circuit identi-
fiers) from the beginning of the M_PROT O message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules
The following rules apply to the reset of call control addresses (signalling interface and circuit identifiers):

• The set of addresses specified must be a non-empty subset of the addresses which were specified in the indi-
cation primitive to which this primitive is responding.

• Only once the primitive is succesfully accepted by the CCS provider should the CCS provider take any ac-
tions whatsoever with regard to reset.

• Call control addresses included in the call control address list which are not equipped may be ignored by the
CCS provider.

Valid States
This primitive is valid in state CCS_WRES_RESIND for the specified address(es).

New State
The new state is CCS_WACK_RESRES for the specified address(es).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCACCESS: The user did not have sufficient permission to perform the operation on the specified
call control addresses.

$Revision: 0.8.2.2 $ Page 136 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCNOADDR: The call control address was not provided (cc_addr_length coded zero).

CCBADADDR: The call control address(es) contained in the primitive were poorly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 137 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.4. Circuit Management Reset Confirmation

CC_RESET_CON
This primitive confirms to the requesting CCS user that the specified call control address(es) (signalling interface
and circuit identifiers) have been successfully confirmed reset to the peer CCS user.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_reset_con {
ulong cc_primitive; /* always CC_RESET_CON */
ulong cc_flags; /* reset flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_con_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) upon which the CCS provider has confirmed a reset.

cc_addr_offset: Indicates the offset of the call control address(es) (signalling interface and circuit identi-
fiers) from the beginning of the M_PROT O message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for call control addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_WCON_RESREQ for the specified addresses.

New State
The new state is CCS_IDLE for the specified addresses.

$Revision: 0.8.2.2 $ Page 138 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.5. Circuit Management Blocking Request

CC_BLOCKING_REQ
This primitive request that the CCS provider locally block the specified call control address(es) (signalling inter-
face and circuit or circuit group) with the peer CCS user. For the NNI, this primitive supports both the Circuit
Blocking Service as well as the Circuit Group Blocking Service.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_blocking_req {
ulong cc_primitive; /* always CC_BLOCKING_REQ */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local blocking is requested. The semantics of the values
in the call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules
The following rules apply to the blocking of call control addresses (signalling interface and circuit or circuit
group identifiers):

• If the stream upon which the blocking request is issued is not bound (see CC_BIND_REQ), the call control
address must contain a signalling interface identifier and a circuit or circuit group identifier.

• If the stream upon which the blocking request is bound to a signalling interface and trunk group, and no call
control address(es) are provided (i.e, cc_addr_length is set to zero), the CCS provider may interpret the primi-
tive to be requesting blocking on all circuits in the trunk group.

• At any time that the primitive is issued without specifying a call control address (i.e, cc_addr_length is zero to
zero), the CCS provider may assign a call control address or addresses.

• If the CCS provider fails to assign a call control address or addresses, the primitive will fail with error CC-
NOADDR.

Valid Modes
This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

$Revision: 0.8.2.2 $ Page 139 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

New State
The new state is CCS_WCON_BLREQ for the specified address(es).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive.

• Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.
• Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND primi-

tive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation on the specified
addresses.

CCFLAGS: The flags were invalid or unsupported.

CCNOADDR: An address or addresses was not provided by the CCS user (i.e., cc_addr_length set
to zero) and the CCS provider could not assign an address or addresses.

CCBADADDR: The call control address contained in the primitive were illegaly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state for the requested address(es).

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 140 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.6. Circuit Management Blocking Indication

CC_BLOCKING_IND
This primitive indicates that the peer CCS user has requested that the specified call control address(es) (signalling
interface and circuit identifiers) be remotely blocked.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_blocking_ind {
ulong cc_primitive; /* always CC_BLOCKING_IND */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_ind_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies the options flags. See "Flags" below.

cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) that the peer CCS user has requested to be remotely blocked.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States
This primitive will only be issued by the CCS provider if the remote blocking state of the specified address(es) is
CCS_UNBLOCKED or CCS_BLOCKED.

New State
The new remote blocking state will be CCS_WRES_BLIND for the specified call control addresses.

$Revision: 0.8.2.2 $ Page 141 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.7. Circuit Management Blocking Response

CC_BLOCKING_RES
This primitive requests that the CCS provider respond to the previous blocking indication.

Format
The format is one M_PROT O message block. The structure of the M_PROT O message block is as follows:

typedef struct CC_blocking_res {
ulong cc_primitive; /* always CC_BLOCKING_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_res_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local blocking is requested. The semantics of the values
in the call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States
This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State
The new blocking state of the previously specified call controla addresses is the CCS_BLOCKED state.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CCS_RESET_IND

primitive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation.

CCOUSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 142 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.8. Circuit Management Blocking Confirmation

CC_BLOCKING_CON
This primitive confirms a previous blocking request (or indicates failure of a previous blocking request).

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_blocking_con {
ulong cc_primitive; /* always CC_BLOCKING_CON */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_con_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies the options flags and result of the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which local blocking is confirmed.

cc_addr_offset: Specifies the offset of the call controll adress(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States
This primitive will only be issued by the CCS provider if the local blocking state of the specified address(es) is
CCS_WCON_BLREQ.

New State
The new local blocking state will be CCS_BLOCKED for the specified call control addresses.

$Revision: 0.8.2.2 $ Page 143 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.9. Circuit Management Unblocking Request

CC_UNBLOCKING_REQ
This primitive requests that the CCS provider locally unblock the specified call control address(es) (signalling in-
terface and circuit or circuit group) with the peer CCS user. For the NNI, this primitive supports both Circuit Un-
blocking Servce as well as the Circuit Group Unblocking Service.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_unblocking_req {
ulong cc_primitive; /* always CC_UNBLOCKING_REQ */
ulong cc_flags; /* unblocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local unblocking is requested. The semantics of the val-
ues in the call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules
The following rules apply to the unblocking of call control addresses (signalling interface and circuit or circuit
group identifiers):

• If the stream upon which the unblocking request is issued is not bound (see CC_BIND_REQ), the call control
address must contain a signalling interface identifier and a circuit or circuit group identifier.

• If the stream upon which the unblocking request is bound to a signalling interface and trunk group, and no
call control address(es) are provided (i.e, cc_addr_length is set to zero), the CCS provider may interpret the
primitive to be requesting unblocking on all circuits in the trunk group.

• At any time that the primitive is issued without specifying a call control address (i.e, cc_addr_length is zero to
zero), the CCS provider may assign a call control address or addresses.

• If the CCS provider fails to assign a call control address or addresses, the primitive will fail with error CC-
NOADDR.

Valid Modes
This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

$Revision: 0.8.2.2 $ Page 144 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

New State
The new state is CCS_WCON_BLREQ for the specified address(es).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive.

• Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.
• Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND primi-

tive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation on the specified
addresses.

CCFLAGS: The flags were invalid or unsupported.

CCNOADDR: An address or addresses was not provided by the CCS user (i.e., cc_addr_length set
to zero) and the CCS provider could not assign an address or addresses.

CCBADADDR: The call control address contained in the primitive were illegaly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state for the requested address(es).

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 145 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.10. Circuit Management Unblocking Indication

CC_UNBLOCKING_IND
This primitive indicates that the peer CCS user has requested that the specified call control address(es) (signalling
interface and circuit identifiers) be remotely unblocked.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_unblocking_ind {
ulong cc_primitive; /* always CC_UNBLOCKING_IND */
ulong cc_flags; /* unblocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_ind_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies the options flags. See "Flags" below.

cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) that the peer CCS user has requested to be remotely unblocked.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States
This primitive will only be issued by the CCS provider if the remote blocking state of the specified address(es) is
CCS_UNBLOCKED or CCS_BLOCKED.

New State
The new remote blocking state will be CCS_WRES_UBIND for the specified call control addresses.

$Revision: 0.8.2.2 $ Page 146 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.11. Circuit Management Unblocking Response

CC_UNBLOCKING_RES
This primitive requests that the CCS provider respond to the previous unblocking indication.

Format
The format is one M_PROT O message block. The structure of the M_PROT O message block is as follows:

typedef struct CC_unblocking_res {
ulong cc_primitive; /* always CC_UNBLOCKING_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_res_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local unblocking is requested. The semantics of the val-
ues in the call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States
This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State
The new blocking state of the previously specified call control addresses is the CCS_UNBLOCKED state.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CCS_RESET_IND

primitive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation.

CCOUSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 147 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.12. Circuit Management Unblocking Confirmation

CC_UNBLOCKING_CON
This primitive confirms a previous unblocking request (or indicates failure of a previous unblocking request).

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_unblocking_con {
ulong cc_primitive; /* always CC_UNBLOCKING_CON */
ulong cc_flags; /* unblocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_con_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies the options flags and result of the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which local unblocking is confirmed.

cc_addr_offset: Specifies the offset of the call controll adress(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States
This primitive will only be issued by the CCS provider if the local unblocking state of the specified address(es) is
CCS_WCON_UBREQ.

New State
The new local unblocking state will be CCS_UNBLOCKED for the specified call control addresses.

$Revision: 0.8.2.2 $ Page 148 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.13. Circuit Management Query Request

CC_QUERY_REQ
This primitive requests that the CCS provider query specified call control address(es) (signalling interface and
circuit or circuit group) to the peer CCS user. For the NNI, this primitive supports the Circuit Group Query Ser-
vice.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_query_req {
ulong cc_primitive; /* always CC_QUERY_REQ */
ulong cc_flags; /* query flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which the query is requested. The semantics of the values in the
call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules
The following rules apply to the querying of call control addresses (signalling interface and circuit or circuit
group identifiers):

• If the stream upon which the query request is issued is not bound (see CC_BIND_REQ), the call control ad-
dress must contain a signalling interface identifier and a circuit or circuit group identifier.

• If the stream upon which the query request is bound to a signalling interface and trunk group, and no call con-
trol address(es) are provided (i.e, cc_addr_length is set to zero), the CCS provider may interpret the primitive
to be requesting status on all circuits in the trunk group.

• At any time that the primitive is issued without specifying a call control address (i.e, cc_addr_length is zero to
zero), the CCS provider may assign a call control address or addresses.

• If the CCS provider fails to assign a call control address or addresses, the primitive will fail with error CC-
NOADDR.

Valid Modes
This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

$Revision: 0.8.2.2 $ Page 149 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

New State
The new state is CCS_WCON_BLREQ for the specified address(es).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive.

• Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.
• Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND primi-

tive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation on the specified
addresses.

CCFLAGS: The flags were invalid or unsupported.

CCNOADDR: An address or addresses was not provided by the CCS user (i.e., cc_addr_length set
to zero) and the CCS provider could not assign an address or addresses.

CCBADADDR: The call control address contained in the primitive were illegaly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state for the requested address(es).

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 150 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.14. Circuit Management Query Indication

CC_QUERY_IND
This primitive indicates that the peer CCS user has requested that the specified call control address(es) (signalling
interface and circuit identifiers) be queried.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O message block is
as follows:

typedef struct CC_query_ind {
ulong cc_primitive; /* always CC_QUERY_IND */
ulong cc_flags; /* query flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_ind_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies the options flags. See "Flags" below.

cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) that the peer CCS user has requested to be queried.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States
This primitive is valid in any state for the specified address(es).

New State
The new query state will be CCS_WRES_QIND for the specified call control addresses and the number of out-
standing queries for the specified call control addresses will be incremented.

$Revision: 0.8.2.2 $ Page 151 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.15. Circuit Management Query Response

CC_QUERY_RES
This primitive requests that the CCS provider respond to the previous query indication.

Format
The format is one M_PROT O message block. The structure of the M_PROT O message block is as follows:

typedef struct CC_query_res {
ulong cc_primitive; /* always CC_QUERY_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_res_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which the query is requested. The semantics of the values in the
call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States
This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State
The new query state of the previously specified call control addresses is the CCS_IDLE or CCS_WRES_QIND
state and the query backlog is decremented.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CCS_RESET_IND

primitive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation.

CCOUSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 152 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.2.16. Circuit Management Query Confirmation

CC_QUERY_CON
This primitive confirms a previous query request (or indicates failure of a previous query request).

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_query_con {
ulong cc_primitive; /* always CC_QUERY_CON */
ulong cc_flags; /* query flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_con_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_flags: Specifies the options flags and result of the operation. (See "Flags" below.)

cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which status is confirmed.

cc_addr_offset: Specifies the offset of the call controll adress(es) from the beginning of the M_PROT O
message block.

Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States
This primitive will only be issued by the CCS provider if the query state of the specified address(es) is
CCS_WCON_QREQ.

New State
The new query state will be CCS_IDLE for the specified call control addresses.

$Revision: 0.8.2.2 $ Page 153 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.3. Maintenance Primitives

4.3.3.1. Maintenance Indication

CC_MAINT_IND
This primitive indicates that the CCS provider has observed an event on the indicated call control address(es)
which requires a maintenance action.

Format
The format of this message is one M_PROT O message block followed by zero or more M_DAT A blocks. The
structure of the M_PROT O message block is as follows:

typedef struct CC_maint_ind {
ulong cc_primitive; /* always CC_MAINT_IND */
ulong cc_reason; /* reason for indication */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* length of address */
ulong cc_addr_offset; /* length of address */

} CC_maint_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_reason: Indicates the reason for the maintenance indication. Maintenance indication reasons are
protocol and provider-specific. For additional information see the Addendum.

cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) upon which the CCS provider is giving a maintenance indication.

cc_addr_offset: Indicates the offset of the call control address(es) from the beginning of the M_PROT O
message block.

Valid Modes
This primitive is valid in UNI (Network) mode and NNI mode.

Valid States
This primitive is valid in any state.

New State
The new state is unchanged.

$Revision: 0.8.2.2 $ Page 154 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.4. Circuit Continuity Test Primitives
This section describes the format of the NNI circuit continuity test primitives and rules associated with these
primitives. Continuity test primitives are used by NNI management interfaces for performing continuity test re-
quests or responding to continuity test indications for specified or indicated circuits. These primitives are pro-
vided to allow the NNI to meet Q.764 conformance.

4.3.4.1. Circuit Continuity Check Request

CC_CONT_CHECK_REQ
This primitive requests that the CCS provider perform a continuity check procedure.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_cont_check_req {
ulong cc_primitive; /* always CC_CONT_CHECK_REQ */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_check_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_addr_length: Specifies the length of the call control address (circuit identifier) upon which the CCS
user is requesting a continuity check.

cc_addr_offset: Specifies the offset of the call control address from the beginning of the M_PROT O
message block.

Rules
The following rules apply to the continuity check of call control addresses (circuit identifiers):

• If the CCS user does not specify a call control address (i.e, cc_addr_length is set to zero), then the CCS
provider may attempt to assign a call control address and associate it with the stream for the duration of the
continuit test procedure. This can be useful for automated continuity testing.

Valid Modes
This primitive is only valid in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the selected circuit.

New State
The new state is CKS_WIND_CTEST for the selected address.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_CONT_TEST_IND primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.2.2 $ Page 155 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCNOADDR: The call control address was not provided (cc_addr_length coded zero).

CCBADADDR: The call control address contained in the primitive were poorly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling address
was provided in the call control address or the address was issued to a UNI CCS
provider.

CCACCESS: The user did not have sufficient permission to perform the operation on the specified
call control addresses.

$Revision: 0.8.2.2 $ Page 156 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.4.2. Circuit Continuity Check Indication

CC_CONT_CHECK_IND
This primitive indicates to the CCS user that a continuity check is being requested by the CCS user peer on the
specified call control address(es) (signalling interface and circuit identifiers). Upon receipt of this primitive, the
CCS user should establish a loop back device on the specified channel and issues the CC_CONT_TEST_REQ
primitive confirming the loop back. The CCS user should then wait for the CC_CONT_REPORT_IND indicat-
ing the success or failure of the continuity check.

This primitive is only delivered to listening streams listening on the specified call control addresses or to a stream
bound as a default listener in the same manner as the CC_SETUP_IND. (A continuity test indication is treated as
a special form of call setup.)

This primitive is only issued to CCS users that successfully bound using the CC_BIND_REQ primitive with flag
CC_TEST set and a non-zero number of setup indications was provided in the CC_BIND_REQ and returned in
the CC_BIND_ACK.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_cont_check_ind {
ulong cc_primitive; /* always CC_CONT_CHECK_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_check_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Identifies the call reference that can be used by the CCS user to associate this message
with the CC_CONT_TEST_REQ or CC_RELEASE_REQ primitive that is to follow.
This value must be unique among the outstanding CC_CONT_CHECK_IND messages.

cc_addr_length: Indicates the length of the call control address (circuit identifier) upon which a continu-
ity check is indicated.

cc_addr_offset: Indicates the offset of the requesting address from the beginning of the M_PROT O mes-
sage block.

Valid Modes
This primitive is only valid for addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the specified addresses.

New State
The new state is CKS_WREQ_CTEST for the specified addresses.

$Revision: 0.8.2.2 $ Page 157 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.4.3. Circuit Continuity Test Request

CC_CONT_TEST_REQ
This message is used either to respond to a CC_SETUP_IND primitive which contains the
ISUP_NCI_CONT_CHECK_REQUIRED flag, or to respond to a CC_CONT_CHECK_IND primitive. Before
responding to either primitive, the CCS User should install a loop back device on the requested channel and then
respond with this response primitive to confirm the loop back.

Format
The format of this message is on M_PROT O message block. The structure of the M_PROT O block is as follows:

typedef struct CC_cont_test_req {
ulong cc_primitive; /* always CC_CONT_TEST_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_token_value; /* token value */

} CC_cont_test_req_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the CC_CONT_TEST_REQ message. It is used by the
CCS provider to associate the CC_CONT_TEST_REQ message with an outstanding
CC_SETUP_IND message. An invalid call reference should result in error with the er-
ror type CCBADCLR.

cc_token_value: Is used to identify the stream that the CCS user wants to establish the continuity check
call on. (Its value is determined by the CCS user by issuing a CC_BIND_REQ primi-
tive with the CC_TOKEN_REQUEST flag set. The token value is returned in the
CC_BIND_ACK.) The value of this field should be non-zero when the CCS user wants
to establish the call on a stream other than the stream on which the
CC_CONT_CHECK_IND arrived. If the CCS user wants to establish a call on the same
stream that the CC_CONT_CHECK_IND arrived on, then the value of this field should
be zero.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CKS_WREQ_CTEST.

New State
The new state is CKS_WIND_CCREP.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_CONT_REPORT_IND in the case that the primi-
tive was issued in response to a CC_SETUP_IND, or CC_RELEASE_IND primitive in the case that the prim-
itive was issued in response to the CC_CONT_CHECK_IND primitive.

• Unsuccessful: Unsuccessful completion is indicated via the CC_CONT_REPORT_IND primitive.
• Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors

are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 158 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCACCESS: The user did not have proper permissions for the operation.

CCNOTSUPP: The CCS provider does not support the operation.

$Revision: 0.8.2.2 $ Page 159 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.4.4. Circuit Continuity Test Indication

CC_CONT_TEST_IND
This message confirms to the testing CCS user that a loop back device has been (or will be) installed on the spec-
ified call control address (circuit). Upon receiving this message, the testing CCS user should connect tone gener-
ation and detection equipment to the specified circuit, perform the continuity test and issue a report using the
CC_CONT_REPORT_REQ primitive.

This primitive will only be issued to streams successfully bound with the CC_BIND_REQ primitive with a non-
zero number of setup indications and the CC_TEST bind flag set.

Format
The format of this message is on M_PROT O message block. The structure of the M_PROT O block is as follows:

typedef struct CC_cont_test_ind {
ulong cc_primitive; /* always CC_CONT_TEST_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_test_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference associated with the continuity check call for the specified
call control address (circuit identifier).

cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identifier)
upon which a continuity check is confirmed. The semantics of the values in the
CC_CONT_TEST_IND is identical to the values in the CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the connecting address from the beginning of the M_PROT O
message block.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WCON_CREQ.

New State
The new state is CCS_WAIT_COR.

$Revision: 0.8.2.2 $ Page 160 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.4.5. Circuit Continuity Report Request

CC_CONT_REPORT_REQ
This primitive requests that the CCS provider indicate to the called CCS user that the continuity check succeeded
or failed. The CCS user should remove any continuity test tone generator/detection device from the circuit and
verify silent code loop back before issuing this primitive.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_cont_report_req {
ulong cc_primitive; /* always CC_CONT_REPORT_REQ */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC_cont_report_req_t;

Parameters
cc_primitive: Specifies the primitive type.

cc_user_ref: Specifies the CCS user reference of the associated CC_SETUP_REQ primitive. This
value is non-zero when the CC_CONT_REPORT_REQ primitive is issued subsequent
to a CC_SETUP_REQ primitive which had the flag ISUP_NCI_CONTINU-
ITY_CHECK_PREVIOUS set to indicate the result of the continuity check on the previ-
ous circuit. Otherwise, this value is coded zero.

cc_call_ref: Specifies the call reference of the associated CC_CONT_TEST_IND primitive for the
continuity check call. This value is non-zero when the CC_CONT_REPORT_REQ
primitive is issued in response to a CC_CONT_TEST_IND primitive. Otherwise, this
value is coded zero.

cc_result: Specifies the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CCREP.

New State
When issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE. When issued
subsequent to a CC_SETUP_REQ primitive, the new state is either CCS_WREQ_MORE or CCS_WREQ_PRO-
CEED, depending upon whether the sent address contain an ST pulse.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

• Successful: Successful completion is indicated via the CC_OK_ACK primitive.
• Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable

non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.2.2 $ Page 161 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADPRIM: The primitive format was incorrect.

$Revision: 0.8.2.2 $ Page 162 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.4.6. Circuit Continuity Report Indication

CC_CONT_REPORT_IND
This primitive indicates to the called CCS user that the continuity check succeeded or failed. The called CCS
user can remove the loop back or tone generation/detection devices from the circuit and the call either moves to
the idle state or a call setup state.

Format
The format of this message is one M_PROT O message block. The structure of the M_PROT O block is as fol-
lows:

typedef struct CC_cont_report_ind {
ulong cc_primitive; /* always CC_CONT_REPORT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC_cont_report_ind_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference associated with the continuity check report as it appeared in
the associated CC_CONT_CHECK_IND primitive.

cc_result: Indicates the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CTEST or CCS_WIND_CCREP.

New State
If the primitive is issued subsequent to the CC_SETUP_REQ, the new state is CCS_WCON_SREQ. If the prim-
itive is issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE.

$Revision: 0.8.2.2 $ Page 163 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

4.3.5. Collecting Information Phase
The following call control service primitive pertain to the collecting information phase of a call.

$Revision: 0.8.2.2 $ Page 164 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

5. Diagnostics Requirements
Tw o error handling facilities should be provided to the call control service user: one to handle non-fatal errors,
ant the other to handle fatal errors.

5.1. Non-Fatal Error Handling Facility
These are errors that do not change the state of the call control service interface or the call reference as seen by
the call control service user, and provide the user the option of reissuing the call control service primitive with
the corrected options specification. The non-fatal error handling is provided only to those primitive that require
acknowledgments, and uses the CC_ERROR_ACK primitive to report these errors. These errors retain the state
of the call control service interface and call reference the same as it was before the call control service provider
received the primitive that was in error. Syntax errors and rule violations are reported via the non-fatal error han-
dling facility.

5.2. Fatal Error Handling Facility
These errors are issued by the CCS provider when it detects errors that are not correctable by the call control ser-
vice user, or if it is unable to report a correctable error to the call control service user. Fatal errors are indicated
via the STREAMS message type M_ERROR with the UNIX system error EPROT O. The M_ERROR
STREAMS message type will result in the failure of all the UNIX system calls on the stream. The call control
service user can recover from a fatal error by having all the processes close the files associated with the stream,
and then reopening them for processing.

$Revision: 0.8.2.2 $ Page 165 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

6. Addendum for Q.931 Conformance
This addendum describes the formats and rules that are specific to ISDN Q.931. The addendum must be used
along with the generic CCI as defined in the main document when implementing a CCS provider that will be
configured with the Q.931 call processing layer.

6.1. Primitives and Rules for Q.931 Conformance
The following are the rules that apply to the CCI primitives for Q.931 compatibility.

6.1.1. Common Primitive Parameters

6.1.1.1. Call Control Addresses

Format
The format of call control addresses is as follows:

Parameters
cc_addr_length: Specifies or indicates the length of the call control address. If a call control address is

not included in the primitive, this parameter must be coded zero (0).

cc_addr_offset: Specifies or indicates the offset of the address from the begining of the primitive. If a
call control address is not included with the primitive, this parameter must be coded zero
(0).

Address Format
The format of the call control addresses for Q.931 conforming CCS providers is as follows:

typedef struct isdn_addr {
ulong scope; /* the scope of the identifier */
ulong id; /* the identifier within the scope */
ulong ci; /* channel identifier within the scope */

} isdn_addr_t;

#define ISDN_SCOPE_CH 1 /* channel scope */
#define ISDN_SCOPE_FG 2 /* facility group scope */
#define ISDN_SCOPE_TG 3 /* transmission group scope */
#define ISDN_SCOPE_EG 4 /* equipment group scope */
#define ISDN_SCOPE_XG 5 /* customer/provider group scope */
#define ISDN_SCOPE_DF 6 /* default scope */

Address Fields
scope: Specifies or indicates the scope of the call control address. See "Scope" below.

id: Specifies or indicates the identifier within the scope.

cic: Specifies or indicates the Channel Indicator significant within the scope.

Scope
The scope of the address is one of the following:

ISDN_SCOPE_CH Specifies or indicates that the scope of the call control address is an ISDN B-channel.
The identifier within the scope is an identifier which uniquely identifies the channel to
the CCS provider. Channel scope addresses may also be used to specify or indicate
transmission groups, equipment groups and customer/provider groups. When used in an
indication or confirmation primitive, the CCS provider includes the Channel Identifica-
tion associated with the circuit in the address.

$Revision: 0.8.2.2 $ Page 166 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

For multi-rate calls where multiple channels are involved, the channel scoped address
specifies the lowest numerical Channel Identifier in the group of circuits and the Chan-
nel Identifier provides the channel map of the group of channels.

ISDN_SCOPE_FG Specifies or indicates that the scope of the call control address is an ISDN facility group
(group of one or more redundant D-channels). The identifier within the scope is an
identifier which uniquely identifies the ISDN interface to the CCS provider. Facility
group scope addresses may also be used to specify or indicate channels, equipment
groups or customer/provider groups. When used in an indication or confirmation primi-
tive, the CCS provider includes the Channel Identifier associated with the indicated
channels.

ISDN_SCOPE_TG Specifies or indicates that the scope of the call control address is an ISDN transmission
group (PRI interface). The identifier within the scope is an indentifier which uniquely
identifies the ISDN physical interface to the CCS provider. Transmission group scope
addresses may also be used to specify or indicate equipment groups or cus-
tomer/provider groups. When used in an indication or confirmation primitive, the CCS
provider may include the Channel Identifier associated with the facility group for the
physical interface.

ISDN_SCOPE_EG Specifies or indicates that the scope of the call control address is an ISDN equipment
group. The identifier within the scope is an identifier that uniquely identifies the equip-
ment group to the CCS provider. Equipment group scoped addresses may aslo be used
to specify or indicate customer/provider groups.

ISDN_SCOPE_XG Specifies or indicates that the scope of the call control address is an ISDN cus-
tomer/provider group. The identifier within the scope is an identifier that uniquely iden-
tifies the customer/provider group to the CCS provider.

ISDN_SCOPE_DF Specifies or indicates that the scope of the call control address is the default scope. The
identifier within the scope and Channel Identifier are unused and should be ignored by
the CCS user and will be coded zero (0) by the CCS provider.

Rules
Rules for scope:

(1) In primitives in which the address parameter occurs, the scope field setting indicates the scope of the ad-
dress parameter.

(2) Only one call control address can be specified with a signle scope.

(3) Not all scopes are necessarily supported by all primitives. See the particular primitive in this addendum.

Rules for addresses:

(1) The address contained in the primitive contains the following:

• A scope.
• An identifier within the scope or zero (0).
• A channel indication within the scope or zero (0).

(2) If the scope of the address is ISDN_SCOPE_DF, then both the identifier and channel indication fields
should be coded zero (0) and will be ignored by the CCS user or provider.

(3) If the scope of the address is ISDN_SCOPE_EG or ISDN_SCOPE_XG, then the channel indication field
should be coded zero (0) and will be ignored by the CCS user or provider.

(4) In all other scopes, the channel indication field is optional and is coded zero (0) if unused.

6.1.1.2. Optional Information Elements

$Revision: 0.8.2.2 $ Page 167 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Format
The format of the optional information elements is as follows:

Parameters
cc_opt_length: Indicates the length of the optional information elements associated with the primitive.

For Q.931 conforming CCS providers, the format of the optional information elements
is the format of a Information Element list as specified in Q.931.

cc_opt_offset: indicates the offset of the option information elements from the beginning of the block.

Rules
Rules for optional information elements:

(1) The optional information elements provided by the CCS user may be checked for syntax by the CCS
provider. If the CCS provider discovers a syntax error in the format of the optional information elements,
the CCS provider should respond with a CC_ERROR_ACK primitive with error CCBADOPT.

(2) For some primitives, specific optional information elements might be interpreted by the CCS provider
and alter the function of some primitives. See the specific primitive descriptions later in this addendum.

(3) Except for optional information elements interpreted by the CCS provider as specified later in this adden-
dum, the optional information elements are treated as opaque and the optional information element list
only is checked for syntax. Opaque information elements will be passed to the ISDN message without
examination by the CCS provider.

(4) To perform specific functions, additional optional information elements may be added to ISDN messages
by the CCS provider.

(5) To perform specific functions, optional information elements may be modified by the CCS provider be-
fore they are added to ISDN messages.

6.1.2. Local Management Primitives

6.1.2.1. CC_INFO_ACK

Parameters

Flags

Rules

6.1.2.2. CC_BIND_REQ

Parameters
cc_addr_length: Specifies the length of the address to bind.

cc_addr_offset: Specifies the offset of the address to bind.

cc_setup_ind: Specifies the requested maximum number of setup indications that will be outstanding
for the listening stream.

Flags
CC_DEFAULT_LISTENER

CC_CHANNEL

CC_CHANNEL_GROUP

CC_TRUNK_GROUP
When on of these flags are set, it indicates that the address is interpreted by the CCS provider as

$Revision: 0.8.2.2 $ Page 168 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

unspecified (CC_DEFAULT_LISTENER), a channel (CC_CHANNEL), as a channel group
(CC_CHANNEL_GROUP), or as a trunk group (CC_TRUNK_GROUP).

Rules
Rules for address specification:

(1) The address contained in the primitive must be either a unspecified, a channel, a channel group or a trunk
group.

(2) If the CC_DEFAULT_LISTENER flag is set, the address should be left unspecified by the CCS user and
should be ignored by the CCS provider.

Rules for setup indicatesion:

(1) If the number of setup indications is non-zero, the stream is bound as a listening stream. Listening
streams will receive all calls that are incoming on the address bound:

• If the address bound is a channel (CC_CHANNEL flag set), all incoming calls on the channel will be
delivered to the stream listening on the channel. These streams will have a maximum number of
setup indications of one (1).

• If the address bound is a channel group (CC_CHANNEL_GROUP flag set), all incoming calls on the
channel group will be delivered to the stream listening on the channel group. These streams will have
a maximum number of setup indications no higher than the number of channels in the channel group.

• If the address bound is a trunk group (CC_TRUNK_GROUP flag set), all incoming calls on the trunk
group will be delivered to the stream listening on the trunk group. These streams will have a maxi-
mum number of setup indications no higher than the number of channels in the trunk group.

Rules for bind flags:

(1) For Q.931 conforming CCS providers, the CC_DEFAULT_LISTENER will receive incoming calls that
have no other listening stream. There can only be one stream bound with the CC_DEFAULT_LIS-
TENER flag set.

(2) Only one of CC_DEFAULT_LISTENER, CC_CHANNEL, CC_CHANNEL_GROUP or
CC_TRUNK_GROUP may be set.

6.1.2.3. CC_BIND_ACK

Parameters

Flags

Rules

6.1.2.4. CC_OPTMGMT_REQ

Parameters

Flags

Rules

6.1.3. Call Setup Primitives

6.1.3.1. Call Type and Flags
Call type and flags are used in the following primitives:

CC_SETUP_REQ and
CC_SETUP_IND.

$Revision: 0.8.2.2 $ Page 169 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Parameters
cc_call_type: Indicates the type of call to be set up. For Q.931 conforming CCS providers, the call

type can be one of the call types listed under "Call Type" below.

cc_call_flags: Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Flags" below.

Call Type
The following call types are defined for Q.931 conforming CCS providers:

CC_CALL_TYPE_SPEECH
The call type is speech. This call type corresponds to a Q.931 Information transfer capability of
Speech, and an Information transfer rate of 64kbit/s.

CC_CALL_TYPE_64KBS_UNRESTRICTED
The call type is 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 Infor-
mation transfer capability of Unrestricted, and an Information transfer rate of 64kbit/s.

CC_CALL_TYPE_3_1kHZ_AUDIO
The call type is 3.1 kHz audio. This call type corresponds to a Q.931 Information transfer capability of
Unrestricted, and an Information transfer rate of 64kbits/s.

CC_CALL_TYPE_128KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of 2x64 kbit/s.

CC_CALL_TYPE_384KBS_UNRESTRICTED
The call type is 384 kbit/s unrestricted digital information. This call type corresponds to a Q.931 Infor-
mation transfer capability of Unrestricted, and an Information transfer rate of 384 kbit/s.

CC_CALL_TYPE_1536KBS_UNRESTRICTED
The call type is 1536 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of 1536 kbit/s.

CC_CALL_TYPE_1920KBS_UNRESTRICTED
The call type is 1920 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of 1920 kbit/s.

CC_CALL_TYPE_2x64KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 2.

CC_CALL_TYPE_3x64KBS_UNRESTRICTED
The call type is 3 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 3.

CC_CALL_TYPE_4x64KBS_UNRESTRICTED
The call type is 4 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 4.

CC_CALL_TYPE_5x64KBS_UNRESTRICTED
The call type is 5 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 5.

CC_CALL_TYPE_6x64KBS_UNRESTRICTED
The call type is 6 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base

$Revision: 0.8.2.2 $ Page 170 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

rate of 64 kbit/s and a multiplier of 6.

CC_CALL_TYPE_7x64KBS_UNRESTRICTED
The call type is 7 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 7.

CC_CALL_TYPE_8x64KBS_UNRESTRICTED
The call type is 8 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 8.

CC_CALL_TYPE_9x64KBS_UNRESTRICTED
The call type is 9 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 9.

CC_CALL_TYPE_10x64KBS_UNRESTRICTED
The call type is 10 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 10.

CC_CALL_TYPE_11x64KBS_UNRESTRICTED
The call type is 11 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 11.

CC_CALL_TYPE_12x64KBS_UNRESTRICTED
The call type is 12 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 12.

CC_CALL_TYPE_13x64KBS_UNRESTRICTED
The call type is 13 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 13.

CC_CALL_TYPE_14x64KBS_UNRESTRICTED
The call type is 14 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 14.

CC_CALL_TYPE_15x64KBS_UNRESTRICTED
The call type is 15 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 15.

CC_CALL_TYPE_16x64KBS_UNRESTRICTED
The call type is 16 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 16.

CC_CALL_TYPE_17x64KBS_UNRESTRICTED
The call type is 17 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 17.

CC_CALL_TYPE_18x64KBS_UNRESTRICTED
The call type is 18 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 18.

$Revision: 0.8.2.2 $ Page 171 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_CALL_TYPE_19x64KBS_UNRESTRICTED
The call type is 19 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 19.

CC_CALL_TYPE_20x64KBS_UNRESTRICTED
The call type is 20 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 20.

CC_CALL_TYPE_21x64KBS_UNRESTRICTED
The call type is 21 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 21.

CC_CALL_TYPE_22x64KBS_UNRESTRICTED
The call type is 22 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 22.

CC_CALL_TYPE_23x64KBS_UNRESTRICTED
The call type is 23 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 23.

CC_CALL_TYPE_24x64KBS_UNRESTRICTED
The call type is 24 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 24.

CC_CALL_TYPE_25x64KBS_UNRESTRICTED
The call type is 25 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 25.

CC_CALL_TYPE_26x64KBS_UNRESTRICTED
The call type is 26 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 26.

CC_CALL_TYPE_27x64KBS_UNRESTRICTED
The call type is 27 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 27.

CC_CALL_TYPE_28x64KBS_UNRESTRICTED
The call type is 28 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 28.

CC_CALL_TYPE_29x64KBS_UNRESTRICTED
The call type is 29 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 29.

CC_CALL_TYPE_30x64KBS_UNRESTRICTED
The call type is 30 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 30.

$Revision: 0.8.2.2 $ Page 172 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Flags
The following call flags are defined for Q.931 conforming CCS providers:

CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS
When set, this flag indicates that the unrestricted digital information includes tones and announcements.

Rules

6.1.3.2. CC_SETUP_REQ

Parameters
cc_call_type: Specifies the type of call to be set up. For Q.931 conforming CCS providers, the call

type can be one of the call types listed under "Call Type and Flags" in this addendum.

cc_call_flags: Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Call Type and Flags" in this
addendum.

cc_cdpn_length: Specifies the length of the called party number. For Q.931 conforming CCS providers,
the format of the called party number is the format of the Called Party Number parame-
ter (without the parameter type or length octets) as specified in Q.931.

cc_cdpn_offset: Specifies the offset of the called party number from the beginning of the block.

Rules
Rules for call type:

(1) A CCS provider need not support all of the call types listed.

Rules for call flags:

(1) The CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS flag may only be set when the call type is
unrestricted digital information. When the call type is not unrestricted digital information, this flag
should be ignored by the CCS provider.

Rules for called party number:

Rules for generating a SETUP message:

(1) The mandatory (first) Bearer Capability information element in the SETUP message will be derived from
the call type and flags. The Bearer Capability information element will contain the Information transfer
capability, rate, base and multiplier indicated above.

• When the call type is CC_CALL_TYPE_128KBS_UNRESTRICTED, the Bearer Capability informa-
tion element will be coded with an Information transfer capability of unrestricted (or unrestricted with
tones an announcements if the flag CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS i set) and
an Information transfer rate of 2 x 64 kbit/s uni-rate call. For a multi-rate call, the call type should be
coded as CC_CALL_TYPE_2x64KBS_UNRESTRICTED.

• When the call type is CC_CALL_TYPE_384KBS_UNRESTRICTED, the Bearer Capability informa-
tion element will be coded with an Information transfer capability of unrestricted (or unrestricted with
tones an announcements if the flag CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS i set) and
an Information transfer rate of 384 kbit/s uni-rate call. For a multi-rate call, the call type should be
coded as CC_CALL_TYPE_6x64KBS_UNRESTRICTED.

• When the call type is CC_CALL_TYPE_1536KBS_UNRESTRICTED, the Bearer Capability infor-
mation element will be coded with an Information transfer capability of unrestricted (or unrestricted
with tones an announcements if the flag CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS i set)
and an Information transfer rate of 1536 kbit/s uni-rate call. For a multi-rate call, the call type should
be coded as CC_CALL_TYPE_24x64KBS_UNRESTRICTED.

• When the call type is CC_CALL_TYPE_1920KBS_UNRESTRICTED, the Bearer Capability infor-
mation element will be coded with an Information transfer capability of unrestricted (or unrestricted

$Revision: 0.8.2.2 $ Page 173 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

with tones an announcements if the flag CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS i set)
and an Information transfer rate of 1920 kbit/s uni-rate call. For a multi-rate call, the call type should
be coded as CC_CALL_TYPE_29x64KBS_UNRESTRICTED.

(1) The mandatory Channel Identification information element in the SETUP message will be derived from
the address to which the stream is bound.

• If the stream is bound to a channel group (the one or more interfaces), then a free channel will be se-
lected automatically by the CCS provider (if possible).

• If the stream is bound to a channel, then the channel identifier of the bound channel will be used.

Rules for state transitions:

(1) If the optional information element contains a Sending Complete information element, then the CCS
provider will not accept any subsequent CC_INFORMATION_REQ primitives from the CCS user, nor
will the CCS provider issue any subsequent CC_MORE_INFO_IND primitives to the CCS user.

6.1.3.3. CC_SETUP_IND

Parameters
cc_call_type: Specifies the type of call to be set up. For Q.931 conforming CCS providers, the call

type can be one of the call types listed under "Call Type and Flags" in this addendum.

cc_call_flags: Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Call Type and Flags" in this
addendum.

cc_cdpn_length: Specifies the length of the called party number. For Q.931 conforming CCS providers,
the format of the called party number is the format of the Called Party Number parame-
ter (without the parameter type or length octets) as specified in Q.931.

cc_cdpn_offset: Specifies the offset of the called party number from the beginning of the block.

cc_addr_length: Specifies the length of the address which contains the channel identifier selected for the
call.

cc_addr_offset: Specifies the offset of the address from the beginning of the block.

Flags
Call flags can be any of the call flags supported by the CCS provider listed under CC_SETUP_REQ in this ad-
dendum.

Rules
Rules for call type:

(1) A CCS provider need not support all of the call types listed.

Rules for call flags:

(1) The CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS flag may only be set when the call type is
unrestricted digital information. When the call type is not unrestricted digital information, this flag
should be ignored by the CCS provider.

Rules for called party number:

Rules for obtaining parameters from a SETUP message:

(1) The mandatory (first) Bearer Capability information element in the SETUP message will be translated
into the call type and flags. The call type and flags correspond to the Bearer Capability information ele-
ment will contain the Information transfer capability, rate, base and multiplier indicated under "Call
Type" and "Flags".

$Revision: 0.8.2.2 $ Page 174 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

(2) The mandatory Channel Identification information element in the SETUP message will be provided in
the address parameter.

Rules for state transitions:

(1) If the optional information element contains a Sending Complete information element, then the CCS
provider will not accept any subsequent CC_MORE_INFO_REQ primitives from the CCS user, nor will
the CCS provider issue any subsequent CC_INFORMATION_IND primitives to the CCS user.

6.1.3.4. CC_SETUP_RES

Parameters

Flags

Rules

6.1.3.5. CC_SETUP_CON

Parameters

Flags

Rules

6.1.3.6. CC_CALL_REATTEMPT_IND

Rules

6.1.3.7. CC_SETUP_COMPLETE_REQ

Parameters

Flags

Rules

6.1.3.8. CC_SETUP_COMPLETE_IND

Parameters

Flags

Rules

6.1.4. Continuity Check Primitives

6.1.4.1. CC_CONT_CHECK_REQ

Parameters

Flags

Rules

$Revision: 0.8.2.2 $ Page 175 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

6.1.4.2. CC_CONT_TEST_REQ

Parameters

Flags

Rules

6.1.4.3. CC_CONT_REPORT_REQ

Parameters

Flags

Rules

6.1.5. Call Establishment Primitives

6.1.5.1. CC_MORE_INFO_REQ

Parameters

Flags

Rules

6.1.5.2. CC_MORE_INFO_IND

Parameters

Flags

Rules

6.1.5.3. CC_INFORMATION_REQ

Parameters

Flags

Rules

6.1.5.4. CC_INFORMATION_IND

Parameters

Flags

Rules

6.1.5.5. CC_INFO_TIMEOUT_IND

Rules
Rules for issuing primitive:

$Revision: 0.8.2.2 $ Page 176 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

(1) If the Q.931 conforming CCS provider is expecting additional digits (it has previously issued a
CC_MORE_INFO_REQ) and timer T302 expires, the CCS provider will issue this primitive to the CCS
user.

(2) Upon receipt of this primitive, it is the CCS user’s responsibility to determine whether the address digits
are sufficient and to issue a CC_SETUP_RES or CC_REJECT_REQ primitive.

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS user receives a CC_INFO_TIMEOUT_IND

6.1.5.6. CC_PROCEEDING_REQ

Parameters

Flags

Rules

6.1.5.7. CC_PROCEEDING_IND

Parameters

Flags

Rules

6.1.5.8. CC_ALERTING_REQ

Parameters

Flags

Rules

6.1.5.9. CC_ALERTING_IND

Parameters

Flags

Rules

6.1.5.10. CC_PROGRESS_REQ

Parameters

Flags

Rules

6.1.5.11. CC_PROGRESS_IND

Parameters

$Revision: 0.8.2.2 $ Page 177 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Flags

Rules

6.1.5.12. CC_IBI_REQ

Parameters

Flags

Rules

6.1.5.13. CC_IBI_IND

Parameters

Flags

Rules

6.1.6. Call Established Primitives

6.1.6.1. CC_SUSPEND_REQ

Parameters
cc_flags: Indicates the options associated with the suspend. See "Flags" below.

Flags
Q.931 conforming CCS providers do not support suspend flags. This field should be coded zero (0) by the CCS
user and ignored by the CCS provider.

Rules
Rules for issuing primitive:

(1) Only the CCS user on the User side of the Q.931 interface can issue a CC_SUSPEND_REQ primitive. If
the CCS provider is in Network mode and it receives a CCS_SUSPEND_REQ, it should respond with a
CC_ERROR_ACK with error CCNOTSUPP.

6.1.6.2. CC_SUSPEND_IND
cc_flags: Indicates the options associated with the suspend. See "Flags" below.

Flags
Q.931 conforming CCS providers do not support suspend flags. This field will be coded zero (0) by the CCS
provider and may be ignored by the CCS provider.

6.1.6.3. CC_SUSPEND_RES

Parameters

Rules

$Revision: 0.8.2.2 $ Page 178 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

6.1.6.4. CC_SUSPEND_CON

Parameters

Rules

6.1.6.5. CC_SUSPEND_REJECT_REQ

Parameters
cc_cause: Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause

values can be any of the values listed in "Cause Values" in this addendum with the ex-
ception of CCS_CAUS_NONE.

Flags

Rules

6.1.6.6. CC_SUSPEND_REJECT_IND

Parameters
cc_cause: Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause

values can be any of the values listed in "Cause Values" in this addendum with the ex-
ception of CCS_CAUS_NONE.

Flags

Rules

6.1.6.7. CC_RESUME_REQ

Parameters
cc_flags: Indicates the options associated with the resume. See "Flags" below.

Flags
Q.931 conforming CCS providers do not support resume flags. This field should be coded zero (0) by the CCS
user and ignored by the CCS provider.

Rules

6.1.6.8. CC_RESUME_IND

Parameters
cc_flags: Indicates the options associated with the resume. See "Flags" below.

Flags
Q.931 conforming CCS providers do not support resume flags. This field should be coded zero (0) by the CCS
user and ignored by the CCS provider.

Rules

$Revision: 0.8.2.2 $ Page 179 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

6.1.6.9. CC_RESUME_RES

Parameters

Flags

Rules

6.1.6.10. CC_RESUME_CON

Parameters

Flags

Rules

6.1.6.11. CC_RESUME_REJECT_REQ

Parameters
cc_cause: Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause

values can be any of the values listed in "Cause Values" in this addendum with the ex-
ception of CCS_CAUS_NONE.

Flags

Rules

6.1.6.12. CC_RESUME_REJECT_IND
cc_cause: Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause

values can be any of the values listed in "Cause Values" in this addendum with the ex-
ception of CCS_CAUS_NONE.

Parameters

Flags

Rules

6.1.7. Call Termination Primitives

6.1.7.1. Cause Values
Cause values are used in the following primitives:

CC_REJECT_REQ,
CC_REJECT_IND,
CC_DISCONNECT_REQ,
CC_DISCONNECT_IND,
CC_RELEASE_REQ, and
CC_RELEASE_IND.

Parameters
cc_cause: Indicates the case for the rejection, disconnection, or release of a call. For Q.931 con-

forming CCS providers, the cause values can be any of the cause values listed in Q.850
listed under "Cause Value" below.

$Revision: 0.8.2.2 $ Page 180 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Cause Value
Cause values are essentially opaque and cause values will be transferred directly to the corresponding Q.931
message. The following cause values are defined for Q.931 conforming CCS providers:

CC_CAUS_UNALLOCATED_NUMBER
The called party number does not correspond to number allocated to a subscriber or terminal.

CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK

CC_CAUS_NO_ROUTE_TO_DESTINATION

CC_CAUS_SEND_SPECIAL_INFO_TONE

CC_CAUS_MISDIALLED_TRUNK_PREFIX

CC_CAUS_PREEMPTION

CC_CAUS_PREEMPTION_CCT_RESERVED

CC_CAUS_NORMAL_CALL_CLEARING

CC_CAUS_USER_BUSY

CC_CAUS_NO_USER_RESPONDING

CC_CAUS_NO_ANSWER

CC_CAUS_SUBSCRIBER_ABSENT

CC_CAUS_CALL_REJECTED

CC_CAUS_NUMBER_CHANGED

CC_CAUS_REDIRECT

CC_CAUS_OUT_OF_ORDER

CC_CAUS_ADDRESS_INCOMPLETE

CC_CAUS_FACILITY_REJECTED

CC_CAUS_NORMAL_UNSPECIFIED

CC_CAUS_NO_CCT_AVAILABLE

CC_CAUS_NETWORK_OUT_OF_ORDER

CC_CAUS_TEMPORARY_FAILURE

CC_CAUS_SWITCHING_EQUIP_CONGESTION

CC_CAUS_ACCESS_INFO_DISCARDED

CC_CAUS_REQUESTED_CCT_UNAVAILABLE

CC_CAUS_PRECEDENCE_CALL_BLOCKED

CC_CAUS_RESOURCE_UNAVAILABLE

CC_CAUS_NOT_SUBSCRIBED

CC_CAUS_OGC_BARRED_WITHIN_CUG

CC_CAUS_ICC_BARRED WITHIN_CUG

CC_CAUS_BC_NOT_AUTHORIZED

CC_CAUS_BC_NOT_AVAILABLE

CC_CAUS_INCONSISTENCY

CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE

CC_CAUS_BC_NOT_IMPLEMENTED

CC_CAUS_FACILITY_NOT_IMPLEMENTED

$Revision: 0.8.2.2 $ Page 181 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_CAUS_RESTRICTED_BC_ONLY

CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED

CC_CAUS_USER_NOT_MEMBER_OF_CUG

CC_CAUS_INCOMPATIBLE_DESTINATION

CC_CAUS_NON_EXISTENT_CUG

CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION

CC_CAUS_INVALID_MESSAGE

CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED

CC_CAUS_PARAMETER_NOT_IMPLEMENTED

CC_CAUS_RECOVERY_ON_TIMER_EXPIRY

CC_CAUS_PARAMETER_PASSED_ON

CC_CAUS_MESSAGE_DISCARDED

CC_CAUS_PROT OCOL_ERROR

CC_CAUS_INTERWORKING

CC_CAUS_UNALLOCATED_DEST_NUMBER

CC_CAUS_UNKNOWN_BUSINESS_GROUP

CC_CAUS_EXCHANGE_ROUTING_ERROR

CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26

CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND

CC_CAUS_PREEMPTION

CC_CAUS_PRECEDENCE_CALL_BLOCKED

CC_CAUS_CALL_TYPE_INCOMPATIBLE

CC_CAUS_GROUP_RESTRICTIONS

Rules
In addition to these cause values, the CCS provider might support additional variant-specific cause values.

6.1.7.2. CC_REJECT_REQ

Parameters
cc_cause: Specifies the cause value for the rejection. For Q.931 conforming CCS providers, the

cause value will be one of the cause values listed under "Cause Values" in this Adden-
dum.

Flags

Rules

6.1.7.3. CC_REJECT_IND

Parameters
cc_cause: Specifies the cause value for the rejection. For Q.931 conforming CCS providers, the

cause value will be one of the cause values listed under "Cause Values" in this Adden-
dum.

$Revision: 0.8.2.2 $ Page 182 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Flags

Rules

6.1.7.4. CC_CALL_FAILURE_IND

Parameters
cc_reason: Specifies the reason for the failure indication. For Q.931 conforming CCS providers,

the reason will be one of the reasons listed under "Call Failure Reasons" below.

cc_cause: Specifies the cause value for the error indication. For Q.931 conforming CCS providers,
the cause value will be one of the cause values listed under "Cause Values" in this ad-
dendum.

Call Failure Reasons
ISUP_CALL_FAILURE_ERROR

Indicates that the data link failed and recovered during overlap sending or overlap receiving.

ISUP_CALL_FAILURE_STATUS
Indicates that the CCS provider received a STATUS message from the peer with a unrecoverable mis-
match in state.

ISUP_CALL_FAILURE_RESTART
Indicates that the CCS provider received or issued a RESTART message for the channel.

Flags

Rules

6.1.7.5. CC_DISCONNECT_REQ

Parameters
cc_cause: Specifies the cause value for the disconnect. For Q.931 conforming CCS providers, the

cause value will be one of the cause values listed under "Cause Values" in this adden-
dum.

Rules

6.1.7.6. CC_DISCONNECT_IND

Parameters
cc_cause: Indicates the case values for the disconnect. For Q.931 conforming CCS providers, the

cause value wil be one of the cause values listed under "Cause Value" in this addendum.

Rules

6.1.7.7. CC_RELEASE_REQ

Parameters
cc_cause: Specifies the cause value for the release. For Q.931 conforming CCS providers, the

cause value will be one of the cause values listed under "Cause Values" in this adden-
dum.

$Revision: 0.8.2.2 $ Page 183 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Rules
Rules for cause:

(1) If the request is not the first step in the clearing phase (i.e, the call is not in state CC_WREQ_REL), then
the cause value must be specified. Otherwise, the cause value should be coded CC_CAUS_NONE by the
CCS user and ignored by the CCS provider.

6.1.7.8. CC_RELEASE_IND

Parameters
cc_cause: Specifies the cause value for the release. For Q.931 conforming CCS providers, the

cause value will be one of the cause values listed under "Cause Values" in this adden-
dum.

Rules
Rules for cause:

(1) If the request is not the first step in the clearing phase (i.e, the call is not in state CC_WIND_REL), then
the cause value will be indicated by the CCS provider. Otherwise, the cause value will be coded
CC_CAUS_NONE by the CCS provider and should be ignored by the CCS user.

6.1.7.9. CC_RELEASE_RES

Parameters

Rules

6.1.7.10. CC_RELEASE_CON

Parameters

Rules

6.1.8. Management Primitives

6.1.8.1. CC_RESTART_REQ

Parameters
cc_flags:

cc_addr_length: Specifies the length of the address which contains the interface identifier(s) and optional
channel identification for the interface(s) or channels to restart.

cc_addr_offset: Specifies the offset of the address from the beginning of the block.

Flags

Rules

6.1.8.2. CC_RESTART_CON

Parameters
cc_flags:

cc_addr_length: Specifies the length of the address which contains the interface identifier(s) and optional
channel identification for the interface(s) or channels to restart.

$Revision: 0.8.2.2 $ Page 184 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

cc_addr_offset: Specifies the offset of the address from the beginning of the block.

Flags

Rules

6.2. Q.931 Header File Listing

$Revision: 0.8.2.2 $ Page 185 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

7. Addendum for Q.764 Conformance
This addendum describes the formats and rules that are specific to ISUP Q.764. The addendum must be used
along with the generic CCI as defined in the main document when implementing a CCS provider that will be
configured with the Q.764 call processing layer.

7.1. Primitives and Rules for Q.764 Conformance
The following are the rules that apply to the CCI primitives for Q.764 compatibility.

7.1.1. Common Primitive Parameters

7.1.1.1. Call Control Addresses

Format
The format of call control addresses is as follows:

Parameters
cc_addr_length: Specifies or indicates the length of the call control address. If a call control address is

not included in the primitive, this parameter must be coded zero (0).

cc_addr_offset: Specifies or indicates the offset of the address from the begining of the primitive. If a
call control address is not included with the primitive, this parameter must be coded zero
(0).

Address Format
The format of the call control addresses for Q.764 conforming CCS providers is as follows:

typedef struct isup_addr {
ulong scope; /* the scope of the identifier */
ulong id; /* the identifier within the scope */
ulong cic; /* circuit identification code within the scope */

} isup_addr_t;

#define ISUP_SCOPE_CT 1 /* circuit scope */
#define ISUP_SCOPE_CG 2 /* circuit group scope */
#define ISUP_SCOPE_TG 3 /* trunk group scope */
#define ISUP_SCOPE_SR 4 /* signalling relation scope */
#define ISUP_SCOPE_SP 5 /* signalling point scope */
#define ISUP_SCOPE_DF 6 /* default scope */

Address Fields
scope: Specifies or indicates the scope of the call control address. See "Scope" below.

id: Specifies or indicates the identifier within the scope.

cic: Specifies or indicates the Circuit Identification Code significant within the scope.

Scope
The scope of the address is one of the following:

ISUP_SCOPE_CT Specifies or indicates that the scope of the call control address is a ISUP circuit. The
identifier within the scope is an identifier which uniquely identifies a circuit to the CCS
provider. Circuit scope addresses may also be used to specify or indicate circuit groups,
trunk groups, signalling relations and signalling points. When used in an indication or
confirmation primitive, the CCS provider includes the Circuit Identification Code asso-
ciated with the circuit in the address.

$Revision: 0.8.2.2 $ Page 186 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

For multi-rate calls where multiple circuits are involved, the circuit scoped address spec-
ifies the lowest numerical Circuit Identification Code in the group of circuits.

ISUP_SCOPE_CG Specifies or indicates that the scope of the call control address is a ISUP circuit group.
The identifier within the scope is an identifier which uniquely identifies a circuit group
to the CCS provider. Circuit group scope addresses may also be used to specify or indi-
cate signalling relations and signalling points. When used in an indication or confirma-
tion primitive, the CCS provider includes the Circuit Identification Code associated with
the circuit group (lowest numerical value CIC in the circuit group range).

ISUP_SCOPE_TG Specifies or indicates that the scope of the call control address is a ISUP trunk group.
The identifier within the scope is an identifier which uniquely identifies a trunk group to
the CCS provider. Trunk group scope addresses may also be used to specify or indicate
circuits, signalling relations and signalling points. The Circuit Identification Code must
be used to specify a circuit within the trunk group.

ISUP_SCOPE_SR Specifies or indicates that the scope of the call control address is a ISUP signalling rela-
tion. The identifier within the scope is an identifier which uniquely identifies a sig-
nalling relation to the CCS provider. Signalling relation scope addresses may also be
used to specify or indicate circuits and signalling points. The Circuit Identification
Code must be used to sepcify a circuit (equipped or unequipped) within the signalling
relation.

ISUP_SCOPE_SP Specifies or indicates that the scope of the call control address is a ISUP signalling
point. The identifier within the scope is an identifier which uniquely identifies a local
signalling point to the CCS provider. Signalling point scope addresses may only indi-
cate local signalling points. The Circuit Identification Code is unused and should be ig-
nored by the CCS user and will be coded zero (0) by the CCS provider.

ISUP_SCOPE_DF Specifies or indicates that the scope of the call control address is the default scope. The
identifier within the scope and Circuit Identification Code are unused and should be ig-
nored by the CCS user and will be coded zero (0) by the CCS provider.

Rules
Rules for scope:

(1) In primitives in which the address parameter occurs, the scope field setting indicates the scope of the ad-
dress parameter.

(2) Only one call control address can be specified with a signle scope.

(3) Not all scopes are necessarily supported by all primitives. See the particular primitive in this addendum.

Rules for addresses:

(1) The address contained in the primitive contains the following:

• A scope.
• An identifier within the scope or zero (0).
• A circuit identification code within the scope or zero (0).

(2) If the scope of the address is ISUP_SCOPE_DF, then both the identifier and circuit identification code
fields should be coded zero (0) and will be ignored by the CCS user or provider.

(3) If the scope of the address is ISUP_SCOPE_SP, then the circuit identification code field should be coded
zero (0) and will be ignored by the CCS user or provider.

(4) In all other scopes, the circuit identification code is optional and is coded zero (0) if unused.

7.1.1.2. Optional Parameters

$Revision: 0.8.2.2 $ Page 187 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Format
The format of the optional parameters for Q.764 conforming CCS providers is as follows:

Parameters
cc_opt_length: Specifies or indicates the length of the optional parameters associated with the primitive.

For Q.764 conforming CCS providers, the format of the optional parameters is the for-
mat of the Optional Parameters list (without the pointer or End of Optional Parameters
octets) as specified in Q.763.

cc_opt_offset: Specifies the offset of the optional parameters from the beginning of the block.

Rules
Rules for optional parameters:

(1) The optional parameters provided by the CCS user may be checked for syntax by the CCS provider. If
the CCS provider discovers a syntax error in the format of the optional parameters, the CCS provider
should respond with a CC_ERROR_ACK primitive with error CCBADOPT.

(2) For some primitives, specific optional parameters might be interpreted by the CCS provider and alter the
function of some primitives. See the specific primitive descriptions later in this addendum.

(3) Except for optional parameters interpreted by the CCS provider as specified later in this addendum, the
optional parameters are treated as opaque and the optional parameter list only is checked for syntax.
Opaque parameters will be passed to the ISUP message without examination by the CCS provider.

(4) To perform specific functions, additional optional parameters may be added to ISUP messages by the
CCS provider.

(5) To perform specific functions, optional parameters may be modified by the CCS provider before being
added to ISUP messages.

7.1.2. Local Management Primitives

7.1.2.1. CC_INFO_ACK

Parameters

Flags

Rules

7.1.2.2. CC_BIND_REQ

Parameters
cc_addr_length: Indicates the length of the address to bind.

cc_addr_offset: Indicates the offset of the address to bind from the beginning of the block.

cc_setup_ind: Indicates the maximum number of setup (or continuity check) indications that will be
outstanding for the listening stream.

cc_bind_flags: Indicates the options assocated with the bind. The bind flags can be as follows:

CC_DEFAULT_LISTENER
When set, this flag specifies that this stream is the "default listener stream."
This stream is used to pass setup indications (or continuity check requests) for
all incoming calls that contain protocol identifiers that are not bound to any
other listener, or when a listener stream with cc_setup_ind value of greater
than zero is not found. Also, the default listener will receive all incoming call

$Revision: 0.8.2.2 $ Page 188 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

indications that contain no user data (i.e., test calls) and all maintenance indi-
cations (i.e., CC_MAINT_IND). Only one default listener stream is allowed
per occurrence of CCI. An attempt to bind a default listener stream when one
is already bound should result in an error (of type CCADDRBUSY).

CC_TOKEN_REQUEST
When set, this flag specifies to the CCS provider that the CCS user has re-
quested that a "token" be assigned to the stream (to be used in the call re-
sponse message), and the token value be returned to the CCS user via the
CC_BIND_ACK primitive. The token assigned by the CCS provider can then
be used by the CCS user in a subsequent CC_SETUP_RES primitive to iden-
tify the stream on which the call is to be established.

CC_MANAGEMENT
When set, this flag specifies to the CCS provider that this stream is to be used
for circuit management indications for the specified addresses.

CC_TEST
When set, this flag specifies to the CCS provider that this stream is to be used
for continuity and test call indications for the specified addresses.

CC_MAINTENANCE
When set, this flag specifies to the CCS provider that this stream is to be used
for maintenance indications for the specified addresses.

Rules
Rules for address specification:

(1) The address contained in the primitive as indicated by cc_addr_length and cc_addr_offset parameters.
The address can be of any ISUP scope.

(2) If the CC_DEFAULT_LISTENER flag is set, the parameters cc_addr_length and cc_addr_offset should
be coded zero, and will be ignored by the CCS provider.

Rules for setup indications:

(1) If the number of setup indications is non-zero, the stream is bound as a listening stream. Listening
streams will receive all calls, test calls, and continuity tests that are incoming on the address bound.

• If the address bound is of scope ISUP_SCOPE_CT, only incoming calls on the bound circuit will be
delivered to the listening stream.

• If the address bound is of scope ISUP_SCOPE_CG, only incoming calls on the bound circuit group
will be delivered to the listening stream.

• If the address bound is of scope ISUP_SCOPE_TG, only incoming calls on the bound trunk group
will be delivered to the listening stream (this is the normal case).

• If the address bound is of scope ISUP_SCOPE_SR, only incoming calls on the bound signalling rela-
tion (from the associated remote point code) will be delivered to the listening stream.

• If the address bound is of scope ISUP_SCOPE_SP, only incoming calls on the bound local signalling
point will be delivered to the listening stream.

• If the address bound is of scope ISUP_SCOPE_DF, all incoming calls will be delivered to the listen-
ing stream.

• Streams bound at one scope takes precedence over a stream bound at another scope in the order: cir-
cuit, circuit group, trunk group, signalling relation, signalling point and default scope.

(2) Once a stream has successfully bound as a listening stream, it should be prepared to receive incoming
calls, test calls and continuity tests.

Rules for bind flags:

(1) For Q.764 conformance, the CC_DEFAULT_LISTENER will receive all incoming calls, test calls, conti-
nuity tests, circuit management indications and maintenance indications that have no other listening

$Revision: 0.8.2.2 $ Page 189 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

stream. There can only be one stream bound with the CC_DEFAULT_LISTENER flag set.

(2) Only one of CC_DEFAULT_LISTENER, CC_MANAGEMENT, CC_TEST and CC_MAINTENANCE
may be set.

(3) Streams bound with the CC_MANAGEMENT flag set will receive only circuit management indications
and will not receive any calls.

(4) Streams bound with the CC_TEST flag set will receive only continuity test and test call indications and
will not receive normal calls, circuit management or maintenance indications.

(5) Streams bound with the CC_MAINTENANCE flag set will receive only maintenance indications and
will not receive any circuit management indications or calls.

7.1.2.3. CC_BIND_ACK

Parameters
cc_addr_length: Indicates the length of the address to bind.

cc_addr_offset: Indicates the offset of the address to bind from the beginning of the block.

cc_setup_ind: Indicates the maximum number of setup (or continuity check) indications that will be
outstanding for the listening stream.

Flags
See CC_BIND_REQ in this Addendum.

Rules
See CC_BIND_REQ in this Addendum.

7.1.2.4. CC_OPTMGMT_REQ

Parameters

Flags

Rules

7.1.3. Call Setup Primitives

7.1.3.1. CC_SETUP_REQ

Parameters
cc_call_type: Specifies the type of call to be set up. Q.764 conforming CCS providers must support

the following call types:

CC_CALL_TYPE_SPEECH
The call type is speech. This call type corresponds to a Q.764 transmission
medium requirement of Speech.

CC_CALL_TYPE_64KBS_UNRESTRICTED
The call type is 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.764 transmission medium requirement of 64 kbit/s Unrestricted
Digital Information.

CC_CALL_TYPE_3_1kHZ_AUDIO
The call type is 3.1 kHz audio. This call type corresponds to a Q.764 trans-
mission medium requirement of 3.1 kHz Audio.

$Revision: 0.8.2.2 $ Page 190 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_CALL_TYPE_64KBS_PREFERRED
The call type is 64 kbit/s preferred. This call type corresponds to a Q.764
transmission medium requirement of 64 kbit/s Preferred.

CC_CALL_TYPE_2x64KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.764 transmission medium requirement of 2 x 64 kbit/s Un-
restricted Digital Information.

CC_CALL_TYPE_384KBS_UNRESTRICTED
The call type is 384 kbit/s unrestricted digital information. This call type cor-
responds to a Q.764 transmission medium requirement of 384 kbit/s Unre-
stricted Digital Information.

CC_CALL_TYPE_1536KBS_UNRESTRICTED
The call type is 1536 kbit/s unrestricted digital information. This call type
corresponds to a Q.764 transmission medium requirement of 1536 kbit/s Un-
restricted Digital Information.

CC_CALL_TYPE_1920KBS_UNRESTRICTED
The call type is 1920 kbit/s unrestricted digital information. This call type
corresponds to a Q.764 transmission medium requirement of 1920 kbit/s Un-
restricted Digital Information.

cc_user_ref: Specifies the CCS user call reference to be associated with the call setup request. The
CCS provider will use this user call reference in any indications given before the
CC_SETUP_CON primitive is issued.

cc_call_flags: Specifies the options associated with the call. Q.764 conforming CCS providers must
support the following flags:

The following flags correspond to bits in the Nature of Connection Indicators parameter
of Q.763:

ISUP_NCI_ONE_SATELLITE_CCT

ISUP_NCI_TWO_SATELLITE_CCT
When one of these flags is set it indicates that either one or two satellite cir-
cuits are present in the connection. Otherwise, it indicates that no satellite cir-
cuits are present in the connection.

ISUP_NCI_CONT_CHECK_REQUIRED

ISUP_NCI_CONT_CHECK_PREVIOUS
When one of these flags is set it indicates that either a continuity check is re-
quired on the connection, or that a continuity check was performed on a previ-
ous connection. Otherwise, it indicates that a continuity check is not required
on the connection.

ISUP_NCI_OG_ECHO_CONTROL_DEVICE
When set it indicates that an outgoing half echo control device is included on
the connection. Otherwise, it indicates that no outgoing half echo control de-
vice is included on the connection.

The following flags correspond to bits in the Forward Call Indicators parameter of
Q.763:

ISUP_FCI_INTERNATIONAL_CALL
When this flag is set, the call is to be treated as an international call. Other-
wise, the call is to be treated as a national call.

ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAILABLE

$Revision: 0.8.2.2 $ Page 191 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE
When one of these flags is set, either the pass along end-to-end method is
available or the SCCP end-to-end method is available. Otherwise, no end-to-
end method is available and only link-by-link method is available.

ISUP_FCI_INTERWORKING_ENCOUNTERED
When this flag is set, interworking has been encountered on the call. Other-
wise, no interworking has been encountered on the call.

ISUP_FCI_E2E_INFORMATION_AVAILABLE
When this flag is set, end-to-end information is now available. Otherwise, no
end-to-end information is available.

ISUP_FCI_ISDN_USER_PART_ALL_THE_WAY
When this flag is set, ISDN User Part has been used all the way on the call.
Otherwise, ISDN User Part has not been used all the way.

ISUP_FCI_ORIGINATING_ACCESS_ISDN
When this flag is set, the originating access is ISDN. Otherwise, the originat-
ing access is non-ISDN.

ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE

ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE

ISUP_FCI_SCCP_ALL_METHODS_AVAILABLE
When one of these flags is set, either the connectionless SCCP method is
available, the connection oriented SCCP method is available, or both methods
are available. Otherwise, no SCCP method is indicated as available.

cc_cdpn_length: Specifies the length of the called party number. For Q.764 conforming CCS providers,
the format of the called party number is the format of the Called Party Number parame-
ter (without the parameter type or length octets) as specified in Q.763.

cc_cdpn_offset: Specifies the offset of the called party number from the beginning of the block.

Rules
Rules for call reference:

(1) If the ISUP user wishes to setup multiple outgoing calls on the same stream, the ISUP user associates a
user call reference with each of the setup requests so that the indication, confirmation and acknowledg-
ment primitives can be associated with the specific call setup request.

(2) User call references are only necessary if multiple outgoing calls are to setup at the same time.

(3) User call references only need by valid until a setup confirmation, call reattempt indication, release indi-
cation or call failure indication has been received in response to the setup request. A setup confirmation
will contain a CCS provider call reference which can be used to distinguish the call from other calls to
the CCS provider.

Rules for call type:

(1) All Q.764 conforming CCS provider must support the following call types:

CC_CALL_TYPE_SPEECH,
CC_CALL_TYPE_64KBS_UNRESTRICTED,
CC_CALL_TYPE_3_1kHZ_AUDIO, and
CC_CALL_TYPE_64KBS_PREFERRED.

(2) Support for other call types is optional and implementation-specific.

Rules for flags:

$Revision: 0.8.2.2 $ Page 192 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

(1) Q.764 conforming CCS providers must support all of the flags listed above.

(2) Only one of the following flags may be set:

ISUP_NCI_ONE_SATELLITE and
ISUP_NCI_TWO_SATELLITE.

(3) Only one of the following flags may be set:

ISUP_NCI_CONT_CHECK_REQUIRED and
ISUP_NCI_CONT_CHECK_PREVIOUS.

(4) Only one of the following flags may be set:

ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAILABLE and
ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE.

(5) Only one of the following flags may be set, and only if ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE
is also set:

ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE,
ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE and
ISUP_FCI_SCCP_ALL_METHODS_AVAILABLE.

7.1.3.2. CC_SETUP_IND

Parameters
cc_call_ref: Indicates the CCS provider-assigned call reference associated with the call.

cc_call_type: Indicates the type of call to be set up. For Q.764 conforming CCS providers, the call
type can be one of the call types listed in this addendum under CC_SETUP_REQ.

cc_call_flags: Indicates the options associated with the call. Q.764 conforming CCS providers indi-
cate the flags listed in this addendum under CC_SETUP_REQ.

cc_addr_length: Indicates the length of the call control address (circuit(s)) upon which the call setup is
indicated.

cc_addr_offset: Indicates the offset of the call control address from the start of the block.

cc_cdpn_length: Indicates the length of the called party number. For Q.764 conforming CCS providers,
the format of the called party number is the format of the Called Party Number parame-
ter (without the parameter type or length octets) as specified in Q.763.

cc_cdpn_offset: Indicates the offset of the called party number from the beginning of the block.

cc_opt_length: Indicates the length of the optional parameters associated with the IAM, excluding the
end of optional parameters tag.

cc_opt_offset: Indicates the offset of the options from the beginning of the block.

Rules
Rules for call reference:

(1) The ISUP provider will indicate a unique call reference to the CCS user which is used to associate re-
sponse and request primitives with the call setup indication.

(2) Provider call references will always be indicated.

(3) Provider call references are only valid until a call failure or release indication has been issued by the CCS
provider.

(4) Provider call references are only valid for streams upon which the CC_SETUP_IND is issued, or for
streams upon which the call was accepted by the CCS user with a CC_SETUP_RES primitive.

$Revision: 0.8.2.2 $ Page 193 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

(5) Provider call references are unique across the provider.

Rules for call type:

(1) The rules for call type in section CC_SETUP_REQ in this addendum also apply to the CC_SETUP_IND.
All Q.764 conforming CCS providers must support the following call types:

CC_CALL_TYPE_SPEECH,
CC_CALL_TYPE_64KBS_UNRESTRICTED,
CC_CALL_TYPE_3_1kHZ_AUDIO, and
CC_CALL_TYPE_64KBS_PREFERRED.

(2) Support for additional call types is optional and implementation-specific.

Rules for setup flags:

(1) The rules for setup flags in section CC_SETUP_REQ in this addendum also apply to the
CC_SETUP_IND.

Rules for addresses:

(1) Call control addresses in the CC_SETUP_IND are of scope ISUP_SCOPE_CT and identify the circuit(s)
upon which the call setup is indicated.

(2) For multi-rate calls, the call control address indicates the base circuit (numerically lowest Circuit Identifi-
cation Code) of the multi-rate call.

7.1.3.3. CC_SETUP_RES

Parameters
cc_call_ref:

Specifies the call reference of the CC_SETUP_IND to which the CCS user is responding.

cc_token_value:
Specifies the token of a stream upon which to accept the call setup.

Rules
Rules for call reference:

(1) The call reference specified by the CCS User must be a call reference which was previously indicated by
the CCS provider in an outstanding CC_SETUP_IND. Otherwise the CCS provider will respond with a
CC_ERROR_ACK primitive with error CCBADCLR.

Rules for token value:

(1) If the token is the token value of the stream upon which the corresponding CC_SETUP_IND was re-
ceived, or zero (0), then the call setup will be accepted on the stream upon which the CC_SETUP_IND
was received.

(2) If the token is non-zero and different from the listening stream, the call setup will be accepted on the
specified stream.

7.1.3.4. CC_SETUP_CON

Parameters
cc_user_ref: Indicates the CCS user call reference that was specified in the CC_SETUP_REQ. This

call reference is used by the CCS user to associated the CC_SETUP_CON with an out-
standing CC_SETUP_REQ primitive.

cc_call_ref: Indicates the CCS provider call reference that is to be associated with the call. This call
reference is used by the CCS provider to identify the call and is to be used by the CCS
user in all subsequent primitives referencing the call.

$Revision: 0.8.2.2 $ Page 194 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

cc_addr_length: Indicates the length of the identifier of the circuit upon which the call setup is con-
firmed.

cc_addr_offset: Indicates the offset of the identifier from the start of the block.

Rules
Rules for call reference:

(1) The CCS user call reference will be the same as the call reference provided by the user in the
CC_SETUP_REQ primitive.

(2) The CCS provider call reference will follow the rules of the CC_SETUP_IND in this Addendum.

Rules for addresses:

(1) The call control address indicated in the CC_SETUP_CON is a ISUP_SCOPE_CT (circuit scoped) call
control address which identifies the circuit(s) upon which the outgoing call will be connected.

(2) For multi-rate calls, the call control address specifies the base circuit (lowest numerical Circuit Identifica-
tion Code) for the multi-rate call.

7.1.3.5. CC_CALL_REATTEMPT_IND

Parameters
cc_user_ref: Indicates the CCS user call reference for the call. This reference identifies the corre-

sponding CC_SETUP_REQ primitives to the CCS user for which the call reattempt
need be performed.

cc_reason: Indicates the reason for the reattempt. The reason can be one of the following values:

ISUP_REATTEMPT_DUAL_SEIZURE
Indicates that the circuit was seized by a controlling exchange during the ini-
tial setup of the call (i.e, before any backward message was received).

ISUP_REATTEMPT_RESET
Indicates that the circuit was reset during the initial setup of the call (i.e, be-
fore any backward message was received).

ISUP_REATTEMPT_BLOCKING
Indicates that the circuit was blocked during the initial setup of the call (i.e,
before any backward message was received).

ISUP_REATTEMPT_T24_TIMEOUT
Indicates that COT failure occurred on the circuit (due to T24 timeout).

ISUP_REATTEMPT_UNEXPECTED
Indicates that an unexpected message was received for the call during the ini-
tial setup of the call (i.e, before any backward message was received).

ISUP_REATTEMPT_COT_FAILURE
Indicates that COT failed on the circuit (due to transmission of COT message
indicating failure).

ISUP_REATTEMPT_CIRCUIT_BUSY
Indicates that the specified circuit was busy.

Rules
Rules for call reference:

(1) The CCS user call reference is a call reference associated with an outstanding CC_SETUP_REQ primi-
tive to which the CCS provider is responding.

$Revision: 0.8.2.2 $ Page 195 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Rules for reason:

(1) The Q.764 conforming CCS provider will provide one of the reasons listed above.

(2) The ISUP_REATTEMPT_DUAL_SEIZURE reason will only be indicated if the CCS user represents a
non-controlling exchange for the associated trunk group.

(3) The ISUP_REATTEMPT_T24_TIMEOUT reason will only be indicated if the outgoing call includes a
continuity test and a positive CC_CONT_REPORT_REQ was not issued to the CCS provider by a test
stream within T24.

(4) The ISUP_REATTEMPT_COT_FAILURE reason will only be indicated if the outgoing call includes a
continuity test and a negative CC_CONT_REPORT_REQ was issued to the CCS provider by a test
stream within T24.

(5) The ISUP_REATTEMPT_CIRCUIT_BUSY reason will only be indicated if the stream issuing the
CC_SETUP_REQ primitive is bound to a circuit (ISUP_SCOPE_CT) and the circuit is busy with another
call.

7.1.3.6. CC_SETUP_COMPLETE_REQ

Rules
For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if a
CCS provider conforming to Q.764 receives a CC_SETUP_COMPLETE_REQ for a call reference in the
CCS_ANSWERED state (CCS_ICC_ANSWERED), the CCS provider will ignore the primitive.

7.1.3.7. CC_SETUP_COMPLETE_IND

Rules
For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if a
CCS provider conforming to Q.764 issues a CC_SETUP_COMPLETE_IND for a call reference in the CCS_AN-
SWERED state, the CCS user may ignore the primitive.

7.1.4. Continuity Check Phase

7.1.4.1. CC_CONT_CHECK_REQ

Parameters
cc_addr_length: Specifies the length of the circuit test address (circuit) upon which the continuity check

is to be performed.

cc_addr_offset: Specifies the offset of the circuit test address from the start of the block.

Rules
Rules for addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be of scope ISUP_SCOPE_CT and must provide the identifier of the circuit
upon which the CCS user is requesting a continuity check.

(3) The specified circuit identifier must be equipped else the CCS provider should response with CC_ER-
ROR_ACK and an error of CCBADADDR.

7.1.4.2. CC_CONT_CHECK_IND

$Revision: 0.8.2.2 $ Page 196 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Parameters
cc_call_ref: Indicates the CCS provider call reference.

cc_addr_length: Indicates the length of the identifier of the circuit upon which the continuity check is to
be performed.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules
Rules for call reference:

(1)

Rules for addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be of scope ISUP_SCOPE_CT and must provide the identifier of the circuit
upon which the CCS user is requesting a continuity check.

(3) The specified circuit test address (circuit identifier) must be equipped else the CCS provider should re-
sponse with CC_ERROR_ACK and an error of CCBADADDR.

7.1.4.3. CC_CONT_TEST_REQ
This primitive is only supported when the Loop Back Acknowledgment is used as a national option under Q.764.
For compatibility with CCS providers not supporting the national option, if such a CCS provider receives a
CC_CONT_TEST_REQ while waiting for a CC_CONT_REPORT_IND, the CCS provider should silently dis-
card the primitive.

Parameters
cc_call_ref: Specifies the CCS provider call reference.

cc_addr_length: Indicates the length of the call control address (ISUP_SCOPE_CT circuit identifier)
upon which the continuity check is to be performed.

cc_addr_offset: Indicates the offset of the call control address from the start of the block.

Rules
Rules for addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be the identifier of the circuit upon which the CCS user is requesting a conti-
nuity check.

(3) The specified circuit identifier must be equipped else the CCS provider should response with CC_ER-
ROR_ACK and an error of CCBADADDR.

7.1.4.4. CC_CONT_TEST_IND
This primitive is only supported when the Loop Back Acknowledgment is used as a national option under Q.764.
For compatibility with CCS providers not supporting the national option, such a CCS provider will issue a
CC_CONT_TEST_IND in response to a CC_CONT_CHECK_REQ following the CC_OK_ACK.

Parameters
cc_call_ref: Specifies the CCS provider call reference.

cc_addr_length: Specifies the length of the identifier of the circuit upon which the continuity check is to
be performed.

$Revision: 0.8.2.2 $ Page 197 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

cc_addr_offset: Specifies the offset of the address from the start of the block.

Rules
Rules for call reference:

(1) The CCS provider assigned call reference is used to associate an outstanding continuity test indication
(CC_CONT_CHECK_IND or call setup indication CC_SETUP_IND including a continuity test
(ISUP_NCI_CONT_CHECK_REQUIRED).

Rules for addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be the identifier of the circuit upon which the CCS user is requesting a conti-
nuity check.

(3) The specified circuit identifier must be equipped else the CCS provider should response with CC_ER-
ROR_ACK and an error of CCBADADDR.

7.1.4.5. CC_CONT_REPORT_REQ

Parameters
cc_user_ref: Specifies the CCS User assigned call reference.

cc_call_ref: Specifies the CCS Provider assigned call reference.

cc_result: Specifies the result of the continuity test, whether success or failure. For Q.764 con-
forming CCS provider, the result parameter can be one of the following values:

ISUP_COT_SUCCESS
Indicates that the continuity check test was successful.

ISUP_COT_FAILURE
Indicates that the continuity check test failed.

cc_addr_length: Specifies the length of the identifier of the circuit upon which the continuity check is to
be performed.

cc_addr_offset: Specifies the offset of the address from the start of the block.

Rules
Rules for addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be the identifier of the circuit upon which the CCS user is requesting a conti-
nuity check.

(3) The specified circuit identifier must be equipped else the CCS provider should response with CC_ER-
ROR_ACK and an error of CCBADADDR.

7.1.4.6. CC_CONT_REPORT_IND

Parameters
cc_call_ref: Indicates the CCS provider assigned call reference.

cc_result: Indicates the result of the continuity test, whether success or failure. For Q.764 con-
forming CCS provider, the result parameter can be one of the following values:

ISUP_COT_SUCCESS
Indicates that the continuity check test was successful.

$Revision: 0.8.2.2 $ Page 198 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

ISUP_COT_FAILURE
Indicates that the continuity check test failed.

Rules
Rules for call reference:

(1)

7.1.5. Call Establishment Primitives

7.1.5.1. CC_MORE_INFO_REQ

Rules
Rules for issuing primitive:

(1) This primitive is not directly supported by Q.764 conforming CCS providers. For compatibility with
Q.931 conforming CCS providers, if the Q.764 conforming CCS provider receives a
CC_MORE_INFO_REQ in state CCS_WRES_SIND, it should invoke any interworking procedures and
silently discard the primitive.

7.1.5.2. CC_MORE_INFO_IND

Rules
Rules for issuing primitive:

(1) This primitive may optionally be issued by a Q.764 conforming CCS provider in the overlap signalling
mode, if the appropriate timer has expired and the CCS provider has not received an indication that the
provided address is complete.

7.1.5.3. CC_INFORMATION_REQ

Parameters
cc_call_ref: Specifies the CCS provider assigned call reference for the call.

cc_subn_length: Specifies the length of the subsequent number. For Q.764 conforming CCS providers,
the format of the called party address is the format of the Subsequent Number parameter
(without the parameter type or length octets) as specified in Q.763.

cc_subn_offset: Specifies the offset of the subsequent number from the beginning of the block.

Rules
Rules for issuing primitive:

(1) This primitive will only be issued before any CC_PROCEEDING_IND, CC_ALERTING_IND,
CC_PROGRESS_IND, or CC_IBI_IND has occurred on the stream while in the CCS_WCON_SREQ
state. If not, the CCS provider should respond with a CC_ERROR_ACK primitive with error CCOUT-
STATE.

(2) This primitive must not be issued if the preceding CC_SETUP_REQ contained a called party address
which was complete (i.e, contains a ST code following the digits). If it is, the CCS provider should re-
spond with a CC_ERROR_ACK with error CCBADADDR.

(3) This primitive must not be issued if the trunk group or circuit to which the stream is bound is configured
for en bloc operation. If it is, the CCS provider should respond with a CC_ERROR_ACK with error CC-
NOTSUPP.

$Revision: 0.8.2.2 $ Page 199 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

7.1.5.4. CC_INFORMATION_IND

Parameters
cc_call_ref: Indicates the CCS provider assigned call reference.

cc_subn_length: Indicates the length of the subsequent number. For Q.764 conforming CCS providers,
the format of the subsequent number is the format of the Subsequent Number parameter
(without the parameter type or length octets) as specified in Q.763.

cc_subn_offset: Indicates the offset of the subsequent number from the beginning of the block.

Rules
Rules for issuing primitive:

(1) This primitive will only be issued by the CCS provider before any CC_PROCEEDING_REQ,
CC_ALERTING_REQ, CC_PROGRESS_REQ, or CC_IBI_REQ has been received in state
CCS_WCON_SREQ.

(2) This primitive will not be issued by the CCS provider if the preceding CC_SETUP_REQ contained a
complete called party address (i.e, contains an ST code following the digits), or if the trunk group or cir-
cuit is configured for en bloc operation.

7.1.5.5. CC_INFO_TIMEOUT_IND

Rules
Rules for issuing primitive:

(1) If the Q.764 conforming CCS provider encounters interworking on a call and is not expecting an address
complete message, and timer T11 expires, the CCS provider will issue this primitive to the CCS user.

(2) Upon receipt of this primitive, it is the CCS user’s responsibility to determine whether the address digits
are sufficient and to issue a CC_SETUP_RES or CC_REJECT_REQ primitive.

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS user receives a CC_INFO_TIMEOUT_IND

7.1.5.6. CC_PROCEEDING_REQ

Parameters
cc_flags: Specifies the options associated with the call. Indicates the flags associated with the

primitive. For Q.764 conforming CCS providers, call flags can be an of the following:
Q.764 conforming CCS provider must support the following flags:

The following flags correspond to bits in the Backward Call Indicators parameter of
Q.763:

ISUP_BCI_NO_CHARGE

ISUP_BCI_CHARGE
When one of these flags is set, it indicates that the call is not to be charged, or
the call is to be charged. Otherwise, it indicates that there is no indication
with regard to charging.

ISUP_BCI_SUBSCRIBER_FREE

ISUP_BCI_CONNECT_FREE
When one of these flags is set, it indicates that the terminating subscriber is
free, or that the connection is free. Otherwise, no indication is given.

ISUP_BCI_ORDINARY_SUBSCRIBER

$Revision: 0.8.2.2 $ Page 200 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

ISUP_BCI_PAYPHONE
When one of these flags is set, it indicates that the call has terminated to an or-
dinary subscriber, or that the call has terminated to a pay phone.

ISUP_BCI_PASS_ALONG_E2E_METHOD_AVAILABLE

ISUP_BCI_SCCP_E2E_METHOD_AVAILABLE
When one of these flags is set, either the pass along end-to-end method is
available, or the SCCP end-to-end method is available. Otherwise, no end-to-
end method is available and only link-by-link method is available.

ISUP_BCI_INTERWORKING_ENCOUNTERED
When this flag is set, interworking has been encountered on the call. Other-
wise, to interworking has been encountered on the call.

ISUP_BCI_E2E_INFORMATION_AVAILABLE
When this flag is set, end-to-end information is now available. Otherwise, no
end-to-end information is available.

ISUP_BCI_ISDN_USER_PART_ALL_THE_WAY
When this flag is set, ISDN User Part has been used all the way on the call,
Otherwise, ISDN User Part has not be used all the way.

ISUP_BCI_HOLDING_REQUESTED
When this flag is set, holding is requested. Otherwise, holding is not re-
quested.

ISUP_BCI_TERMINATING_ACCESS_ISDN
When this flag is set, the terminating access is ISDN. Otherwise, the termi-
nating access is non-ISDN.

ISUP_BCI_IC_ECHO_CONTROL_DEVICE
When set, this flag indicates that an incoming half echo control device is in-
cluded on the connection. Otherwise, it indicates that no incoming half echo
control device is included in the connection.

ISUP_BCI_SCCP_CLNS_METHOD_AVAILABLE

ISUP_BCI_SCCP_CONS_METHOD_AVAILABLE

ISUP_BCI_SCCP_ALL_METHODS_AVAILABLE
When one of these flags is set, either the connectionless SCCP method is
available, the connection oriented SCCP method is available, or both methods
are available. Otherwise, no SCCP method is indicated as available.

Rules
Rules for issuing primitive:

(1) This primitive can only be issued by the CCS user before any CC_ALERTING_REQ,
CC_PROGRESS_REQ or CC_IBI_REQ has been issued while in state CCS_WRES_SIND.

7.1.5.7. CC_PROCEEDING_IND

Rules
Rules for issuing primitive:

(1) This primitive will only be issued by the CCS provider before any CC_ALERTING_IND,
CC_PROGRESS_IND or CC_IBI_IND has been issued while in state CCS_WCON_SREQ.

$Revision: 0.8.2.2 $ Page 201 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

7.1.5.8. CC_ALERTING_REQ

Rules
Rules for issuing primitive:

(1) This primitive can only be issued by the CCS user before any CC_PROGRESS_REQ or CC_IBI_REQ
has been issued while in state CCS_WRES_SIND.

7.1.5.9. CC_ALERTING_IND

Rules
Rules for issuing primitive:

(1) This primitive will only be issued by the CCS provider before any CC_PROGRESS_IND or
CC_IBI_IND has been issued while in state CCS_WCON_SREQ.

7.1.5.10. CC_PROGRESS_REQ

Parameters
cc_event: Indicates the progress event. For Q.764 conforming CCS providers, this can be one of

the following:

ISUP_EVNT_ALERTING
Indicates that the called party is being alerted. This event is indicated only if a
CC_CALL_PROCEEDING_IND primitive has already been received.

ISUP_EVNT_PROGRESS
Indicates that the call is progressing with the specified optional parameters.

ISUP_EVNT_IBI
This event is indicated only by the CC_IBI_IND primitive and will not appear
here.

ISUP_EVNT_CALL_FORWARDED_ON_BUSY
This event indicates that the call has been forwarded on busy and the optional
parameters (if any) contain the attributes of the forwarding (e.g., redirecting
number, etc.).

ISUP_EVNT_CALL_FORWARDED_ON_NO_ANSWER
This event indicates that the call has been forwarded on no answer and the op-
tional parameters (if any) contain the attributes of the forwarding (e.g., redi-
recting number, etc.).

ISUP_EVNT_CALL_FORWARDED_UNCONDITIONAL
This event indicates that the call has been forwarded unconditionally and the
optional parameters (if any) contain the attributes of the forwarding (e.g., redi-
recting number, etc.).

cc_flags: Indicates the options flags.

ISUP_EVNT_PRESENTATION_RESTRICTED
When set, this flag indicates that the event indication is not to be presented to
the caller. Otherwise, the event may be presented to the caller.

Rules
Rules for issuing primitive:

(1) This primitive can only be issued by the CCS user before any CC_IBI_REQ has been issued while in
state CCS_WRES_SIND.

$Revision: 0.8.2.2 $ Page 202 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Rules for progress event:

(1) Q.764 conforming CCS providers must support the complete list of progress events listed above.

(2) When this primitive is issued with the event ISUP_EVNT_ALERTING, it must follow the rules for the
primitive CC_ALERTING_REQ.

(3) When this primitive is issued with the event ISUP_EVNT_IBI, it must follow the rules for the primitive
CC_IBI_REQ.

Rules for progress flags:

(1) The flag ISUP_EVNT_PRESENTATION_RESTRICTED cannot be set when the event is
ISUP_EVNT_ALERTING, ISUP_EVNT_PROGRESS or ISUP_EVNT_IBI.

7.1.5.11. CC_PROGRESS_IND

Parameters
cc_event: Indicates the progress event. The ev ent can be any of the events listed in this addendum

under CC_PROGRESS_REQ.

cc_flags: Indicates the options flags.

ISUP_EVNT_PRESENTATION_RESTRICTED
When set, this flag indicates that the event indication is not to be presented to
the caller. Otherwise, the event may be presented to the caller.

Rules
Rules for issuing primitive:

(1) This primitive will only be issued by the CCS provider before any CC_IBI_IND has been issued while in
state CCS_WCON_SREQ.

Rules for progress event:

(1) Q.764 conforming CCS providers must support the complete list of progress events listed above.

(2) This primitive will not be issued by the CCS provider with event ISUP_EVNT_ALERTING or event
ISUP_EVNT_IBI: instead, a CC_ALERTING_IND or CC_IBI_IND event will be issued.

Rules for progress flags:

(1) The flag ISUP_EVNT_PRESENTATION_RESTRICTED cannot be set when the vent is
ISUP_EVNT_PROGRESS.

7.1.5.12. CC_IBI_REQ

Rules

7.1.5.13. CC_IBI_IND

Rules

7.1.6. Call Established Primitives

7.1.6.1. CC_SUSPEND_REQ

Parameters
cc_flags: Specifies options associated with the suspend.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the suspend was network originated.
When this flag is not set, it indicates that the suspend was ISDN subscriber

$Revision: 0.8.2.2 $ Page 203 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

initiated.

Rules
Rules for issuing primitive:

(1) For Q.764 conforming CCS providers, suspend can be requested by independently either via local
provider or the remote provider. A call can be:

• Not Suspended
• Locally Suspended
• Remotely Suspended
• Locally and Remotely Suspended

(1) Requests to locally suspend a call which is already locally suspended should be ignored by the CCS
provider.

7.1.6.2. CC_SUSPEND_IND

Parameters
cc_flags: Specifies options associated with the suspend.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the suspend was network originated.
When this flag is not set, it indicates that the suspend was ISDN subscriber
initiated.

Rules
Rules for issuing primitive:

(1) For Q.764 conforming CCS providers, suspend can be requested by independently either via local
provider or the remote provider. A call can be:

• Not Suspended
• Locally Suspended
• Remotely Suspended
• Locally and Remotely Suspended

(1) Indications of remote suspension of a call which is already remotely suspended will not be issued by the
CCS provider.

7.1.6.3. CC_SUSPEND_RES

Rules
Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_SUSPEND_RES in the CCS_WRES_SUSIND or CCS_SUSPENDED states, the
CCS provider should ignore the CC_SUSPEND_RES primitive and move directly to the CCS_SUSPENDED
state if it has not already done so.

7.1.6.4. CC_SUSPEND_REJECT_REQ

Rules
Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_SUSPEND_REJECT_REQ in the CCS_WRES_SUSIND or CCS_SUSPENDED
states, the CCS provider should reply with a CC_ERROR_ACK primitive with error CCNOTSUPP.

$Revision: 0.8.2.2 $ Page 204 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

7.1.6.5. CC_RESUME_REQ

Parameters
cc_flags: Specifies options associated with the resume.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the resume was network originated.
When this flag is not set, it indicates that the resume was ISDN subscriber ini-
tiated.

Rules

7.1.6.6. CC_RESUME_IND

Parameters
cc_flags: Specifies options associated with the resume.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the resume was network originated.
When this flag is not set, it indicates that the resume was ISDN subscriber ini-
tiated.

Rules

7.1.6.7. CC_RESUME_RES

Rules
Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_RESUME_RES in the CCS_WRES_SUSIND or CCS_ANSWERED states, the
CCS provider should ignore the CC_RESUME_RES primitive and move directly to the CCS_RESUMEED state
if it has not already done so.

7.1.6.8. CC_RESUME_REJECT_REQ

Rules
Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_RESUME_REJECT_REQ in the CCS_WRES_SUSIND or CCS_ANSWERED
states, the CCS provider should reply with a CC_ERROR_ACK primitive with error CCNOTSUPP.

7.1.7. Call Termination Primitives

7.1.7.1. CC_REJECT_REQ

Rules
Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_REJECT_REQ in the CCS_WRES_SIND (CCS_ICC_WAIT_COT or
CCS_ICC_WAIT_ACM) states, the provider should perform an automatic release procedure and move to the
CCS_WAIT_RLC state.

$Revision: 0.8.2.2 $ Page 205 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

7.1.7.2. CC_CALL_FAILURE_IND

Parameters
cc_cause: Indicates the cause of the failure. The cc_cause can have one of the following values:

ISUP_CALL_FAILURE_COT_FAILURE
Indicates that the continuity check on the circuit failed. This applies to incom-
ing calls only.

ISUP_CALL_FAILURE_RESET

ISUP_CALL_FAILURE_RECV_RLC
Indicates that the circuit was not completely released by the distant end. This
applies to incoming calls only.

ISUP_CALL_FAILURE_BLOCKING
Indicates that the circuit was blocked during call setup. This applies to incom-
ing calls only.

ISUP_CALL_FAILURE_T2_TIMEOUT

ISUP_CALL_FAILURE_T3_TIMEOUT

ISUP_CALL_FAILURE_T6_TIMEOUT
Indicates that the call was suspended beyond the allowable period. This ap-
plies to all established calls.

ISUP_CALL_FAILURE_T7_TIMEOUT
Indicates that there was no response to the call setup request. This applies to
outgoing calls only.

ISUP_CALL_FAILURE_T8_TIMEOUT
Indicates that the call failed waiting for a continuity check report from the dis-
tant end. This applies to incoming calls only.

ISUP_CALL_FAILURE_T9_TIMEOUT
Indicates that the call failed while waiting for the distant end to answer. This
applies to outgoing calls only.

ISUP_CALL_FAILURE_T35_TIMEOUT
Indicates that additional information (digits) were not received from the caller
within a sufficient period. This applies to incoming calls only.

ISUP_CALL_FAILURE_T38_TIMEOUT
Indicates that the call was suspended beyond the allowable period. This ap-
plies to all established calls.

ISUP_CALL_FAILURE_CIRCUIT_BUSY

Rules

7.1.7.3. CC_DISCONNECT_REQ

Rules
For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_DISCONNECT_REQ, the provider should respond with CC_ERROR_ACK with
the error CCNOTSUPP.

7.1.7.4. CC_RELEASE_REQ

$Revision: 0.8.2.2 $ Page 206 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Parameters
cc_cause: Indicates the cause of the release. Cause can be one of the following values:

CC_CAUS_UNALLOCATED_NUMBER

CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK

CC_CAUS_NO_ROUTE_TO_DESTINATION

CC_CAUS_SEND_SPECIAL_INFO_TONE

CC_CAUS_MISDIALLED_TRUNK_PREFIX

CC_CAUS_PREEMPTION

CC_CAUS_PREEMPTION_CCT_RESERVED

CC_CAUS_NORMAL_CALL_CLEARING

CC_CAUS_USER_BUSY

CC_CAUS_NO_USER_RESPONDING

CC_CAUS_NO_ANSWER

CC_CAUS_SUBSCRIBER_ABSENT

CC_CAUS_CALL_REJECTED

CC_CAUS_NUMBER_CHANGED

CC_CAUS_REDIRECT

CC_CAUS_OUT_OF_ORDER

CC_CAUS_ADDRESS_INCOMPLETE

CC_CAUS_FACILITY_REJECTED

CC_CAUS_NORMAL_UNSPECIFIED

CC_CAUS_NO_CCT_AVAILABLE

CC_CAUS_NETWORK_OUT_OF_ORDER

CC_CAUS_TEMPORARY_FAILURE

CC_CAUS_SWITCHING_EQUIP_CONGESTION

CC_CAUS_ACCESS_INFO_DISCARDED

CC_CAUS_REQUESTED_CCT_UNAVAILABLE

CC_CAUS_PRECEDENCE_CALL_BLOCKED

CC_CAUS_RESOURCE_UNAVAILABLE

CC_CAUS_NOT_SUBSCRIBED

CC_CAUS_OGC_BARRED_WITHIN_CUG

CC_CAUS_ICC_BARRED WITHIN_CUG

CC_CAUS_BC_NOT_AUTHORIZED

CC_CAUS_BC_NOT_AVAILABLE

CC_CAUS_INCONSISTENCY

CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE

CC_CAUS_BC_NOT_IMPLEMENTED

CC_CAUS_FACILITY_NOT_IMPLEMENTED

CC_CAUS_RESTRICTED_BC_ONLY

CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED

$Revision: 0.8.2.2 $ Page 207 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_CAUS_USER_NOT_MEMBER_OF_CUG

CC_CAUS_INCOMPATIBLE_DESTINATION

CC_CAUS_NON_EXISTENT_CUG

CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION

CC_CAUS_INVALID_MESSAGE

CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED

CC_CAUS_PARAMETER_NOT_IMPLEMENTED

CC_CAUS_RECOVERY_ON_TIMER_EXPIRY

CC_CAUS_PARAMETER_PASSED_ON

CC_CAUS_MESSAGE_DISCARDED

CC_CAUS_PROT OCOL_ERROR

CC_CAUS_INTERWORKING

CC_CAUS_UNALLOCATED_DEST_NUMBER

CC_CAUS_UNKNOWN_BUSINESS_GROUP

CC_CAUS_EXCHANGE_ROUTING_ERROR

CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26

CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND

CC_CAUS_PREEMPTION

CC_CAUS_PRECEDENCE_CALL_BLOCKED

CC_CAUS_CALL_TYPE_INCOMPATIBLE

CC_CAUS_GROUP_RESTRICTIONS

Rules

7.1.7.5. CC_RELEASE_IND

Parameters
cc_cause: Indicates the cause of the release. Cause can be one of the cause value listed in this ad-

dendum under CC_RELEASE_REQ.

Rules

7.1.8. Management Primitives

7.1.8.1. CC_RESTART_REQ

Rules
For compatibility between CCS providers conforming to Q.931 and CCS provider conforming to Q.764, if the
CCS provider conforming to Q.764 receives a CC_RESTART_REQ, the provider should respond with CC_ER-
ROR_ACK with the error CCNOTSUPP.

7.1.8.2. CC_RESET_REQ

Parameters
cc_flags: Indicates the options flags.

$Revision: 0.8.2.2 $ Page 208 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.3. CC_RESET_IND

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.4. CC_RESET_RES

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.5. CC_RESET_CON

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

$Revision: 0.8.2.2 $ Page 209 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.6. CC_BLOCKING_REQ

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.7. CC_BLOCKING_IND

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.8. CC_BLOCKING_RES

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call

$Revision: 0.8.2.2 $ Page 210 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

control address is to be interpreted by the CCS provider as a circuit group
identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.9. CC_BLOCKING_CON

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.10. CC_UNBLOCKING_REQ

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

$Revision: 0.8.2.2 $ Page 211 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

Rules

7.1.8.11. CC_UNBLOCKING_IND

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.12. CC_UNBLOCKING_RES

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.13. CC_UNBLOCKING_CON

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

$Revision: 0.8.2.2 $ Page 212 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.14. CC_QUERY_REQ

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.15. CC_QUERY_IND

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.16. CC_QUERY_RES

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

$Revision: 0.8.2.2 $ Page 213 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.1.8.17. CC_QUERY_CON

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset: Indicates the offset of the address from the start of the block.

Rules

7.2. Q.764 Header File Listing

/***

@(#) $Id: cci.me,v 0.8.2.2 2003/03/23 19:56:50 brian Exp $

Copyright (C) 2001-2002 OpenSS7 Corporation <http://www.openss7.com>
Copyright (C) 1997-2000 Brian F. G. Bidulock <bidulock@dallas.net>

All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

U.S. GOVERNMENT RESTRICTED RIGHTS. If you are licensing this Software on
behalf of the U.S. Government ("Government"), the following provisions apply
to you. If the Software is supplied by the Department of Defense ("DoD"), it
is classified as "Commercial Computer Software" under paragraph 252.227-7014
of the DoD Supplement to the Federal Acquisition Regulations ("DFARS") (or any
successor regulations) and the Government is acquiring only the license rights
granted herein (the license rights customarily provided to non-Government
users). If the Software is supplied to any unit or agency of the Government
other than DoD, it is classified as "Restricted Computer Software" and the
Government’s rights in the Software are defined in paragraph 52.227-19 of the
Federal Acquisition Regulations ("FAR") (or any success regulations) or, in
the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplement to the FAR
(or any successor regulations).

Commercial licensing and support of this software is available from OpenSS7
Corporation at a fee. See http://www.openss7.com/

Last Modified $Date: 2003/03/23 19:56:50 $ by $Author: brian $

$Revision: 0.8.2.2 $ Page 214 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

***/

#ifndef __SS7_ISUPI_H__
#define __SS7_ISUPI_H__

#ident "@(#) $Name: $($Revision: 0.8.2.2 $) Copyright (c) 1997-2002 OpenSS7 Corporation."

/*
* ISUP addresss
*/

typedef struct isup_addr {
ulong scope; /* the scope of the identifier */
ulong id; /* the identifier within the scope */
ulong cic; /* circuit identification code within the scope */

} isup_addr_t;

#define ISUP_SCOPE_CT 1 /* circuit scope */
#define ISUP_SCOPE_CG 2 /* circuit group scope */
#define ISUP_SCOPE_TG 3 /* trunk group scope */
#define ISUP_SCOPE_SR 4 /* signalling relation scope */
#define ISUP_SCOPE_SP 5 /* signalling point scope */
#define ISUP_SCOPE_DF 6 /* default scope */
#define ISUP_SCOPE_CIC 7 /* for unidentified cic addresses */

/*
* Definitions for CCI for Q.764 Conforming CCS Providers.
*/

enum {
ISUP_INCOMING_INTERNATIONAL_EXCHANGE = 0x00000001UL,
ISUP_SUSPEND_NATIONALLY_PERFORMED = 0x00000002UL,

};

enum {
CMS_IDLE = 0,
CMS_WCON_BLREQ,
CMS_WRES_BLIND,
CMS_WACK_BLRES,
CMS_WCON_UBREQ,
CMS_WRES_UBIND,
CMS_WACK_UBRES,
CMS_WCON_RESREQ,
CMS_WRES_RESIND,
CMS_WACK_RESRES,
CMS_WCON_QRYREQ,
CMS_WRES_QRYIND,
CMS_WACK_QRYRES,

};

enum {
CKS_IDLE = 0,
CKS_WIND_CONT,
CKS_WRES_CONT,
CKS_WIND_CTEST,
CKS_WREQ_CTEST,
CKS_WIND_CCREP,
CKS_WREQ_CCREP,
CKS_WCON_RELREQ,
CKS_WRES_RELIND,

};

/*
* Circuit States:
*/
#define CTS_ICC 0x00000010
#define CTS_OGC 0x00000020
#define CTS_COT 0x00000040
#define CTS_LPA 0x00000080
#define CTS_COR 0x00000100
#define CTS_MASK 0x0000000f

#define CTS_DIRECTION(__val) (__val & (CTS_ICC|CTS_OGC))
#define CTS_CONT_CHECK(__val) (__val & (CTS_COT|CTS_LPA|CTS_COR))
#define CTS_MESSAGE(__val) (__val & CTS_MASK)

#define CTS_IDLE 0x00000000
#define CTS_WAIT_IAM 0x00000001
#define CTS_WAIT_CCR 0x00000002
#define CTS_WAIT_LPA 0x00000003
#define CTS_WAIT_SAM 0x00000004
#define CTS_WAIT_ACM 0x00000005
#define CTS_WAIT_ANM 0x00000006

$Revision: 0.8.2.2 $ Page 215 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

#define CTS_ANSWERED 0x00000007
#define CTS_SUSPENDED 0x00000008
#define CTS_WAIT_RLC 0x00000009
#define CTS_SEND_RLC 0x0000000a

#define CTS_ICC_WAIT_COT_CCR (CTS_ICC | CTS_COT | CTS_WAIT_CCR)
#define CTS_OGC_WAIT_COT_CCR (CTS_OGC | CTS_COT | CTS_WAIT_CCR)
#define CTS_ICC_WAIT_LPA_CCR (CTS_ICC | CTS_LPA | CTS_WAIT_CCR)
#define CTS_OGC_WAIT_LPA_CCR (CTS_OGC | CTS_LPA | CTS_WAIT_CCR)
#define CTS_ICC_WAIT_CCR (CTS_ICC | CTS_WAIT_CCR)
#define CTS_OGC_WAIT_CCR (CTS_OGC | CTS_WAIT_CCR)
#define CTS_ICC_WAIT_COR_SAM (CTS_ICC | CTS_COR | CTS_WAIT_SAM)
#define CTS_OGC_WAIT_COR_SAM (CTS_OGC | CTS_COR | CTS_WAIT_SAM)
#define CTS_ICC_WAIT_COT_SAM (CTS_ICC | CTS_COT | CTS_WAIT_SAM)
#define CTS_OGC_WAIT_COT_SAM (CTS_OGC | CTS_COT | CTS_WAIT_SAM)
#define CTS_ICC_WAIT_LPA_SAM (CTS_ICC | CTS_LPA | CTS_WAIT_SAM)
#define CTS_OGC_WAIT_LPA_SAM (CTS_OGC | CTS_LPA | CTS_WAIT_SAM)
#define CTS_ICC_WAIT_SAM (CTS_ICC | CTS_WAIT_SAM)
#define CTS_OGC_WAIT_SAM (CTS_OGC | CTS_WAIT_SAM)
#define CTS_ICC_WAIT_COR_ACM (CTS_ICC | CTS_COR | CTS_WAIT_ACM)
#define CTS_OGC_WAIT_COR_ACM (CTS_OGC | CTS_COR | CTS_WAIT_ACM)
#define CTS_ICC_WAIT_COT_ACM (CTS_ICC | CTS_COT | CTS_WAIT_ACM)
#define CTS_OGC_WAIT_COT_ACM (CTS_OGC | CTS_COT | CTS_WAIT_ACM)
#define CTS_ICC_WAIT_LPA_ACM (CTS_ICC | CTS_LPA | CTS_WAIT_ACM)
#define CTS_OGC_WAIT_LPA_ACM (CTS_OGC | CTS_LPA | CTS_WAIT_ACM)
#define CTS_ICC_WAIT_ACM (CTS_ICC | CTS_WAIT_ACM)
#define CTS_OGC_WAIT_ACM (CTS_OGC | CTS_WAIT_ACM)
#define CTS_ICC_WAIT_ANM (CTS_ICC | CTS_WAIT_ANM)
#define CTS_OGC_WAIT_ANM (CTS_OGC | CTS_WAIT_ANM)
#define CTS_ICC_ANSWERED (CTS_ICC | CTS_ANSWERED)
#define CTS_OGC_ANSWERED (CTS_OGC | CTS_ANSWERED)
#define CTS_ICC_SUSPENDED (CTS_ICC | CTS_SUSPENDED)
#define CTS_OGC_SUSPENDED (CTS_OGC | CTS_SUSPENDED)
#define CTS_ICC_WAIT_RLC (CTS_ICC | CTS_WAIT_RLC)
#define CTS_OGC_WAIT_RLC (CTS_OGC | CTS_WAIT_RLC)
#define CTS_ICC_SEND_RLC (CTS_ICC | CTS_SEND_RLC)
#define CTS_OGC_SEND_RLC (CTS_OGC | CTS_SEND_RLC)

/*
* Circuit, Group and MTP Flags
*/
#define CCTF_LOC_M_BLOCKED 0x00000001UL
#define CCTF_REM_M_BLOCKED 0x00000002UL
#define CCTF_LOC_H_BLOCKED 0x00000004UL
#define CCTF_REM_H_BLOCKED 0x00000008UL
#define CCTF_LOC_M_BLOCK_PENDING 0x00000010UL
#define CCTF_REM_M_BLOCK_PENDING 0x00000020UL
#define CCTF_LOC_H_BLOCK_PENDING 0x00000040UL
#define CCTF_REM_H_BLOCK_PENDING 0x00000080UL
#define CCTF_LOC_M_UNBLOCK_PENDING 0x00000100UL
#define CCTF_REM_M_UNBLOCK_PENDING 0x00000200UL
#define CCTF_LOC_H_UNBLOCK_PENDING 0x00000400UL
#define CCTF_REM_H_UNBLOCK_PENDING 0x00000800UL
#define CCTF_LOC_RESET_PENDING 0x00001000UL
#define CCTF_REM_RESET_PENDING 0x00002000UL
#define CCTF_LOC_QUERY_PENDING 0x00004000UL
#define CCTF_REM_QUERY_PENDING 0x00008000UL
#define CCTF_ORIG_SUSPENDED 0x00010000UL
#define CCTF_TERM_SUSPENDED 0x00020000UL
#define CCTF_UPT_PENDING 0x00040000UL
#define CCTF_LOC_S_BLOCKED 0x00080000UL
#define CCTF_LOC_G_BLOCK_PENDING 0x00100000UL
#define CCTF_REM_G_BLOCK_PENDING 0x00200000UL
#define CCTF_LOC_G_UNBLOCK_PENDING 0x00400000UL
#define CCTF_REM_G_UNBLOCK_PENDING 0x00800000UL
#define CCTF_COR_PENDING 0x01000000UL
#define CCTF_COT_PENDING 0x02000000UL
#define CCTF_LPA_PENDING 0x04000000UL

#define CCTM_OUT_OF_SERVICE (CCTF_LOC_S_BLOCKED | CCTF_REM_M_BLOCKED | CCTF_REM_H_BLOCKED | CCTF_REM_M_BLOCK_PENDING | CCTF_REM_H_BLOCK_PENDING | CCTF_REM_G_BLOCK_PENDING | CCTF_LOC_RESET_PENDING | CCTF_REM_RESET_PENDING | 0)

#define CCTM_CONT_CHECK (CCTF_COR_PENDING | CCTF_COT_PENDING | CCTF_LPA_PENDING | 0)

/* Cause values for CC_CALL_REATTEMPT_IND */
/* Cause values -- Q.764 conforming */
#define ISUP_REATTEMPT_DUAL_SIEZURE 1UL
#define ISUP_REATTEMPT_RESET 2UL
#define ISUP_REATTEMPT_BLOCKING 3UL
#define ISUP_REATTEMPT_T24_TIMEOUT 4UL
#define ISUP_REATTEMPT_UNEXPECTED 5UL
#define ISUP_REATTEMPT_COT_FAILURE 6UL
#define ISUP_REATTEMPT_CIRCUIT_BUSY 7UL

$Revision: 0.8.2.2 $ Page 216 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

/* Call types for CC_SETUP_REQ and CC_SETUP_IND */
/* Call types -- Q.764 Conforming */
#define ISUP_CALL_TYPE_SPEECH 0x00000000UL
#define ISUP_CALL_TYPE_64KBS_UNRESTRICTED 0x00000002UL
#define ISUP_CALL_TYPE_3_1kHZ_AUDIO 0x00000003UL
#define ISUP_CALL_TYPE_64KBS_PREFERRED 0x00000006UL
#define ISUP_CALL_TYPE_2x64KBS_UNRESTRICTED 0x00000007UL
#define ISUP_CALL_TYPE_384KBS_UNRESTRICTED 0x00000008UL
#define ISUP_CALL_TYPE_1536KBS_UNRESTRICTED 0x00000009UL
#define ISUP_CALL_TYPE_1920KBS_UNRESTRICTED 0x0000000aUL
/* Call flags for CC_SETUP_REQ and CC_SETUP_IND */
/* Call flags -- Q.764 Conforming */
#define ISUP_NCI_ONE_SATELLITE_CCT 0x00000001UL
#define ISUP_NCI_TWO_SATELLITE_CCT 0x00000002UL
#define ISUP_NCI_SATELLITE_MASK 0x00000003UL
#define ISUP_NCI_CONT_CHECK_REQUIRED 0x00000004UL
#define ISUP_NCI_CONT_CHECK_PREVIOUS 0x00000008UL
#define ISUP_NCI_CONT_CHECK_MASK 0x0000000cUL
#define ISUP_NCI_OG_ECHO_CONTROL_DEVICE 0x00000010UL
/* Call flags for CC_SETUP_REQ and CC_SETUP_IND */
/* Call flags -- Q.764 Conforming */
#define ISUP_FCI_INTERNATIONAL_CALL 0x00000100UL
#define ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAIL 0x00000200UL
#define ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE 0x00000400UL
#define ISUP_FCI_INTERWORKING_ENCOUNTERED 0x00000800UL
#define ISUP_FCI_E2E_INFORMATION_AVAILABLE 0x00001000UL
#define ISUP_FCI_ISDN_USER_PART_ALL_THE_WAY 0x00002000UL
#define ISUP_FCI_ISDN_USER_PART_NOT_REQUIRED 0x00004000UL
#define ISUP_FCI_ISDN_USER_PART_REQUIRED 0x00008000UL
#define ISUP_FCI_ORIGINATING_ACCESS_ISDN 0x00010000UL
#define ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE 0x00020000UL
#define ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE 0x00040000UL
/* Call flags for CC_SETUP_REQ and CC_SETUP_IND */
/* Call flags -- Q.764 Conforming */
#define ISUP_CPC_MASK 0xff000000UL
#define ISUP_CPC_UNKNOWN 0x00000000UL
#define ISUP_CPC_OPERATOR_FRENCH 0x01000000UL
#define ISUP_CPC_OPERATOR_ENGLISH 0x02000000UL
#define ISUP_CPC_OPERATOR_GERMAN 0x03000000UL
#define ISUP_CPC_OPERATOR_RUSSIAN 0x04000000UL
#define ISUP_CPC_OPERATOR_SPANISH 0x05000000UL
#define ISUP_CPC_OPERATOR_LANGUAGE_6 0x06000000UL
#define ISUP_CPC_OPERATOR_LANGUAGE_7 0x07000000UL
#define ISUP_CPC_OPERATOR_LANGUAGE_8 0x08000000UL
#define ISUP_CPC_OPERATOR_CODE_9 0x09000000UL
#define ISUP_CPC_SUBSCRIBER_ORDINARY 0x0a000000UL
#define ISUP_CPC_SUBSCRIBER_PRIORITY 0x0b000000UL
#define ISUP_CPC_VOICE_BAND_DATA 0x0c000000UL
#define ISUP_CPC_TEST_CALL 0x0d000000UL
#define ISUP_CPC_SPARE 0x0e000000UL
#define ISUP_CPC_PAYPHONE 0x0f000000UL

/* Flags for CC_CONT_REPORT_REQ and CC_CONT_REPORT_IND */
/* Flags -- Q.764 Conforming */
#define ISUP_COT_FAILURE 0x00000000UL
#define ISUP_COT_SUCCESS 0x00000001UL

/* Flags for CC_PROCEEDING, CC_ALERTING, CC_PROGRESS, CC_IBI */
/* Flags -- Q.764 Conforming */
#define ISUP_BCI_NO_CHARGE 0x00000001UL
#define ISUP_BCI_CHARGE 0x00000002UL
#define ISUP_BCI_CHARGE_MASK 0x00000003UL
#define ISUP_BCI_SUBSCRIBER_FREE 0x00000004UL
#define ISUP_BCI_CONNECT_FREE 0x00000008UL
#define ISUP_BCI_CPS_MASK 0x0000000cUL
#define ISUP_BCI_ORDINARY_SUBSCRIBER 0x00000010UL
#define ISUP_BCI_PAYPHONE 0x00000020UL
#define ISUP_BCI_CPI_MASK 0x00000030UL
#define ISUP_BCI_PASS_ALONG_E2E_METHOD_AVAIL 0x00000040UL
#define ISUP_BCI_SCCP_E2E_METHOD_AVAILABLE 0x00000080UL
#define ISUP_BCI_E2E_MASK 0x000000c0UL
#define ISUP_BCI_INTERWORKING_ENCOUNTERED 0x00000100UL
#define ISUP_BCI_E2E_INFORMATION_AVAILABLE 0x00000200UL
#define ISUP_BCI_ISDN_USER_PART_ALL_THE_WAY 0x00000400UL
#define ISUP_BCI_HOLDING_REQUESTED 0x00000800UL
#define ISUP_BCI_TERMINATING_ACCESS_ISDN 0x00001000UL
#define ISUP_BCI_IC_ECHO_CONTROL_DEVICE 0x00002000UL
#define ISUP_BCI_SCCP_CLNS_METHOD_AVAILABLE 0x00004000UL
#define ISUP_BCI_SCCP_CONS_METHOD_AVAILABLE 0x00008000UL
#define ISUP_BCI_SCCP_METHOD_MASK 0x0000c000UL
#define ISUP_OBCI_INBAND_INFORMATION_AVAILABLE 0x00010000UL
#define ISUP_OBCI_CALL_DIVERSION_MAY_OCCUR 0x00020000UL
#define ISUP_OBCI_ADDITIONAL_INFO_IN_SEG 0x00040000UL

$Revision: 0.8.2.2 $ Page 217 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

#define ISUP_OBCI_MLPP_USER 0x00080000UL

/* Events for CC_PROGRESS_REQ and CC_PROGRESS_IND */
/* Events -- Q.764 Conforming */
#define ISUP_EVNT_PRES_RESTRICT 0x80
#define ISUP_EVNT_ALERTING 0x01 /* alerting */
#define ISUP_EVNT_PROGRESS 0x02 /* progress */
#define ISUP_EVNT_IBI 0x03 /* in-band info or approp pattern avail */
#define ISUP_EVNT_CFB 0x04 /* call forwarded busy */
#define ISUP_EVNT_CFNA 0x05 /* call forwarded no reply */
#define ISUP_EVNT_CFU 0x06 /* call forwarded unconditional */
#define ISUP_EVNT_MASK 0x7f

/* Cause values CC_CALL_FAILURE_IND -- Q.764 Conforming */
#define ISUP_CALL_FAILURE_COT_FAILURE 1UL
#define ISUP_CALL_FAILURE_RESET 2UL
#define ISUP_CALL_FAILURE_RECV_RLC 3UL
#define ISUP_CALL_FAILURE_BLOCKING 4UL
#define ISUP_CALL_FAILURE_T2_TIMEOUT 5UL
#define ISUP_CALL_FAILURE_T3_TIMEOUT 6UL
#define ISUP_CALL_FAILURE_T6_TIMEOUT 7UL
#define ISUP_CALL_FAILURE_T7_TIMEOUT 8UL
#define ISUP_CALL_FAILURE_T8_TIMEOUT 9UL
#define ISUP_CALL_FAILURE_T9_TIMEOUT 10UL
#define ISUP_CALL_FAILURE_T35_TIMEOUT 11UL
#define ISUP_CALL_FAILURE_T38_TIMEOUT 12UL
#define ISUP_CALL_FAILURE_CIRCUIT_BUSY 13UL

/*
* Q.850 Cause Values
*/
/* Normal class */
#define CC_CAUS_UNALLOCATED_NUMBER 1 /* Unallocated (unassigned) number */
#define CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK 2 /* No route to specified transit network */
#define CC_CAUS_NO_ROUTE_TO_DESTINATION 3 /* No route to destination */
#define CC_CAUS_SEND_SPECIAL_INFO_TONE 4 /* Send special information tone */
#define CC_CAUS_MISDIALLED_TRUNK_PREFIX 5 /* Misdialled trunk prefix */
#define CC_CAUS_PREEMPTION 8 /* Preemption */
#define CC_CAUS_PREEMPTION_CCT_RESERVED 9 /* Preemption - circuit reserved for reuse */
#define CC_CAUS_NORMAL_CALL_CLEARING 16 /* Normal call clearing */
#define CC_CAUS_USER_BUSY 17 /* User busy */
#define CC_CAUS_NO_USER_RESPONDING 18 /* No user responding */
#define CC_CAUS_NO_ANSWER 19 /* No answer from user (user alerted) */
#define CC_CAUS_SUBSCRIBER_ABSENT 20 /* Subscriber absent */
#define CC_CAUS_CALL_REJECTED 21 /* Call rejected */
#define CC_CAUS_NUMBER_CHANGED 22 /* Number changed */
#define CC_CAUS_REDIRECT 23 /* Redirect to new destination */
#define CC_CAUS_OUT_OF_ORDER 27 /* Desitination out of order */
#define CC_CAUS_ADDRESS_INCOMPLETE 28 /* Invalid number format (address incomplete) */
#define CC_CAUS_FACILITY_REJECTED 29 /* Facility rejected */
#define CC_CAUS_NORMAL_UNSPECIFIED 31 /* Normal unspecified */
/* Resource Unavailable Class */
#define CC_CAUS_NO_CCT_AVAILABLE 34 /* No circuit/channel available */
#define CC_CAUS_NETWORK_OUT_OF_ORDER 38 /* Network out of order */
#define CC_CAUS_TEMPORARY_FAILURE 41 /* Temporary failure */
#define CC_CAUS_SWITCHING_EQUIP_CONGESTION 42 /* Switching equipment congestion */
#define CC_CAUS_ACCESS_INFO_DISCARDED 43 /* Access information discarded */
#define CC_CAUS_REQUESTED_CCT_UNAVAILABLE 44 /* Requested circuit/channel not available */
#define CC_CAUS_PRECEDENCE_CALL_BLOCKED 46 /* Precedence call blocked */
#define CC_CAUS_RESOURCE_UNAVAILABLE 47 /* Resource unavailable, unspecified */
/* Service or Option Unavaialble Class */
#define CC_CAUS_NOT_SUBSCRIBED 50 /* Requested facility not subscribed */
#define CC_CAUS_OGC_BARRED_WITHIN_CUG 53 /* Outgoing calls barred within CUG */
#define CC_CAUS_ICC_BARRED WITHIN_CUG 55 /* Incoming calls barred within CUG */
#define CC_CAUS_BC_NOT_AUTHORIZED 57 /* Bearer capability not authorized */
#define CC_CAUS_BC_NOT_AVAILABLE 58 /* Bearer capability not presently available */
#define CC_CAUS_INCONSISTENCY 62 /* Inconsistency in designated outgoing access

information and subscriber class */
#define CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE 63 /* Service or option not available, unspecified */
/* Service or Option Not Implemented Class */
#define CC_CAUS_BC_NOT_IMPLEMENTED 65 /* Bearer capability not implemented */
#define CC_CAUS_FACILITY_NOT_IMPLEMENTED 69 /* Requested facility not implemented */
#define CC_CAUS_RESTRICTED_BC_ONLY 70 /* Only restricted digital information bearer capability

is available */
#define CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED 79 /* Service or option not implemented, unspecified */
/* Invalid Message (e.g., Parameter out of Range) Class */
#define CC_CAUS_USER_NOT_MEMBER_OF_CUG 87 /* User not member of CUG */
#define CC_CAUS_INCOMPATIBLE_DESTINATION 88 /* Incompatible destination */
#define CC_CAUS_NON_EXISTENT_CUG 90 /* Non-existent CUG */
#define CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION 91 /* Invalid transit network selection */
#define CC_CAUS_INVALID_MESSAGE 95 /* Invalid message, unspecified */
/* Protocol Error (e.g., Unknwon Message) Class */
#define CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED 97 /* Message typ non-existent or not implemented. */

$Revision: 0.8.2.2 $ Page 218 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

#define CC_CAUS_PARAMETER_NOT_IMPLEMENTED 99 /* Information element/Parameter non-existent or not
implemented */

#define CC_CAUS_RECOVERY_ON_TIMER_EXPIRY 102 /* Recovery on timer expiry */
#define CC_CAUS_PARAMETER_PASSED_ON 103 /* Parameter non-existent or not implemented - passed on */
#define CC_CAUS_MESSAGE_DISCARDED 110 /* Message with unrecognized parameter discarded */
#define CC_CAUS_PROTOCOL_ERROR 111 /* Protocol error, unspecified */
/* Interworking Class */
#define CC_CAUS_INTERWORKING 127 /* Interworking, unspecified */
/*
* ANSI Standard Causes
*/
/* Normal Class */
#define CC_CAUS_UNALLOCATED_DEST_NUMBER 23 /* Unallocated destination number */
#define CC_CAUS_UNKNOWN_BUSINESS_GROUP 24 /* Unknown business group */
#define CC_CAUS_EXCHANGE_ROUTING_ERROR 25 /* Exchange routing error */
#define CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26 /* Misrouted call to a ported number */
#define CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND 27 /* Number portability Query on Release (QoR) number not

found. */
/* Resource Unavailable Class */
#define CC_CAUS_RESOURCE_PREEMPTION 45 /* Preemption. */
#define CC_CAUS_PRECEDENCE_CALL_BLOCKED 46 /* Precedence call blocked. */
/* Service or Option Not Available Class */
#define CC_CAUS_CALL_TYPE_INCOMPATIBLE 51 /* Call type incompatible with service request */
#define CC_CAUS_GROUP_RESTRICTIONS 54 /* Call blocked due to group restrictions */

/* Management flags -- Q.764 Conforming */
#define ISUP_GROUP 0x00010000UL
#define ISUP_MAINTENANCE_ORIENTED 0x00000000UL
#define ISUP_HARDWARE_FAILURE_ORIENTED 0x00000001UL

#define ISUP_SRIS_MASK 0x3
#define ISUP_SRIS_NETWORK_INITIATED 0x1
#define ISUP_SRIS_USER_INITIATED 0x2

/* Maintenance indications -- Q.764 Conforming */
#define ISUP_MAINT_T5_TIMEOUT 3UL /* Q.752 12.5 on occrence */
#define ISUP_MAINT_T13_TIMEOUT 4UL /* Q.752 12.16 1st and delta */
#define ISUP_MAINT_T15_TIMEOUT 5UL /* Q.752 12.17 1st and delta */
#define ISUP_MAINT_T17_TIMEOUT 6UL /* Q.752 12.1 1st and delta */
#define ISUP_MAINT_T19_TIMEOUT 7UL /* Q.752 12.18 1st and delta */
#define ISUP_MAINT_T21_TIMEOUT 8UL /* Q.752 12.19 1st and delta */
#define ISUP_MAINT_T23_TIMEOUT 9UL /* Q.752 12.2 1st and delta */
#define ISUP_MAINT_T25_TIMEOUT 10UL
#define ISUP_MAINT_T26_TIMEOUT 11UL
#define ISUP_MAINT_T27_TIMEOUT 12UL
#define ISUP_MAINT_T28_TIMEOUT 13UL
#define ISUP_MAINT_T36_TIMEOUT 14UL
#define ISUP_MAINT_UNEXPECTED_CGBA 15UL /* Q.752 12.12 1st and delta */
#define ISUP_MAINT_UNEXPECTED_CGUA 16UL /* Q.752 12.13 1st and delta */
#define ISUP_MAINT_UNEXPECTED_MESSAGE 17UL /* Q.752 12.21 1st and delta */
#define ISUP_MAINT_UNEQUIPPED_CIC 18UL
#define ISUP_MAINT_SEGMENTATION_DISCARDED 19UL
#define ISUP_MAINT_USER_PART_UNEQUIPPED 20UL
#define ISUP_MAINT_USER_PART_UNAVAILABLE 21UL /* Q.752 10.1, 10.8 on occrence */
#define ISUP_MAINT_USER_PART_AVAILABLE 22UL /* Q.752 10.3, 10.9 on occrence */
#define ISUP_MAINT_USER_PART_MAN_MADE_BUSY 23UL /* Q.752 10.2 on occrence */ /* XXX */
#define ISUP_MAINT_USER_PART_CONGESTED 24UL /* Q.752 10.5, 10.11 on occrence */
#define ISUP_MAINT_USER_PART_UNCONGESTED 25UL /* Q.752 10.6, 10.12 on occrence */
#define ISUP_MAINT_MISSING_ACK_IN_CGBA 26UL /* Q.752 12.8 1st and delta */
#define ISUP_MAINT_MISSING_ACK_IN_CGUA 27UL /* Q.752 12.9 1st and delta */
#define ISUP_MAINT_ABNORMAL_ACK_IN_CGBA 28UL /* Q.752 12.10 1st and delta */
#define ISUP_MAINT_ABNORMAL_ACK_IN_CGUA 29UL /* Q.752 12.11 1st and delta */
#define ISUP_MAINT_UNEXPECTED_BLA 30UL /* Q.752 12.14 1st and delta */
#define ISUP_MAINT_UNEXPECTED_UBA 31UL /* Q.752 12.15 1st and delta */
#define ISUP_MAINT_RELEASE_UNREC_INFO 32UL /* Q.752 12.22 1st and delta */ /* XXX */
#define ISUP_MAINT_RELEASE_FAILURE 33UL /* Q.752 12.23 1st and delta */ /* XXX */
#define ISUP_MAINT_MESSAGE_FORMAT_ERROR 34UL /* Q.752 12.20 1st and delta */ /* XXX */

#endif /* __SS7_ISUPI_H__ */

$Revision: 0.8.2.2 $ Page 219 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

8. Addendum for ETSI EN 300 356-1 V3.2.2 Conformance
This addendum describes the formats and rules that are specific to ETSI EN 300 356-1 V3.2.2. The addendum
must be used along with the generic CCI as defined in the main document, and the Q.764 conformance defined in
Addendum 2, when implementing a CCS provider that will be configured with the EN 300 356-1 call processing
layer.

8.1. Primitives and Rules for ETSI EN 300 356-1 V3.2.2 Conformance
The following are the additional rules that apply to the CCI primitives for ETSI EN 300 356-1 V3.2.2 compatibil-
ity.

8.1.1. Local Management Primitives

8.1.2. Call Setup Primitives

8.1.2.1. CC_SETUP_REQ

Parameters

Flags

Rules

8.1.2.2. CC_SETUP_IND

Parameters
cc_call_type: Specifies the call type to be set up. In addition to Q.764 values, for EN 300 356-1

V3.2.2 conforming CCS providers, the call type can also be one of the values listed un-
der "Call Type" below.

Call Type
The following call types are defined for EN 300 356-1 V3.2.2 conforming CCS providers in addition to the
Q.931 values shown in Addendum 1.

CC_CALL_TYPE_3x64KBS_UNRESTRICTED
The call type is 3 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 3 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_4x64KBS_UNRESTRICTED
The call type is 4 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 4 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_5x64KBS_UNRESTRICTED
The call type is 5 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 5 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_6x64KBS_UNRESTRICTED
The call type is 6 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of 384 kbit/s unrestricted digital information. This
call type can be synonymous with CC_CALL_TYPE_384KBS_UNRESTRICTED.

CC_CALL_TYPE_7x64KBS_UNRESTRICTED
The call type is 7 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 7 x 64 kbit/s unrestricted digital

$Revision: 0.8.2.2 $ Page 220 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

information".

CC_CALL_TYPE_8x64KBS_UNRESTRICTED
The call type is 8 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 8 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_9x64KBS_UNRESTRICTED
The call type is 9 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 9 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_10x64KBS_UNRESTRICTED
The call type is 10 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 10 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_11x64KBS_UNRESTRICTED
The call type is 11 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 11 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_12x64KBS_UNRESTRICTED
The call type is 12 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 12 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_13x64KBS_UNRESTRICTED
The call type is 13 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 13 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_14x64KBS_UNRESTRICTED
The call type is 14 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 14 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_15x64KBS_UNRESTRICTED
The call type is 15 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 15 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_16x64KBS_UNRESTRICTED
The call type is 16 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 16 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_17x64KBS_UNRESTRICTED
The call type is 17 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 17 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_18x64KBS_UNRESTRICTED
The call type is 18 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 28 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_19x64KBS_UNRESTRICTED
The call type is 19 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 19 x 64 kbit/s unrestricted digital in-
formation".

$Revision: 0.8.2.2 $ Page 221 April 15, 2003

Call Control Interface (CCI) OpenSS7 Corporation

CC_CALL_TYPE_20x64KBS_UNRESTRICTED
The call type is 20 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 20 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_21x64KBS_UNRESTRICTED
This call type corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved
for 21 x 64 kbit/s unrestricted digital information". The call type is 21 x 64 kbit/s unrestricted digital
information.

CC_CALL_TYPE_22x64KBS_UNRESTRICTED
The call type is 22 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 22 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_23x64KBS_UNRESTRICTED
The call type is 23 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 23 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_24x64KBS_UNRESTRICTED
The call type is 24 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "1536 kbit/s unrestricted digital information". This
call type can be synonymous with CC_CALL_TYPE_1536KBS_UNRESTRICTED.

CC_CALL_TYPE_25x64KBS_UNRESTRICTED
The call type is 25 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 25 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_26x64KBS_UNRESTRICTED
The call type is 26 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 26 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_27x64KBS_UNRESTRICTED
The call type is 27 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 27 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_28x64KBS_UNRESTRICTED
The call type is 28 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 28 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_29x64KBS_UNRESTRICTED
The call type is 29 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "1920 kbit/s unrestricted digital information". This
call type can be synonymous with CC_CALL_TYPE_1920KBS_UNRESTRICTED.

Rules
Rules for call type:

(1) Only multi-rate connection types for 384 kbit/s (6 x 64 kbit/s), 1536 kbit/s (24 x 64 kbit/s) and 1920
kbit/s (29 x 64 kbit/s) are supported. For EN 300 356-1 V3.2.2 compliant CCS providers.

8.2. ETSI EN 300 356-1 V3.2.2 Header File Listing

$Revision: 0.8.2.2 $ Page 222 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

A. Appendix A. Mapping of CCI Primitives to Q.931
The mapping of CCI primitives to Q.931 primitives is shown in Table2. For the most part, this mapping is a one
to one mapping of service primitives, with the exception of Setup Response and Setup Confirm.

In Q.931 the Setup Response and Setup Confirm primitives and issued only once the voice channel is connected.
In OpenSS7 CCI, the CC_SETUP_RES and CC_SETUP_CON primitives are used to accept the addressing and
assign a stream and correspond to the first backward message (i.e, Processing, Alerting or Progress Request or
Indication; and Setup Indication or Confirm).

Table2. Mapping of CCI primitives to Q.931 Primitives

CCI Primitive Q.931 Primitive

CC_INFO_REQ −
CC_INFO_ACK −
CC_BIND_REQ −
CC_BIND_ACK −
CC_UNBIND_REQ −
CC_ADDR_REQ −
CC_ADDR_ACK −
CC_OK_ACK −
CC_ERROR_ACK −
CC_SETUP_REQ Setup Request
CC_SETUP_IND Setup Indication
CC_MORE_INFO_REQ More Info Request
CC_MORE_INFO_IND More Info Indication
CC_INFORMATION_REQ Information Request
CC_INFORMATION_IND Information Indication
CC_INFO_TIMEOUT_IND Timeout Indication
CC_SETUP_RES Proceeding, Alerting, Progress Request; Setup Response
CC_SETUP_CON Proceeding, Alerting, Progress Indication; Setup Confirm
CC_SETUP_COMPLETE_REQ Setup Complete Request
CC_SETUP_COMPLETE_IND Setup Complete Indication
CC_PROCEEDING_REQ Proceeding Request
CC_PROCEEDING_IND Proceeding Indication
CC_ALERTING_REQ Alerting Request
CC_ALERTING_IND Alerting Indication
CC_PROGRESS_REQ Progress Request
CC_PROGRESS_IND Progress Indication
CC_CONNECT_REQ Setup Response
CC_CONNECT_IND Setup Confirm
CC_SUSPEND_REQ Suspend Request, Notify Request
CC_SUSPEND_IND Suspend Indication, Notify Indication
CC_SUSPEND_RES Suspend Response
CC_SUSPEND_CON Suspend Confirm
CC_SUSPEND_REJECT_REQ Suspend Reject Request
CC_SUSPEND_REJECT_IND Suspend Reject Indication
CC_RESUME_REQ Resume Request, Notify Request
CC_RESUME_IND Resume Indication, Notify Indication
CC_RESUME_RES Resume Response
CC_RESUME_CON Resume Confirm
CC_RESUME_REJECT_REQ Resume Reject Request

$Revision: 0.8.2.2 $ Page 223 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

CCI Primitive Q.931 Primitive

CC_RESUME_REJECT_IND Resume Reject Indication
CC_CALL_REATTEMPT_IND −
CC_CALL_FAILURE_IND Error Indication, Status Indication, Restart Indication
CC_REJECT_REQ Reject Request, Release Complete Request
CC_REJECT_IND Reject Indication, Release Complete Indication
CC_DISCONNECT_REQ Disconnect Request
CC_DISCONNECT_IND Disconnect Indication
CC_RELEASE_REQ Release Request
CC_RELEASE_IND Release Indication
CC_RELEASE_RES Release Complete Request
CC_RELEASE_CON Release Complete Indication
CC_RESTART_REQ Restart Request, Management Restart Request
CC_RESTART_CON Restart Confirm

$Revision: 0.8.2.2 $ Page 224 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

B. Appendix B. Mapping of CCI Primitives to Q.764
The mapping of CCI primitives to Q.764 primitives is shown in Table3. For the most part this is a one to one
mapping of service primitives, with the exception of Setup Response and Setup Confirm.

In Q.764 the Setup Response and Setup Confirm primitives and issued only once the voice channel is connected.
In OpenSS7 CCI, the CC_SETUP_RES and CC_SETUP_CON primitives are used to accept the addressing and
assign a stream and correspond to the first backward message (i.e, Processing, Alerting or Progress Request or
Indication; and Setup Indication or Confirm).

Table3. Mapping of CCI primitives to Q.764 Primitives

CCI Primitive Q.764 Primitive

CC_INFO_REQ −
CC_INFO_ACK −
CC_BIND_REQ −
CC_BIND_ACK −
CC_UNBIND_REQ −
CC_ADDR_REQ −
CC_ADDR_ACK −
CC_OK_ACK −
CC_ERROR_ACK −
CC_SETUP_REQ Setup Request
CC_SETUP_IND Setup Indication
CC_MORE_INFO_REQ −
CC_MORE_INFO_IND −
CC_INFORMATION_REQ Information Request
CC_INFORMATION_IND Information Indication
CC_INFO_TIMEOUT_IND −
CC_SETUP_RES Proceeding, Alerting, Progress Request; Setup Response
CC_SETUP_CON Proceeding, Alerting, Progress Indication; Setup Confirm
CC_PROCEEDING_REQ Proceeding Request
CC_PROCEEDING_IND Proceeding Indication
CC_ALERTING_REQ Alerting Request
CC_ALERTING_IND Alerting Indication
CC_PROGRESS_REQ Progress Request
CC_PROGRESS_IND Progress Indication
CC_CONNECT_REQ Setup Response
CC_CONNECT_IND Setup Confirm
CC_SUSPEND_REQ Suspend Request
CC_SUSPEND_IND Suspend Indication
CC_RESUME_REQ Resume Request
CC_RESUME_IND Resume Indication
CC_CALL_REATTEMPT_IND Reattempt Indication
CC_CALL_FAILURE_IND Failure Indication
CC_REJECT_REQ Release Request
CC_REJECT_IND Release Indication
CC_RELEASE_REQ Release Request
CC_RELEASE_IND Release Indication
CC_RELEASE_RES Release Response
CC_RELEASE_CON Release Confirm

$Revision: 0.8.2.2 $ Page 225 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

CCI Primitive Q.764 Primitive

CC_RESET_REQ Reset Request
CC_RESET_IND Reset Indication
CC_RESET_RES Reset Response
CC_RESET_CON Reset Confirm
CC_BLOCKING_REQ Blocking Request
CC_BLOCKING_IND Blocking Indication
CC_BLOCKING_RES Blocking Response
CC_BLOCKING_CON Blocking Confirm
CC_UNBLOCKING_REQ Unblocking Request
CC_UNBLOCKING_IND Unblocking Indication
CC_UNBLOCKING_RES Unblocking Response
CC_UNBLOCKING_CON Unblocking Confirm
CC_QUERY_REQ −
CC_QUERY_IND −
CC_QUERY_RES −
CC_QUERY_CON −

$Revision: 0.8.2.2 $ Page 226 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

C. Appendix C. State/Event Tables

$Revision: 0.8.2.2 $ Page 227 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

D. Appendix D. Precedence Tables

$Revision: 0.8.2.2 $ Page 228 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

E. Appendix E. CCI Header File Listing

/***

@(#) Id: cci.h,v 0.8.2.15 2003/02/23 10:18:18 brian Exp

Copyright (C) 2001-2003 OpenSS7 Corporation <http://www.openss7.com>
Copyright (C) 1997-2000 Brian F. G. Bidulock <bidulock@dallas.net>

All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

U.S. GOVERNMENT RESTRICTED RIGHTS. If you are licensing this Software on
behalf of the U.S. Government ("Government"), the following provisions apply
to you. If the Software is supplied by the Department of Defense ("DoD"), it
is classified as "Commercial Computer Software" under paragraph 252.227-7014
of the DoD Supplement to the Federal Acquisition Regulations ("DFARS") (or any
successor regulations) and the Government is acquiring only the license rights
granted herein (the license rights customarily provided to non-Government
users). If the Software is supplied to any unit or agency of the Government
other than DoD, it is classified as "Restricted Computer Software" and the
Government’s rights in the Software are defined in paragraph 52.227-19 of the
Federal Acquisition Regulations ("FAR") (or any success regulations) or, in
the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplement to the FAR
(or any successor regulations).

Commercial licensing and support of this software is available from OpenSS7
Corporation at a fee. See http://www.openss7.com/

Last Modified Date: 2003/02/23 10:18:18 by Author: brian

***/

#ifndef __CCI_H__
#define __CCI_H__

#define CC_INFO_REQ 0
#define CC_OPTMGMT_REQ 1
#define CC_BIND_REQ 2
#define CC_UNBIND_REQ 3
#define CC_ADDR_REQ 4
#define CC_SETUP_REQ 5
#define CC_MORE_INFO_REQ 6 /* ISDN only */
#define CC_INFORMATION_REQ 7
#define CC_CONT_CHECK_REQ 8 /* ISUP only */
#define CC_CONT_TEST_REQ 9 /* ISUP only */
#define CC_CONT_REPORT_REQ 10 /* ISUP only */
#define CC_SETUP_RES 11
#define CC_PROCEEDING_REQ 12
#define CC_ALERTING_REQ 13
#define CC_PROGRESS_REQ 14
#define CC_IBI_REQ 15 /* (same as CC_DISCONNECT_REQ in ISDN) */
#define CC_DISCONNECT_REQ 15
#define CC_CONNECT_REQ 16
#define CC_SETUP_COMPLETE_REQ 17 /* ISDN only */
#define CC_FORWXFER_REQ 18 /* ISUP only */
#define CC_SUSPEND_REQ 19
#define CC_SUSPEND_RES 20 /* ISDN only */
#define CC_SUSPEND_REJECT_REQ 21 /* ISDN only */
#define CC_RESUME_REQ 22
#define CC_RESUME_RES 23 /* ISDN only */

$Revision: 0.8.2.2 $ Page 229 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

#define CC_RESUME_REJECT_REQ 24 /* ISDN only */
#define CC_REJECT_REQ 25 /* ISDN only */
#define CC_RELEASE_REQ 26
#define CC_RELEASE_RES 27 /* ISUP only */
#define CC_NOTIFY_REQ 28 /* ISDN only */
#define CC_RESTART_REQ 29 /* ISDN only */
#define CC_RESET_REQ 30 /* ISUP only */
#define CC_RESET_RES 31 /* ISUP only */
#define CC_BLOCKING_REQ 32 /* ISUP only */
#define CC_BLOCKING_RES 33 /* ISUP only */
#define CC_UNBLOCKING_REQ 34 /* ISUP only */
#define CC_UNBLOCKING_RES 35 /* ISUP only */
#define CC_QUERY_REQ 36 /* ISUP only */
#define CC_QUERY_RES 37 /* ISUP only */
#define CC_STOP_REQ 38 /* ISUP only */

#define CC_OK_ACK 64
#define CC_ERROR_ACK 65
#define CC_INFO_ACK 66
#define CC_BIND_ACK 67
#define CC_OPTMGMT_ACK 68
#define CC_ADDR_ACK 69
#define CC_CALL_REATTEMPT_IND 70 /* ISUP only */
#define CC_SETUP_IND 71 /* recv IAM */
#define CC_MORE_INFO_IND 72 /* ISDN only */
#define CC_INFORMATION_IND 73 /* recv SAM */
#define CC_CONT_CHECK_IND 74 /* ISUP only */
#define CC_CONT_TEST_IND 75 /* ISUP only */
#define CC_CONT_REPORT_IND 76 /* ISUP only */
#define CC_SETUP_CON 77
#define CC_PROCEEDING_IND 78 /* recv ACM w/ no indication if proceeding not sent before */
#define CC_ALERTING_IND 79 /* recv ACM w/ subscriber free indication */
#define CC_PROGRESS_IND 80 /* recv ACM w/ no indication and ATP parameter and call proceeding sent */
#define CC_IBI_IND 81 /* recv ACM or CPG w/ inband info (same as CC_DISCONNECT_IND in ISDN) */
#define CC_DISCONNECT_IND 81
#define CC_CONNECT_IND 82
#define CC_SETUP_COMPLETE_IND 83 /* ISDN only */
#define CC_FORWXFER_IND 84 /* ISUP only */
#define CC_SUSPEND_IND 85
#define CC_SUSPEND_CON 86 /* ISDN only */
#define CC_SUSPEND_REJECT_IND 87 /* ISDN only */
#define CC_RESUME_IND 88
#define CC_RESUME_CON 89 /* ISDN only */
#define CC_RESUME_REJECT_IND 90 /* ISDN only */
#define CC_REJECT_IND 91 /* ISDN only */
#define CC_CALL_FAILURE_IND 92 /* ISUP only (ERROR_IND?) */
#define CC_RELEASE_IND 93
#define CC_RELEASE_CON 94
#define CC_NOTIFY_IND 95 /* ISDN only */
#define CC_RESTART_CON 96 /* ISDN only */
#define CC_STATUS_IND 97 /* ISDN only */
#define CC_ERROR_IND 98 /* ISDN only (CALL_FAILURE_IND?) */
#define CC_DATALINK_FAILURE_IND 99 /* ISDN only */
#define CC_INFO_TIMEOUT_IND 100
#define CC_RESET_IND 101 /* ISUP only */
#define CC_RESET_CON 102 /* ISUP only */
#define CC_BLOCKING_IND 103 /* ISUP only */
#define CC_BLOCKING_CON 104 /* ISUP only */
#define CC_UNBLOCKING_IND 105 /* ISUP only */
#define CC_UNBLOCKING_CON 106 /* ISUP only */
#define CC_QUERY_IND 107 /* ISUP only */
#define CC_QUERY_CON 108 /* ISUP only */
#define CC_STOP_IND 109 /* ISUP only */
#define CC_MAINT_IND 110 /* ISUP only */
#define CC_START_RESET_IND 111 /* ISUP only */

/*
* Interface state
*/
enum {

CCS_UNBND,
CCS_IDLE,
CCS_WIND_SETUP,
CCS_WREQ_SETUP,
CCS_WREQ_MORE,
CCS_WIND_MORE,
CCS_WREQ_INFO,
CCS_WIND_INFO,
CCS_WACK_INFO,
CCS_WCON_SREQ,
CCS_WRES_SIND,
CCS_WREQ_CCREP,
CCS_WIND_CCREP,

$Revision: 0.8.2.2 $ Page 230 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

CCS_WREQ_PROCEED,
CCS_WIND_PROCEED,
CCS_WACK_PROCEED,
CCS_WREQ_ALERTING,
CCS_WIND_ALERTING,
CCS_WACK_ALERTING,
CCS_WREQ_PROGRESS,
CCS_WIND_PROGRESS,
CCS_WACK_PROGRESS,
CCS_WREQ_IBI,
CCS_WIND_IBI,
CCS_WACK_IBI,
CCS_WREQ_CONNECT,
CCS_WIND_CONNECT,
CCS_WACK_FORWXFER,
CCS_CONNECTED,
CCS_SUSPENDED,
CCS_WCON_RELREQ,
CCS_WRES_RELIND,
CCS_UNUSABLE,

};

typedef struct CC_ok_ack {
ulong cc_primitive; /* always CC_OK_ACK */
ulong cc_correct_prim; /* primitive being acknowledged */
ulong cc_state; /* current state */
ulong cc_call_ref; /* call reference */

} CC_ok_ack_t;

typedef struct CC_error_ack {
ulong cc_primitive; /* always CC_ERROR_ACK */
ulong cc_error_primitive; /* primitive in error */
ulong cc_error_type; /* CCI error code */
ulong cc_unix_error; /* UNIX system error code */
ulong cc_state; /* current state */
ulong cc_call_ref; /* call reference */

} CC_error_ack_t;

enum {
CCSYSERR = 0,
CCOUTSTATE,
CCBADADDR,
CCBADDIGS,
CCBADOPT,
CCNOADDR,
CCADDRBUSY,
CCBADCLR,
CCBADTOK,
CCBADFLAG,
CCNOTSUPP,
CCBADPRIM,
CCACCESS,

};

typedef struct CC_info_req {
ulong cc_primitive; /* always CC_INFO_REQ */

} CC_info_req_t;

typedef struct CC_info_ack {
ulong cc_primitive; /* always CC_INFO_ACK */
/* FIXME ... more ... */

} CC_info_ack_t;

typedef struct CC_bind_req {
ulong cc_primitive; /* always CC_BIND_REQ */
ulong cc_addr_length; /* length of address */
ulong cc_addr_offset; /* offset of address */
ulong cc_setup_ind; /* req # of setup inds to be queued */
ulong cc_bind_flags; /* bind options flags */

} CC_bind_req_t;

/* Flags associated with CC_BIND_REQ */
#define CC_DEFAULT_LISTENER 0x000000001UL
#define CC_TOKEN_REQUEST 0x000000002UL
#define CC_MANAGEMENT 0x000000004UL
#define CC_TEST 0x000000008UL
#define CC_MAINTENANCE 0x000000010UL

typedef struct CC_bind_ack {
ulong cc_primitive; /* always CC_BIND_ACK */
ulong cc_addr_length; /* length of address */
ulong cc_addr_offset; /* offset of address */
ulong cc_setup_ind; /* setup indications */

$Revision: 0.8.2.2 $ Page 231 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

ulong cc_token_value; /* setup response token value */
} CC_bind_ack_t;

typedef struct CC_unbind_req {
ulong cc_primitive; /* always CC_UNBIND_REQ */

} CC_unbind_req_t;

typedef struct CC_addr_req {
ulong cc_primitive; /* always CC_ADDR_REQ */
ulong cc_call_ref; /* call reference */

} CC_addr_req_t;

typedef struct CC_addr_ack {
ulong cc_primitive; /* always CC_ADDR_ACK */
ulong cc_bind_length; /* length of bound address */
ulong cc_bind_offset; /* offset of bound address */
ulong cc_call_ref; /* call reference */
ulong cc_conn_length; /* length of connected address */
ulong cc_conn_offset; /* offset of connected address */

} CC_addr_ack_t;

typedef struct CC_optmgmt_req {
ulong cc_primitive; /* always CC_OPTMGMT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* length of option values */
ulong cc_opt_offset; /* offset of option values */
ulong cc_opt_flags; /* option flags */

} CC_optmgmt_req_t;

typedef struct CC_optmgmt_ack {
ulong cc_primitive; /* always CC_OPTMGMT_ACK */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* length of option values */
ulong cc_opt_offset; /* offset of option values */
ulong cc_opt_flags; /* option flags */

} CC_optmgmt_ack_t;

typedef struct CC_setup_req {
ulong cc_primitive; /* always CC_SETUP_REQ */
ulong cc_user_ref; /* user call reference */
ulong cc_call_type; /* call type */
ulong cc_call_flags; /* call flags */
ulong cc_cdpn_length; /* called party number length */
ulong cc_cdpn_offset; /* called party number offset */
ulong cc_opt_length; /* optional parameters length */
ulong cc_opt_offset; /* optional parameters offset */
ulong cc_addr_length; /* connect to address length */
ulong cc_addr_offset; /* connect to address offset */

} CC_setup_req_t;

typedef struct CC_call_reattempt_ind {
ulong cc_primitive; /* always CC_CALL_REATTEMPT_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_reason; /* reason for reattempt */

} CC_call_reattempt_ind_t;

typedef struct CC_setup_ind {
ulong cc_primitive; /* always CC_SETUP_IND */
ulong cc_call_ref; /* call reference */
ulong cc_call_type; /* call type */
ulong cc_call_flags; /* call flags */
ulong cc_cdpn_length; /* called party number length */
ulong cc_cdpn_offset; /* called party number offset */
ulong cc_opt_length; /* optional parameters length */
ulong cc_opt_offset; /* optional parameters offset */
ulong cc_addr_length; /* connecting address length */
ulong cc_addr_offset; /* connecting address offset */

} CC_setup_ind_t;

typedef struct CC_setup_res {
ulong cc_primitive; /* always CC_SETUP_RES */
ulong cc_call_ref; /* call reference */
ulong cc_token_value; /* call response token value */

} CC_setup_res_t;

typedef struct CC_setup_con {
ulong cc_primitive; /* always CC_SETUP_CON */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* connecting address length */
ulong cc_addr_offset; /* connecting address offset */

} CC_setup_con_t;

$Revision: 0.8.2.2 $ Page 232 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

typedef struct CC_cont_check_req {
ulong cc_primitive; /* always CC_CONT_CHECK_REQ */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_check_req_t;

typedef struct CC_cont_check_ind {
ulong cc_primitive; /* always CC_CONT_CHECK_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_check_ind_t;

typedef struct CC_cont_test_req {
ulong cc_primitive; /* always CC_CONT_TEST_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_token_value; /* token value */

} CC_cont_test_req_t;

typedef struct CC_cont_test_ind {
ulong cc_primitive; /* always CC_CONT_TEST_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* adress length */
ulong cc_addr_offset; /* adress offset */

} CC_cont_test_ind_t;

typedef struct CC_cont_report_req {
ulong cc_primitive; /* always CC_CONT_REPORT_REQ */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC_cont_report_req_t;

typedef struct CC_cont_report_ind {
ulong cc_primitive; /* always CC_CONT_REPORT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC_cont_report_ind_t;

typedef struct CC_more_info_req {
ulong cc_primitive; /* always CC_MORE_INFO_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_req_t;

typedef struct CC_more_info_ind {
ulong cc_primitive; /* always CC_MORE_INFO_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_ind_t;

typedef struct CC_information_req {
ulong cc_primitive; /* always CC_INFORMATION_REQ */
ulong cc_user_ref; /* call reference */
ulong cc_subn_length; /* subsequent number length */
ulong cc_subn_offset; /* subsequent number offset */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_information_req_t;

typedef struct CC_information_ind {
ulong cc_primitive; /* always CC_INFORMATION_IND */
ulong cc_call_ref; /* call reference */
ulong cc_subn_length; /* subsequent number length */
ulong cc_subn_offset; /* subsequent number offset */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_information_ind_t;

typedef struct CC_info_timeout_ind {
ulong cc_primitive; /* always CC_INFO_TIMEOUT_IND */
ulong cc_call_ref; /* call reference */

} CC_info_timeout_ind_t;

typedef struct CC_proceeding_req {
ulong cc_primitive; /* always CC_PROCEEDING_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* proceeding flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_req_t;

$Revision: 0.8.2.2 $ Page 233 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

typedef struct CC_proceeding_ind {
ulong cc_primitive; /* always CC_PROCEEDING_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* proceeding flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_ind_t;

typedef struct CC_alerting_req {
ulong cc_primitive; /* always CC_ALERTING_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* alerting flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_req_t;

typedef struct CC_alerting_ind {
ulong cc_primitive; /* always CC_ALERTING_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* alerting flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_ind_t;

typedef struct CC_progress_req {
ulong cc_primitive; /* always CC_PROGRESS_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_event; /* progress event */
ulong cc_flags; /* progress flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_req_t;

typedef struct CC_progress_ind {
ulong cc_primitive; /* always CC_PROGRESS_IND */
ulong cc_call_ref; /* call reference */
ulong cc_event; /* progress event */
ulong cc_flags; /* progress flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_ind_t;

typedef struct CC_ibi_req {
ulong cc_primitive; /* always CC_IBI_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* ibi flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_req_t;

typedef struct CC_ibi_ind {
ulong cc_primitive; /* always CC_IBI_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* ibi flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_ind_t;

typedef struct CC_connect_req {
ulong cc_primitive; /* always CC_CONNECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* connect flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_req_t;

typedef struct CC_connect_ind {
ulong cc_primitive; /* always CC_CONNECT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* connect flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_ind_t;

typedef struct CC_setup_complete_req {
ulong cc_primitive; /* always CC_SETUP_COMPLETE_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_req_t;

typedef struct CC_setup_complete_ind {
ulong cc_primitive; /* always CC_SETUP_COMPLETE_IND */

$Revision: 0.8.2.2 $ Page 234 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_ind_t;

typedef struct CC_forwxfer_req {
ulong cc_primitive; /* always CC_FORWXFER_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_req_t;

typedef struct CC_forwxfer_ind {
ulong cc_primitive; /* always CC_FORWXFER_IND */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_ind_t;

typedef struct CC_suspend_req {
ulong cc_primitive; /* always CC_SUSPEND_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* suspend flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_req_t;

typedef struct CC_suspend_ind {
ulong cc_primitive; /* always CC_SUSPEND_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* suspend flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_ind_t;

typedef struct CC_suspend_res {
ulong cc_primitive; /* always CC_SUSPEND_RES */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_res_t;

typedef struct CC_suspend_con {
ulong cc_primitive; /* always CC_SUSPEND_CON */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_con_t;

typedef struct CC_suspend_reject_req {
ulong cc_primitive; /* always CC_SUSPEND_REJECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_req_t;

typedef struct CC_suspend_reject_ind {
ulong cc_primitive; /* always CC_SUSPEND_REJECT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_ind_t;

typedef struct CC_resume_req {
ulong cc_primitive; /* always CC_RESUME_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* suspend flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_req_t;

typedef struct CC_resume_ind {
ulong cc_primitive; /* always CC_RESUME_IND */
ulong cc_call_ref; /* call reference */
ulong cc_flags; /* suspend flags */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_ind_t;

typedef struct CC_resume_res {
ulong cc_primitive; /* always CC_RESUME_RES */

$Revision: 0.8.2.2 $ Page 235 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_res_t;

typedef struct CC_resume_con {
ulong cc_primitive; /* always CC_RESUME_CON */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_con_t;

typedef struct CC_resume_reject_req {
ulong cc_primitive; /* always CC_RESUME_REJECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_req_t;

typedef struct CC_resume_reject_ind {
ulong cc_primitive; /* always CC_RESUME_REJECT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_ind_t;

typedef struct CC_reject_req {
ulong cc_primitive; /* always CC_REJECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_req_t;

typedef struct CC_reject_ind {
ulong cc_primitive; /* always CC_REJECT_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_ind_t;

typedef struct CC_error_ind {
ulong cc_primitive; /* always CC_ERROR_IND */
ulong cc_call_ref; /* call reference */

} CC_error_ind_t;

typedef struct CC_call_failure_ind {
ulong cc_primitive; /* always CC_CALL_FAILURE_IND */
ulong cc_call_ref; /* call reference */
ulong cc_reason; /* reason for failure */
ulong cc_cause; /* cause to use in release */

} CC_call_failure_ind_t;

typedef struct CC_disconnect_req {
ulong cc_primitive; /* always CC_DISCONNECT_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_req_t;

typedef struct CC_disconnect_ind {
ulong cc_primitive; /* always CC_DISCONNECT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_ind_t;

typedef struct CC_release_req {
ulong cc_primitive; /* always CC_RELEASE_REQ */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_req_t;

typedef struct CC_release_ind {
ulong cc_primitive; /* always CC_RELEASE_IND */

$Revision: 0.8.2.2 $ Page 236 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_cause; /* cause value */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_ind_t;

typedef struct CC_release_res {
ulong cc_primitive; /* always CC_RELEASE_RES */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_res_t;

typedef struct CC_release_con {
ulong cc_primitive; /* always CC_RELEASE_CON */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_con_t;

typedef struct CC_restart_req {
ulong cc_primitive; /* always CC_RESTART_REQ */
ulong cc_flags; /* restart flags */
ulong cc_addr_length; /* adddress length */
ulong cc_addr_offset; /* adddress offset */

} CC_restart_req_t;

typedef struct CC_restart_ind {
ulong cc_primitive; /* always CC_RESTART_IND */
ulong cc_flags; /* restart flags */
ulong cc_addr_length; /* adddress length */
ulong cc_addr_offset; /* adddress offset */

} CC_restart_ind_t;

typedef struct CC_reset_req {
ulong cc_primitive; /* always CC_RESET_REQ */
ulong cc_flags; /* reset flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_req_t;

typedef struct CC_reset_ind {
ulong cc_primitive; /* always CC_RESET_IND */
ulong cc_flags; /* reset flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_ind_t;

typedef struct CC_reset_res {
ulong cc_primitive; /* always CC_RESET_RES */
ulong cc_flags; /* reset flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_res_t;

typedef struct CC_reset_con {
ulong cc_primitive; /* always CC_RESET_CON */
ulong cc_flags; /* reset flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_con_t;

typedef struct CC_blocking_req {
ulong cc_primitive; /* always CC_BLOCKING_REQ */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_req_t;

typedef struct CC_blocking_ind {
ulong cc_primitive; /* always CC_BLOCKING_IND */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_ind_t;

typedef struct CC_blocking_res {
ulong cc_primitive; /* always CC_BLOCKING_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */

$Revision: 0.8.2.2 $ Page 237 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

ulong cc_addr_offset; /* address offset */
} CC_blocking_res_t;

typedef struct CC_blocking_con {
ulong cc_primitive; /* always CC_BLOCKING_CON */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_con_t;

typedef struct CC_unblocking_req {
ulong cc_primitive; /* always CC_UNBLOCKING_REQ */
ulong cc_flags; /* unblocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_req_t;

typedef struct CC_unblocking_ind {
ulong cc_primitive; /* always CC_UNBLOCKING_IND */
ulong cc_flags; /* unblocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_ind_t;

typedef struct CC_unblocking_res {
ulong cc_primitive; /* always CC_UNBLOCKING_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_res_t;

typedef struct CC_unblocking_con {
ulong cc_primitive; /* always CC_UNBLOCKING_CON */
ulong cc_flags; /* unblocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_con_t;

typedef struct CC_query_req {
ulong cc_primitive; /* always CC_QUERY_REQ */
ulong cc_flags; /* query flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_req_t;

typedef struct CC_query_ind {
ulong cc_primitive; /* always CC_QUERY_IND */
ulong cc_flags; /* query flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_ind_t;

typedef struct CC_query_res {
ulong cc_primitive; /* always CC_QUERY_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_res_t;

typedef struct CC_query_con {
ulong cc_primitive; /* always CC_QUERY_CON */
ulong cc_flags; /* query flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_con_t;

typedef struct CC_maint_ind {
ulong cc_primitive; /* always CC_MAINT_IND */
ulong cc_reason; /* reason for indication */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* length of address */
ulong cc_addr_offset; /* length of address */

} CC_maint_ind_t;

union CC_primitives {
ulong cc_primitive;
CC_ok_ack_t ok_ack;
CC_error_ack_t error_ack;
CC_info_req_t info_req;
CC_info_ack_t info_ack;
CC_bind_req_t bind_req;
CC_bind_ack_t bind_ack;
CC_unbind_req_t unbind_req;

$Revision: 0.8.2.2 $ Page 238 April 15, 2003

Call Control Interface (CCI) Appendices OpenSS7 Corporation

CC_addr_req_t addr_req;
CC_addr_ack_t addr_ack;
CC_optmgmt_req_t optmgmt_req;
CC_optmgmt_ack_t optmgmt_ack;
CC_setup_req_t setup_req;
CC_call_reattempt_ind_t call_reattempt_ind;
CC_setup_ind_t setup_ind;
CC_setup_res_t setup_res;
CC_setup_con_t setup_con;
CC_cont_check_req_t cont_check_req;
CC_cont_check_ind_t cont_check_ind;
CC_cont_test_req_t cont_test_req;
CC_cont_test_ind_t cont_test_ind;
CC_cont_report_req_t cont_report_req;
CC_cont_report_ind_t cont_report_ind;
CC_more_info_req_t more_info_req;
CC_more_info_ind_t more_info_ind;
CC_information_req_t information_req;
CC_information_ind_t information_ind;
CC_proceeding_req_t proceeding_req;
CC_proceeding_ind_t proceeding_ind;
CC_alerting_req_t alerting_req;
CC_alerting_ind_t alerting_ind;
CC_progress_req_t progress_req;
CC_progress_ind_t progress_ind;
CC_ibi_req_t ibi_req;
CC_ibi_ind_t ibi_ind;
CC_connect_req_t connect_req;
CC_connect_ind_t connect_ind;
CC_setup_complete_req_t setup_complete_req;
CC_setup_complete_ind_t setup_complete_ind;
CC_forwxfer_req_t forwxfer_req;
CC_forwxfer_ind_t forwxfer_ind;
CC_suspend_req_t suspend_req;
CC_suspend_ind_t suspend_ind;
CC_suspend_res_t suspend_res;
CC_suspend_con_t suspend_con;
CC_suspend_reject_req_t suspend_reject_req;
CC_suspend_reject_ind_t suspend_reject_ind;
CC_resume_req_t resume_req;
CC_resume_ind_t resume_ind;
CC_resume_res_t resume_res;
CC_resume_con_t resume_con;
CC_resume_reject_req_t resume_reject_req;
CC_resume_reject_ind_t resume_reject_ind;
CC_reject_req_t reject_req;
CC_reject_ind_t reject_ind;
CC_error_ind_t error_ind;
CC_call_failure_ind_t call_failure_ind;
CC_disconnect_req_t disconnect_req;
CC_disconnect_ind_t disconnect_ind;
CC_release_req_t release_req;
CC_release_ind_t release_ind;
CC_release_res_t release_res;
CC_release_con_t release_con;
CC_restart_req_t restart_req;
CC_restart_ind_t restart_ind;
CC_reset_req_t reset_req;
CC_reset_ind_t reset_ind;
CC_reset_res_t reset_res;
CC_reset_con_t reset_con;
CC_blocking_req_t blocking_req;
CC_blocking_ind_t blocking_ind;
CC_blocking_res_t blocking_res;
CC_blocking_con_t blocking_con;
CC_unblocking_req_t unblocking_req;
CC_unblocking_ind_t unblocking_ind;
CC_unblocking_res_t unblocking_res;
CC_unblocking_con_t unblocking_con;
CC_query_req_t query_req;
CC_query_ind_t query_ind;
CC_query_res_t query_res;
CC_query_con_t query_con;
CC_maint_ind_t maint_ind;

};

#endif /* __CCI_H__ */

$Revision: 0.8.2.2 $ Page 239 April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

List of Illustrations

Figure 2-1 Model of the CCI ... 2

Figure 2-2 UNI Data Model .. 4

Figure 2-3 NNI Data Model .. 6

Figure 3-1 Sequence of Primitives: Call Control Information Reporting Service 8

Figure 3-2 Sequence of Primitives: Call Control User Address Service .. 9

Figure 3-3 Sequence of Primitives: Call Control User Bind Service .. 9

Figure 3-4 Sequence of Primitives: Call Control User Unbind Service .. 10

Figure 3-5 Sequence of Primitives: Call Control Receipt Acknowledgment Service 10

Figure 3-6 Sequence of Primitives: Call Control Options Management Service 10

Figure 3-7 Sequence of Primitives: Call Control Error Acknowledgment Service 11

Figure 3-8 Sequence of Primitives: Call Control UNI Overview ... 13

Figure 3-9 Sequence of Primitives: Call Control Call Setup Service ... 15

Figure 3-10 Sequence of Primitives: Call Control Token Request Service .. 15

Figure 3-11 Sequence of Primitives: Call Reattempt − CCS Provider ... 16

Figure 3-12 Sequence of Primitives: Call Reattempt − Dual Seizure ... 16

Figure 3-13 Sequence of Primitives: Call Control Successful Call Establishment Service 17

Figure 3-14 Sequence of Primitives: Call Control Network Suspend Service: Successful 18

Figure 3-15 Sequence of Primitives: Call Control Network Suspend Service: Unsuccessful 18

Figure 3-16 Sequence of Primitives: Call Control User Suspend Service .. 19

Figure 3-17 Sequence of Primitives: Call Control Resume Service: Successful 19

Figure 3-18 Sequence of Primitives: Call Control Resume Service: Unsuccessful 20

Figure 3-19 Sequence of Primitives: Call Control User Resume Service ... 20

Figure 3-20 Sequence of Primitives: Rejecting a Call Setup .. 21

Figure 3-21 Sequence of Primitives: Call Failure ... 21

Figure 3-22 Sequence of Primitives: CCS User Invoked Release ... 22

Figure 3-23 Sequence of Primitives: Simultaneous CCS User Invoked Release 23

Figure 3-24 Sequence of Primitives: CCS Provider Invoked Release .. 23

Figure 3-25 Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release 23

Figure 3-26 Sequence of Primitives: Call Control NNI Overview ... 25

Figure 3-27 Sequence of Primitives: Call Control Call Setup Service: En Bloc Sending 26

Figure 3-28 Sequence of Primitives: Call Control Call Setup Service: Overlap Sending 27

Figure 3-29 Sequence of Primitives: Call Control Token Request Service .. 27

Figure 3-30 Sequence of Primitives: Call Reattempt − CCS Provider ... 28

Figure 3-31 Sequence of Primitives: Call Reattempt − Dual Seizure ... 28

Figure 3-32 Sequence of Primitives: Call Setup Continuity Test Service: Required: Successful 29

Figure 3-33 Sequence of Primitives: Call Setup Continuity Test Service: Previous: Successful 30

Figure 3-34 Sequence of Primitives: Continuity Test Service: Successful ... 30

Figure 3-35 Sequence of Primitives: Call Setup Continuity Test Service: Unsuccessful 32

Figure 3-36 Sequence of Primitives: Continuity Test Service: Unsuccessful ... 32

Figure 3-37 Sequence of Primitives: Call Control Successful Call Establishment Service 34

Figure 3-38 Sequence of Primitives: Call Control Suspend and Resume Service 35

Figure 3-39 Sequence of Primitives: CCS User Rejection of a Call Setup Attempt 35

Figure 3-40 Sequence of Primitives: Call Failure ... 36

$Revision: 0.8.2.2 $ Page I April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

Figure 3-41 Sequence of Primitives: CCS User Invoked Release ... 37

Figure 3-42 Sequence of Primitives: Simultaneous CCS User Invoked Release 37

Figure 3-43 Sequence of Primitives: CCS Provider Invoked Release .. 37

Figure 3-44 Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release 38

Figure 3-45 Sequence of Primitives: CCS User Invoked Reset5 ... 39

Figure 3-46 Sequence of Primitives: Simultaneous CCS User Invoked Reset6 39

Figure 3-47 Sequence of Primitives: CCS Provider Invoked Reset7 ... 39

Figure 3-48 Sequence of Primitives: Simultaneous CCS user and CCS Provider Invoked Reset8 40

Figure 3-49 Sequence of Primitives: Successful Blocking Service .. 41

Figure 3-50 Sequence of Primitives: Successful Unblocking Service .. 42

Figure 3-51 Sequence of Primitives: Successful Query Service ... 43

$Revision: 0.8.2.2 $ Page II April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

List of Tables

Table1 CCI Service Primitives .. 7

Table2 Mapping of CCI primitives to Q.931 Primitives ... 223

Table3 Mapping of CCI primitives to Q.764 Primitives ... 225

$Revision: 0.8.2.2 $ Page III April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

Table of Contents

Abstract .. i

Preface .. ii

1 Introduction .. 1

1.1 Related Documentation ... 1

1.1.1 Role .. 1

1.2 Definitions, Acronyms, and Abbreviations ... 1

2 The Call Control Layer .. 2

2.1 Model of the CCI .. 2

2.2 CCI Services .. 2

2.2.1 UNI ... 2

2.2.1.1 Address Formats .. 3

2.2.2 NNI ... 4

2.2.2.1 Address Formats .. 4

2.2.3 Local Management ... 6

3 CCI Services Definition ... 7

3.1 Local Management Services Definition .. 8

3.1.1 Call Control Information Reporting Service .. 8

3.1.2 CCS Address Service ... 8

3.1.3 CCS User Bind Service .. 9

3.1.4 CCS User Unbind Service .. 9

3.1.5 Receipt Acknowledgment Service ... 10

3.1.6 Options Management Service .. 10

3.1.7 Error Acknowledgment Service ... 11

3.2 User-Network Interface Services Definition ... 12

3.2.1 Call Setup Phase ... 13

3.2.1.1 User Primitives for Successful Call Setup .. 14

3.2.1.2 Provider Primitives for Successful Call Setup .. 14

3.2.2 Call Establishment Phase ... 16

3.2.2.1 User Primitives for Successful Call Establishment ... 16

3.2.2.2 Provider Primitives for Successful Call Establishment ... 16

3.2.2.3 Provider Primitives for Successful Call Setup .. 17

3.2.3 Call Established Phase ... 17

3.2.3.1 Suspend Service .. 17

3.2.3.2 Resume Service ... 19

3.2.4 Call Termination Phase .. 20

3.2.4.1 Call Reject Service .. 20

3.2.4.2 Call Failure Service ... 21

3.2.4.3 Call Release Service .. 21

3.2.5 Call Management ... 23

3.2.5.1 User Primitives for Call Management ... 23

3.2.5.2 Provider Primitives for Call Management ... 24

3.3 Network-Network Interface Services Definition ... 25

3.3.1 Call Setup Phase ... 25

$Revision: 0.8.2.2 $ Page IV April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

3.3.1.1 User Primitives for Successful Call Setup .. 26

3.3.1.2 Provider Primitives for Successful Call Setup .. 26

3.3.2 Continuity Test Phase ... 28

3.3.2.1 Continuity Test Successful .. 28

3.3.2.2 Continuity Test Unsuccessful .. 31

3.3.3 Call Establishment Phase ... 32

3.3.3.1 User Primitives for Successful Call Establishment ... 33

3.3.3.2 Provider Primitives for Successful Call Establishment ... 33

3.3.4 Call Established Phase ... 34

3.3.4.1 User Primitives for Established Calls .. 34

3.3.4.2 Provider Primitives for Established Calls ... 34

3.3.5 Call Termination Phase .. 35

3.3.5.1 Call Reject Service .. 35

3.3.5.2 Call Failure Service ... 35

3.3.5.3 Call Release Service .. 36

3.3.6 Circuit Management Services .. 38

3.3.6.1 Reset Service ... 38

3.3.6.2 Blocking Service ... 40

3.3.6.3 Unblocking Service ... 41

3.3.6.4 Query Service .. 42

4 CCI Primitives .. 44

4.1 Management Primitives ... 44

4.1.1 Call Control Information Request .. 44

4.1.2 Call Control Information Acknowledgment .. 45

4.1.3 Protocol Address Request .. 46

4.1.4 Protocol Address Acknowledgment ... 47

4.1.5 Bind Protocol Address Request ... 48

4.1.6 Bind Protocol Address Acknowledgment .. 50

4.1.7 Unbind Protocol Address Request ... 52

4.1.8 Call Processing Options Management Request ... 53

4.1.9 Call Processing Options Management Acknowledgment .. 55

4.1.10 Error Acknowledgment .. 56

4.1.11 Successful Receipt Acknowledgments ... 58

4.2 Primitive Format and Rules ... 59

4.2.1 Call Setup Phase ... 59

4.2.1.1 Call Control Setup Request ... 59

4.2.1.2 Call Control Setup Indication .. 62

4.2.1.3 Call Control Setup Response .. 64

4.2.1.4 Call Control Setup Confirm .. 65

4.2.1.5 Call Control Reattempt Indication .. 66

4.2.2 Continuity Check Phase ... 67

4.2.2.1 Call Control Continuity Check Request .. 67

4.2.2.2 Call Control Continuity Check Indication .. 69

4.2.2.3 Call Control Continuity Test Request ... 70

4.2.2.4 Call Control Continuity Test Indication .. 72

$Revision: 0.8.2.2 $ Page V April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

4.2.2.5 Call Control Continuity Report Request ... 73

4.2.2.6 Call Control Continuity Report Indication .. 75

4.2.3 Collecting Information Phase ... 76

4.2.3.1 Call Control More Information Request ... 76

4.2.3.2 Call Control More Information Indication .. 78

4.2.3.3 Call Control Information Request ... 78

4.2.3.4 Call Control Information Indication .. 81

4.2.3.5 Call Control Information Timeout Indication ... 82

4.2.4 Call Establishment Phase ... 83

4.2.4.1 Call Control Proceeding Request .. 83

4.2.4.2 Call Control Proceeding Indication ... 85

4.2.4.3 Call Control Alerting Request ... 86

4.2.4.4 Call Control Alerting Indication ... 88

4.2.4.5 Call Control Progress Request .. 89

4.2.4.6 Call Control Progress Indication ... 91

4.2.4.7 Call Control In-Band Information Request ... 92

4.2.4.8 Call Control In-Band Information Indication ... 94

4.2.4.9 Call Control Connect Request ... 95

4.2.4.10 Call Control Connect Indication ... 97

4.2.4.11 Call Control Setup Complete Request .. 98

4.2.4.12 Call Control Setup Complete Indication ... 100

4.2.5 Call Established Phase ... 101

4.2.5.1 Forward Transfer Request ... 101

4.2.5.2 Forward Transfer Indication .. 102

4.2.5.3 Call Control Suspend Request .. 103

4.2.5.4 Call Control Suspend Indication ... 104

4.2.5.5 Call Control Suspend Response .. 105

4.2.5.6 Call Control Suspend Confirmation .. 106

4.2.5.7 Call Control Suspend Reject Request ... 107

4.2.5.8 Call Control Suspend Reject Confirmation ... 109

4.2.5.9 Call Control Resume Request ... 110

4.2.5.10 Call Control Resume Indication .. 112

4.2.5.11 Call Control Resume Response ... 113

4.2.5.12 Call Control Resume Confirmation ... 115

4.2.5.13 Call Control Resume Reject Request .. 116

4.2.5.14 Call Control Resume Reject Indication ... 118

4.2.6 Call Termination Phase .. 119

4.2.6.1 Call Control Reject Request .. 119

4.2.6.2 Call Control Reject Indication .. 121

4.2.6.3 Call Control Call Failure Indication .. 122

4.2.6.4 Call Control Disconnect Request .. 123

4.2.6.5 Call Control Disconnect Indication ... 125

4.2.6.6 Call Control Release Request .. 126

4.2.6.7 Call Control Release Indication .. 128

4.2.6.8 Call Control Release Response ... 129

$Revision: 0.8.2.2 $ Page VI April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

4.2.6.9 Call Control Release Confirmation ... 130

4.3 Management Primitive Formats and Rules ... 131

4.3.1 Interface Management Primitives .. 131

4.3.1.1 Interface Management Restart Request ... 131

4.3.1.2 Interface Management Restart Confirmation .. 132

4.3.2 Circuit Management Primitives .. 133

4.3.2.1 Circuit Management Reset Request .. 133

4.3.2.2 Circuit Management Reset Indication ... 135

4.3.2.3 Circuit Management Reset Response .. 136

4.3.2.4 Circuit Management Reset Confirmation .. 138

4.3.2.5 Circuit Management Blocking Request .. 139

4.3.2.6 Circuit Management Blocking Indication ... 141

4.3.2.7 Circuit Management Blocking Response .. 142

4.3.2.8 Circuit Management Blocking Confirmation .. 143

4.3.2.9 Circuit Management Unblocking Request .. 144

4.3.2.10 Circuit Management Unblocking Indication ... 146

4.3.2.11 Circuit Management Unblocking Response .. 147

4.3.2.12 Circuit Management Unblocking Confirmation .. 148

4.3.2.13 Circuit Management Query Request ... 149

4.3.2.14 Circuit Management Query Indication .. 151

4.3.2.15 Circuit Management Query Response ... 152

4.3.2.16 Circuit Management Query Confirmation .. 153

4.3.3 Maintenance Primitives .. 154

4.3.3.1 Maintenance Indication ... 154

4.3.4 Circuit Continuity Test Primitives .. 155

4.3.4.1 Circuit Continuity Check Request .. 155

4.3.4.2 Circuit Continuity Check Indication ... 157

4.3.4.3 Circuit Continuity Test Request .. 158

4.3.4.4 Circuit Continuity Test Indication ... 160

4.3.4.5 Circuit Continuity Report Request .. 161

4.3.4.6 Circuit Continuity Report Indication .. 163

4.3.5 Collecting Information Phase ... 164

5 Diagnostics Requirements .. 165

5.1 Non-Fatal Error Handling Facility .. 165

5.2 Fatal Error Handling Facility .. 165

6 Addendum for Q.931 Conformance ... 166

6.1 Primitives and Rules for Q.931 Conformance .. 166

6.1.1 Common Primitive Parameters .. 166

6.1.1.1 Call Control Addresses ... 166

6.1.1.2 Optional Information Elements ... 167

6.1.2 Local Management Primitives .. 168

6.1.2.1 CC_INFO_ACK .. 168

6.1.2.2 CC_BIND_REQ .. 168

6.1.2.3 CC_BIND_ACK ... 169

6.1.2.4 CC_OPTMGMT_REQ ... 169

$Revision: 0.8.2.2 $ Page VII April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

6.1.3 Call Setup Primitives .. 169

6.1.3.1 Call Type and Flags ... 169

6.1.3.2 CC_SETUP_REQ ... 173

6.1.3.3 CC_SETUP_IND .. 174

6.1.3.4 CC_SETUP_RES .. 175

6.1.3.5 CC_SETUP_CON ... 175

6.1.3.6 CC_CALL_REATTEMPT_IND ... 175

6.1.3.7 CC_SETUP_COMPLETE_REQ .. 175

6.1.3.8 CC_SETUP_COMPLETE_IND ... 175

6.1.4 Continuity Check Primitives .. 175

6.1.4.1 CC_CONT_CHECK_REQ ... 175

6.1.4.2 CC_CONT_TEST_REQ ... 176

6.1.4.3 CC_CONT_REPORT_REQ .. 176

6.1.5 Call Establishment Primitives .. 176

6.1.5.1 CC_MORE_INFO_REQ ... 176

6.1.5.2 CC_MORE_INFO_IND ... 176

6.1.5.3 CC_INFORMATION_REQ .. 176

6.1.5.4 CC_INFORMATION_IND ... 176

6.1.5.5 CC_INFO_TIMEOUT_IND ... 176

6.1.5.6 CC_PROCEEDING_REQ .. 177

6.1.5.7 CC_PROCEEDING_IND ... 177

6.1.5.8 CC_ALERTING_REQ .. 177

6.1.5.9 CC_ALERTING_IND ... 177

6.1.5.10 CC_PROGRESS_REQ ... 177

6.1.5.11 CC_PROGRESS_IND .. 177

6.1.5.12 CC_IBI_REQ .. 178

6.1.5.13 CC_IBI_IND ... 178

6.1.6 Call Established Primitives .. 178

6.1.6.1 CC_SUSPEND_REQ .. 178

6.1.6.2 CC_SUSPEND_IND ... 178

6.1.6.3 CC_SUSPEND_RES .. 178

6.1.6.4 CC_SUSPEND_CON ... 179

6.1.6.5 CC_SUSPEND_REJECT_REQ ... 179

6.1.6.6 CC_SUSPEND_REJECT_IND .. 179

6.1.6.7 CC_RESUME_REQ ... 179

6.1.6.8 CC_RESUME_IND .. 179

6.1.6.9 CC_RESUME_RES .. 180

6.1.6.10 CC_RESUME_CON ... 180

6.1.6.11 CC_RESUME_REJECT_REQ ... 180

6.1.6.12 CC_RESUME_REJECT_IND .. 180

6.1.7 Call Termination Primitives ... 180

6.1.7.1 Cause Values ... 180

6.1.7.2 CC_REJECT_REQ ... 182

6.1.7.3 CC_REJECT_IND .. 182

6.1.7.4 CC_CALL_FAILURE_IND ... 183

$Revision: 0.8.2.2 $ Page VIII April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

6.1.7.5 CC_DISCONNECT_REQ .. 183

6.1.7.6 CC_DISCONNECT_IND ... 183

6.1.7.7 CC_RELEASE_REQ .. 183

6.1.7.8 CC_RELEASE_IND ... 184

6.1.7.9 CC_RELEASE_RES ... 184

6.1.7.10 CC_RELEASE_CON ... 184

6.1.8 Management Primitives .. 184

6.1.8.1 CC_RESTART_REQ .. 184

6.1.8.2 CC_RESTART_CON .. 184

6.2 Q.931 Header File Listing ... 185

7 Addendum for Q.764 Conformance ... 186

7.1 Primitives and Rules for Q.764 Conformance .. 186

7.1.1 Common Primitive Parameters .. 186

7.1.1.1 Call Control Addresses ... 186

7.1.1.2 Optional Parameters .. 187

7.1.2 Local Management Primitives .. 188

7.1.2.1 CC_INFO_ACK .. 188

7.1.2.2 CC_BIND_REQ .. 188

7.1.2.3 CC_BIND_ACK ... 190

7.1.2.4 CC_OPTMGMT_REQ ... 190

7.1.3 Call Setup Primitives .. 190

7.1.3.1 CC_SETUP_REQ ... 190

7.1.3.2 CC_SETUP_IND .. 193

7.1.3.3 CC_SETUP_RES .. 194

7.1.3.4 CC_SETUP_CON ... 194

7.1.3.5 CC_CALL_REATTEMPT_IND ... 195

7.1.3.6 CC_SETUP_COMPLETE_REQ .. 196

7.1.3.7 CC_SETUP_COMPLETE_IND ... 196

7.1.4 Continuity Check Phase ... 196

7.1.4.1 CC_CONT_CHECK_REQ ... 196

7.1.4.2 CC_CONT_CHECK_IND .. 196

7.1.4.3 CC_CONT_TEST_REQ ... 197

7.1.4.4 CC_CONT_TEST_IND .. 197

7.1.4.5 CC_CONT_REPORT_REQ .. 198

7.1.4.6 CC_CONT_REPORT_IND .. 198

7.1.5 Call Establishment Primitives .. 199

7.1.5.1 CC_MORE_INFO_REQ ... 199

7.1.5.2 CC_MORE_INFO_IND ... 199

7.1.5.3 CC_INFORMATION_REQ .. 199

7.1.5.4 CC_INFORMATION_IND ... 200

7.1.5.5 CC_INFO_TIMEOUT_IND ... 200

7.1.5.6 CC_PROCEEDING_REQ .. 200

7.1.5.7 CC_PROCEEDING_IND ... 201

7.1.5.8 CC_ALERTING_REQ .. 202

7.1.5.9 CC_ALERTING_IND ... 202

$Revision: 0.8.2.2 $ Page IX April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

7.1.5.10 CC_PROGRESS_REQ ... 202

7.1.5.11 CC_PROGRESS_IND .. 203

7.1.5.12 CC_IBI_REQ .. 203

7.1.5.13 CC_IBI_IND ... 203

7.1.6 Call Established Primitives .. 203

7.1.6.1 CC_SUSPEND_REQ .. 203

7.1.6.2 CC_SUSPEND_IND ... 204

7.1.6.3 CC_SUSPEND_RES .. 204

7.1.6.4 CC_SUSPEND_REJECT_REQ ... 204

7.1.6.5 CC_RESUME_REQ ... 205

7.1.6.6 CC_RESUME_IND .. 205

7.1.6.7 CC_RESUME_RES .. 205

7.1.6.8 CC_RESUME_REJECT_REQ ... 205

7.1.7 Call Termination Primitives ... 205

7.1.7.1 CC_REJECT_REQ ... 205

7.1.7.2 CC_CALL_FAILURE_IND ... 206

7.1.7.3 CC_DISCONNECT_REQ .. 206

7.1.7.4 CC_RELEASE_REQ .. 206

7.1.7.5 CC_RELEASE_IND ... 208

7.1.8 Management Primitives .. 208

7.1.8.1 CC_RESTART_REQ .. 208

7.1.8.2 CC_RESET_REQ ... 208

7.1.8.3 CC_RESET_IND .. 209

7.1.8.4 CC_RESET_RES .. 209

7.1.8.5 CC_RESET_CON ... 209

7.1.8.6 CC_BLOCKING_REQ ... 210

7.1.8.7 CC_BLOCKING_IND .. 210

7.1.8.8 CC_BLOCKING_RES ... 210

7.1.8.9 CC_BLOCKING_CON .. 211

7.1.8.10 CC_UNBLOCKING_REQ ... 211

7.1.8.11 CC_UNBLOCKING_IND .. 212

7.1.8.12 CC_UNBLOCKING_RES .. 212

7.1.8.13 CC_UNBLOCKING_CON ... 212

7.1.8.14 CC_QUERY_REQ .. 213

7.1.8.15 CC_QUERY_IND ... 213

7.1.8.16 CC_QUERY_RES ... 213

7.1.8.17 CC_QUERY_CON .. 214

7.2 Q.764 Header File Listing ... 214

8 Addendum for ETSI EN 300 356-1 V3.2.2 Conformance ... 220

8.1 Primitives and Rules for ETSI EN 300 356-1 V3.2.2 Conformance .. 220

8.1.1 Local Management Primitives .. 220

8.1.2 Call Setup Primitives .. 220

8.1.2.1 CC_SETUP_REQ ... 220

8.1.2.2 CC_SETUP_IND .. 220

8.2 ETSI EN 300 356-1 V3.2.2 Header File Listing ... 222

$Revision: 0.8.2.2 $ Page X April 15, 2003

Call Control Interface (CCI) Contents OpenSS7 Corporation

A Appendix A. Mapping of CCI Primitives to Q.931 .. 223

B Appendix B. Mapping of CCI Primitives to Q.764 ... 225

C Appendix C. State/Event Tables .. 227

D Appendix D. Precedence Tables .. 228

E Appendix E. CCI Header File Listing ... 229

List of Illustrations ... I

List of Tables .. III

Table of Contents ... IV

$Revision: 0.8.2.2 $ Page XI April 15, 2003

