Call Control Interface (CClI) Specification

Published by:
OpenSS7 Corporation
1469 Jeffreys Crescent

Edmonton, AB T6L 6T1
Canada

Copyright © 2001-2003, OpenSS7 Corporation

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appears in all copies and that both the copyright notice and this
permission notice appear in supporting documentation, and that the name OpenSS7 Corporation not be used in
advertising or publicity pertaining to distribution of the software without specific, written permission. OpenSS7
Corporation makes no representation about the suitability of this documentation for any purpose. It is provided
"as is" without express or implied warranty.

OPENSS7 CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS DOCUMENTA-
TION INCLUDING ALL IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS. IN NO
EVENT SHALL OPENSS& CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSE-
QUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS. WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS AC-
TION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS DOCU-
MENTATION.

NOTICE

OpenSS7 Corporation is making this documentation available as a reference point for the industry. While
OpenSS7 Corporation believes that these interfaces are well defined in this release of the document, minor
changes may be made prior to products conforming to the interfaces being made available.

TRADEMARKS:
UNIX ® is a trademark.

Call Control Interface (CClI) Abstract OpenSS7 Corpor ation

Abstract

This document specifies a Call Control Interface (CCI) Specification in support of the OpenSS7 Integrated Ser-

vice Digital Network (ISDN) and ISDN User Part (ISUP) protocol stacks.! It provides abstraction of the call con-
trol interface to these components as well as providing a basis for call control for other call control signalling
protocols.

! As a future extension to the interface, BSSAP will be supported.

$Revision: 0.8.2.2 % Pagei April 15, 2003

Call Control Interface (CClI) Preface OpenSS7 Corpor ation

Preface

Abstract
This document specifies a Call Control Interface (CCI) Specification in support of the OpenSS7 Integrated
Service Digital Network (ISDN) and ISDN User Part (ISUP) protocol stacks.? It provides abstraction of

the call control interface to these components as well as providing a basis for call control for other call
control signalling protocols.

Intent This document is intended to provide information for writers of OpenSS7 Call Control Interface (CCl) ap-
plications as well as writers of OpenSS7 Call Control Interface (CCI) Users.

Target Audience
The target audience is developers and users of the OpenSS7 SS7 and ISDN stack.

Disclaimer
Although the author has attempted to ensure that the information in this document is complete and cor-
rect, neither the Author nor OpenSS7 Corporation will take any responsibility in it.

Revision History
Take care that you are working with a current version of this document: you will not be informed of up-
dates. For a current version, please see the source documentation at http://www.openss7.org/.
$Log: cci.me,v $

Revision 0.8.2.2 2003/03/23 19:56:50 brian
Finalizing isdn.

Revision 0.8.2.1 2003/02/21 12:00:35 brian
Updated prinitive interface and Q 764 confor mance.

Revision 0.8 2002/11/17 15:06:36 brian
Added initial docunentation for call control interface.

2 As a future extension to the interface, BSSAP will be supported.

$Revision: 0.8.2.2 % Pageii April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

1. Introduction

This document specifies a STREAMS-based kernel-level instantiation of the ITU-T Call Control Interface defini-
tion. The Call Control Interface (CCI) enables the user of a call control service to access and use any of a variety
of conforming call control service providers without specific knowledge of the provider’s protocol. The service
interface is designed to support any network call control protocol and user call control protocol. This interface
only specifies access to call control service providers, and does not address issues concerning call control and cir-
cuit management, protocol performance, and performance analysis tools. The specification assumes that the
reader is familiar with ITU-T state machines and call control interfaces (e.g., Q.764, Q.931), and STREAMS.

1.1. Related Documentation
e 1993 ITU-T Q.764 Recommendation

e 1993 ITU-T Q.931 Recommendation
» System V Interface Definition, Issue 2 — Volume 3

1.1.1. Role

This document specifies an interface that supports the services provided by the Integrated Services Digital Net-
work (ISDN) and ISDN User Part (ISUP) for ITU-T applications as described in ITU-T Recommendation Q.931

and ITU-T Recommendation Q.764.% These specifications are targeted for use by developers and testers of proto-
col modules that require call control service.

1.2. Definitions, Acronyms, and Abbreviations

% In a later version of this document BSSAP will also be supported.

$Revision: 0.8.2.2 $ Page 1 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

2. TheCall Control Layer

The Call Control Layer provides the means to manage the connection and disconnection of calls. It is responsi-
ble for the routing and management of call control signalling between call control-user entities.

2.1. Model of the CCI

The CCI defines the services provided by the call control layer to the call control-user at the boundary between
the call control layer and the call control layer user entity. The interface consists of a set of primitives defined as
STREAMS messages that provide access to the call control layer services, and are transferred between the CCS
user entity and the CCS provider. These primitives are of two types; ones that originate from the CCS user, and
others that originate from the CCS provider. The primitives that originate from the CCS user make requests to
the CCS provider, or respond to an indication of an event of the CCS provider. The primitives that originate from
the CCS provider are either confirmations of a request or are indications to the CCS user that the event has oc-
curred. Figure 2-1 shows the model of the CCI.

Call Control User
Request/Response
Primitives

b

I -

Indication/Confirmation
Primitives

Call Control Provider

Figure 2-1. Model of the CCI

The CCI allows the CCS provider to be configured with any call control layer user (such as an ISDN user call
control application) that also conforms to the CCI. A cal control layer user can also be a user program that con-
forms to the CCI and accesses the CCS provide via "putmsg" and "getmsg" system calls.

2.2. CCI Services

The features of the CCI are defined in terms of the services provided by the CCS provider, and the individual
primitives that may flow between the CCS user and the CCS provider.

The services supported by the CCI are based on three distinct modes of communication, user-network interface
(UNI) User mode, user-network interface (UNI) Network mode, and network-network interface (NNI). In addi-
tion, the CClI supports services for local management.

2.2.1. UNI
The main features of the User-Network Interface mode of communication are:
(1) Itiscall oriented.

(2) It employs facility associated signalling in that the signalling interface and circuits which are controlled
by that signalling interface are bound by physical configuration. (For example, 23B+D, 2B+D).

(3) The protocol has two aspects to the interface: one side of the interface follows the User protocol whereas
the other side of the interface follows the Network protocol.

(4) The user side of the protocol has no formal maintenance or monitoring procedures and therefore reports
most if not all system events to the user.

$Revision: 0.8.22 % Page 2 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

(5) The network side of the protocol has formal maintenance and monitoring procedures and therefore re-
ports most if not all system events to maintenance.

2.2.1.1. AddressFormats

Addresses specifying all the calls and channels known to the provider are specified with scope
ISDN_SCOPE_DF and identifier zero (0).

2.2.1.1.1. Customer/Provider Group

A customer/provider group has a different interpretation on the User and Network side of the call control inter-
face. In User mode, the provider group is a group of all equipment groups which are serviced by the same net-
work provider. In Network mode, the customer group is a group of all equipment groups to which the same ser-
vice is provided to the same customer by the network.

Customer/provider groups are identifier using a unique customer/provider group identifier within the CCS
provider. Addresses specifying all of the equipment groups in a customer/provider group and specified with
scope ISDN_SCOPE_XG and the customer/provider group identifier.

2.2.1.1.2. Equipment Group

An equipment group is a group of all transmission groups (B- and D-channels) terminating at the same location.
For User mode this corresponds to all the B- and D-channels terminating on the same network provider ex-
change. For Network mode this corresponds to all the B- and D-channels terminating on the same customer site.

Equipment groups are identified using a unique equipment group identifier within the CCS provider. Addresses
specifying al lof the B- and D-channels making up an equipment group are specified with scope
ISDN_SCOPE_EG and the equipment group identifier.

2.2.1.1.3. Facility Group

A facility group is a group of D-channels (data links) controlling a set of B-channels. This corresponds to the
signalling interface. For regular interfaces, a signalling relation consists of a single signalling interface. Where
multiple signalling interfaces are used to control the same range of channels (e.g. primary and backup interfaces),
all signalling interfaces belong to the same facility group.

The B-channels which make up a facility group are channels which share the same dial plan and routing charac-
teristics for telephone calls. A facility group is associated with an equipment group.

Facility groups are identified using a unique facility group identifier within the CCS provider. Addresses specify-
ing all of the channels in a facility group are specified with scope ISDN_SCOPE_FG and the facility group iden-
tifier.

An ISDN Channel Identifier is only unique within a facility group.

2.2.1.1.4. Transmission Group

A transmission group is the group of all D- and B-Channels associated with a given Q.931 signalling interface.
For example, a typical PRI interface would consist of 23B+D, where there is one signalling interface (the D-
Channel) with 23 B-Channels associated with the D-Channel. The 1 D-Channel and 23 B-Channels form a sin-
gle transmission group associated with the physical interface. Every D- or B-Channel belongs to one tranmis-
sion group and occupies a single time slot within that transmission group.

Transmission groups are identified using a unique transmission group identifier within the CCS provider. Ad-
dresses specifying all of the channels in a transmission group are specified with scope ISDN_SCOPE_TG and
the transmission group identifier. Transmission groups can also be specified using scope ISDN_SCOPE_FG and
the Channel Identifier of one of the channels in the facility group.

2.2.1.1.5. Channd
A channel refers to a specific B-Channel within a transmission and facility group.

$Revision: 0.8.22 % Page 3 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Channels are identified using a unigue channel identifier within the CCS provider. Addresses specifying a spe-
cific channel are specified with scope ISDN_SCOPE_CH and the channel identifier. Channels can also be speci-
fied using scope ISDN_SCOPE_FG, the facility group identifier, and the Channel Identity of the channel within
the facility group.

2.2.1.1.6. DataLink
A data link corresponds to a specific D-channel used for the control of channels. Data links can be grouped into
facility groups.

Data links are identified using a unique data link identifier within the CCS provider. Addresses specifying all of
the channels controlled by a data link are specified with scope ISDN_SCOPE_DL and the data link identifier.

Customer/
Provider
Group
Equipment Equipment
Group Group
Facility / \ / \ Facility
Group [Transmission [Transmission [Transmission [Transmission Group
Group Group Group Group
Data Links Channels Channels Channels Channels Data Links
Figure 2-2. UNI Data Model
2.2.2. NNI

The main features of the Network-Network Interface mode of communication are:
(1) Itiscircuit oriented.

(2) It employs quasi-associated signalling in that the path taken by signalling and the path taken by the cir-
cuits are not necessarily related.

(3) The protocol has one aspect and is peer-to-peer: that is, both sides of a signalling interface follow the
same protocol in the same way.

(4) The network side of the protocol has formal maintenance and monitoring procedures and therefore re-
ports most if not all system events to maintenance.

2.2.2.1. Address Formats

Addresses specifying all of the circuits known to the provider are specified with scope ISUP_SCOPE_DF and
identifier zero (0).

$Revision: 0.8.22 % Page 4 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

2.2.2.1.1. Signalling Points

A signalling point is the SS7 signalling point (central office) that the provider represents. A CCS provider can
represent more than one signalling point.

A signalling point is identifier using a unique signalling point identifier within the CCS provider. Addresses
specifying all of the circuits in signalling point are specified with scope ISUP_SCOPE_SP and the signalling
point identifier.

2.2.2.1.2. Signalling Relations

A signalling relation is a relationship between a local signalling point and a remote signalling point. A signalling
relation consists of a single signalling interface.

Signalling relations are identified using a unique signalling relation identifier within the CCS provider. Ad-
dresses specifying all of the circuits in a signalling relation are specified with scope ISUP_SCOPE_SR and the
signalling relation identifier.

An ISUP Circuit Identification Code is only unique within a signalling relation.

2.2.2.1.3. Trunk Groups

A trunk group is a group of circuits which share the same routing characteristics for telephone calls. A trunk
group is associated with a signalling relation. For the NNI, a signalling relation is the combination of local MTP
Point Code and remote MTP Point Code.

A trunk group is identified using a unique trunk group identifier within the CCS provider. Addresses specifying
all of the circuits in a trunk group are specified with scope ISUP_SCOPE_TG and the trunk group identifier.

2.2.2.1.4. Circuit Groups

A circuit group is a group of circuits which share the same common transmission facility (e.g, E1 span) and is
therefore impacted by any failure of the transmission facility. All of the individual channels of an E1 span which
are used to carry calls are members of the circuit group.

Circuits groups are identified using a unique circuit group identifier within the CCS provider. Addresses specify-
ing all of the circuits within a circuit group are specified with scope ISUP_SCOPE_CG and the circuit group
identifier. Circuit groups can also be specified using scope ISUP_SCOPE_SR and the Circuit Identification Code
of one of the circuits within the circuit group.

2.2.2.1.5. Circuits
A circuit refers to a specific time slot within a digital facility.

Circuits are identified using a unique circuit identifier within the CCS provider. Addresses specifying a specific
circuit are specified with scope ISUP_SCOPE_CT and the circuit identifier. Circuits can also be specified using
scope ISUP_SCOPE_CG, the circuit group identifier, and the Circuit Identification Code of the circuit within the
group. Circuits can also be specified using scope ISUP_SCOPE_SR, the signalling relation identifier, and the
Circuit Identification Code of the circuit within the signalling relation.

$Revision: 0.8.22 % Page 5 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

Signalling
Point
Message Message
Transfer Transfer
Part Part
Signalling Signalling
Relation Relation
- /\ /\ —
Gro Gro
roup Trunk Trunk Trunk Trunk roup
Group Group Group Group
Circuits Circuits

Figure 2-3. NNI Data Model

2.2.3. Local Management

The CCI specifications also define a set of local management functions that apply to UNI and NNI modes of
communication. These services have local significance only. Tables 1, 2 and 3 summarizes the CCI service
primitives by their state and service.

$Revision: 0.8.22 % Page 6 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

3. CCI Services Definition

This section describes the services of the CCI primitives. Time-sequence diagrams that illustrate the sequence of
primitives are included. (Conventions for the time-sequence diagrams are defined in ITU-T X.210.) The format
of the primitives will be defined later in this document.

Tablel. CCI Service Primitives

Local Management Both | CC_INFO_REQ, CC_INFO_ACK, CC_BIND_REQ,
CC_BIND_ACK, CC_UNBIND_REQ, CC_ADDR_REQ, CC_AD-
DR_ACK, CC_OPTMGMT_REQ, CC_OPTMGMT_ACK,
CC_OK_ACK, CC_ERROR_ACK

Call Setup Both | CC_SETUP_REQ, CC_SETUP_IND, CC_CALL_REAT-
TEMPT_IND, CC_MORE_INFO_REQ, CC_MORE_INFO_IND,
CC_INFORMATION_REQ, CC_INFORMATION_IND, CC_SET-
UP_RES, CC_SETUP_CON

UNI | CC_INFO_TIMEOUT_IND

NNI | CC_CONT_REPORT_REQ, CC_CONT_REPORT_IND

Call Establishment Both | CC_PROCEEDING_REQ, CC_PROCEEDING_IND, CC_ALERT-
ING_REQ, CC_ALERTING_IND, CC_PROGRESS_REQ,
CC_PROGRESS_IND, CC_CONNECT_REQ, CC_CON-
NECT_IND

Call Established Both | CC_SUSPEND_REQ, CC_SUSPEND_RES, CC_SUSPEND_IND,
CC_SUSPEND_CON, CC_RESUME_REQ, CC_RESUME_RES,
CC_RESUME_IND, CC_RESUME_CON

UNI | CC_SUSPEND_REJECT REQ, CC_SUSPEND_REJECT_IND,
CC_RESUME_REJECT_REQ, CC_RESUME_REJECT_IND

Call Termination Both | CC_CALL_FAILURE_IND, CC_IBI_REQ, CC_IBI_IND, CC_RE-
LEASE_REQ, CC_RELEASE_IND, CC_RELEASE_RES, CC_RE-
LEASE_CON

UNI | CC_DISCONNECT_REQ, CC_DISCONNECT_IND
Provider Management | UNI | CC_RESTART_REQ, CC_RESTART_CON

NNI | CC_RESET_REQ, CC_RESET_IND, CC_RESET_RES, CC_RE-
SET_CON, CC_BLOCKING_REQ, CC_BLOCKING_IND,
CC_BLOCKING_RES, CC_BLOCKING_CON, CC_UNBLOCK-
ING_REQ, CC_UNBLOCKING_IND, CC_UNBLOCKING_RES,
CC_UNBLOCKING_CON, CC_QUERY_REQ, CC_QUERY_IND,
CC_QUERY_RES, CC_QUERY_CON

CC_CONT_CHECK_REQ, CC_CONT_CHECK_IND,
CC_CONT_TEST_REQ, CC_CONT_TEST_IND, CC_CONT _RE-
PORT_REQ, CC_CONT_REPORT_IND

$Revision: 0.8.2.2 $ Page 7 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

3.1. Local Management Services Definition

The services defined in this section are outside the scope of international standards. These services apply to UNI
(User and Network), and NNI modes of communication. They are invoked for the initialization/de-initialization
of a stream connected to the CCS provider. They are also used to manage options supported by the CCS provider
and to report information on the supported parameter values.

3.1.1. Call Control Information Reporting Service
This service provides information on the options supported by the CCS provider.

» CC_INFO_REQ: This primitive request that the CCS provider return the values of all the supported protocol
parameters. This request may be invoked during any phase.

e CC_INFO_ACK: This primitive is in response to the N_INFO_REQ primitive and returns the values of the
supported protocol parameters to the CCS user.

The sequence of primitive for call control information management is shown in Figure 3-1.

CC_INFO_REQ ~
CC_INFO_ACK /

Figure 3-1. Sequence of Primitives: Call Control Information Reporting Service

3.1.2. CCS Address Service

This service allows a CCS user to determine the bound call control address and the connected call control adress
for a given call reference associated with a stream. It permits the CCS user to not necessarily retain this informa-
tion locally, and allows the CCS user to determine this information from the CCS provider at any time.

« CC_ADDR_REQ: This primitive requests that the CCS provider return information concerning which call
control address the CCS user is bound as well as the call control address upon which the CCS user is cur-
rently engaged in a call for the specified call reference.

» CC_ADDR_ACK: This primitive is in response to the CC_ADDR_REQ primitive and indicates to the CCS
user the requested information.

The sequence of primitives is shown in Figure 3-2.

$Revision: 0.8.2.2 $ Page 8 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_ADDR_REQ \
CC_ADDR_ACK /

Figure 3-2. Sequence of Primitives: Call Control User Address Service

3.1.3. CCSUser Bind Service

This service allows a call control address to be associated with a stream. It allows the CCS user to negotiate the
number of setup indications that can remain unacknowledged for that CCS user (a setup indication is considered
unacknowledged while it is awaiting a corresponding setup response or release request from the CCS user). This
service also defines a mechanism that allows a stream (bound to a call control address of the CCS user) to be re-
served to handle incoming calls only. This stream is referred to as the listener stream.

 CC_BIND_REQ: This primitive request that the CCS user be bound to a particular call control address and
negotiate the number of allowable outstanding setup indications for that address.

 CC_BIND_ACK: This primitive is in response to the CC_BIND_REQ primitive and indicates to the user
that the specified CCS user has been bound to a call control address.

The sequence of primitives is shown in Figure 3-3.

CC_BIND_REQ ~
CC_BIND_ACK /

Figure 3-3. Sequence of Primitives: Call Control User Bind Service

3.1.4. CCSUser Unbind Service

This service allows the CCS user to be unbound from a call control address.

 CC_UNBIND_REQ: This primitive request that the CCS user be unbound from the call control address that
it had previously been bound to.

The sequence of primitives is shown in Figure 3-4.

$Revision: 0.8.22 % Page 9 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_UNBIND_REQ ~
CC_OK_ACK /

Figure 3-4. Sequence of Primitives: Call Control User Unbind Service

3.1.5. Receipt Acknowledgment Service

« CC_OK_ACK: This primitive indicates to the CCS user that the previous (indicated) CCS user originated
primitive was received successfully by the CCS provider.

An example showing the sequence of primitives for successful receipt acknowledgment is depicted in Figure 3-5.

*

CC_SETUP_REQ
CC_SETUP_RES
CC_ALERTING_REQ
CC_PROCEEDING_REQ
CC_PROGRESS_REQ
CC_CONT_REPORT_REQ

CC_SETUP_COMPLETE_REQ
/ CC_RELEASE_REQ

*

CC_OK_ACK CC_RELEASE_IND

CC_SUSPEND_REQ
CC_RESUME_REQ

Figure 3-5. Sequence of Primitives: Call Control Receipt Acknowledgment Service

3.1.6. Options Management Service
This service allows the CCS user to manage options parameter values associated wtih the CCS provider.

e CC_OPTMGMT_REQ: This primitive allows the CCS user to select default values for options parameters
within the range supported by the CCS provider.

Figure 3-6 shows the sequence of primitives for call control options management.

CC_OPTMGMT_REQ \

CC_OK_ACK /

Figure 3-6. Sequence of Primitives: Call Control Options Management Service

$Revision: 0.8.22 % Page 10 April 15, 2003

Call Control Interface (CClI)

3.1.7. Error Acknowledgment Service

OpenSS7 Corpor ation

» CC_ERROR_ACK: This primitive indicates to the CCS user that a non-fatal error has occurred in the last
CCS user originated request or response primitive (listed in Figure 3-7), on the stream.

Figure 3-7 shows the sequence or primitives for the error management primitive.

REQ/RES Primitive *

CC_ERROR_ACK

~

CC_SETUP_REQ
CC_SETUP_RES
CC_PROCEEDING_REQ
CC_ALERTING_REQ
CC_PROGRESS_REQ
CC_CONT_REPORT_REQ
CC_MORE_INFO_REQ
CC_SETUP_COMPLETE_REQ
CC_SUSPEND_REQ
CC_RESUME_REQ
CC_RELEASE_REQ
CC_RELEASE_RES

Figure 3-7. Sequence of Primitives: Call Control Error Acknowledgment Service

$Revision: 0.8.22 %

Page 11

April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

3.2. User-Network Interface Services Definition
This section describes the required call control service primitives that define the UNI interface.

The queue model for UNI is discussed in more detail in ITU-T Q.931. For Q.931 specific conformance consider-
ations, see Addendum 1.

The queue model represents the operation of a call control connection in the abstract by a pair of queues linking
the two call control addresses. There is one queue for each direction of signalling transfer. The ability of a user
to add objects to a queue will be determined by the behavior of the user removing objects from that queue, and
the state of the queue. The pair of queues is considered to be available for each potential call. Objects that are
entered or removed from the queue are either as a result of interactions at the two call control addresses, or as the
result of CCS provider initiatives.

» A queue is empty until a setup object has been entered and can be returned to this state, with loss of its con-
tents, by the CCS provider.
» Objects may be entered into a queue as a result of the action of the source CCS user, subject to control by the
CCS provider.
» Objects may also be entered into a queue by the CCS provider.
 Obijects are removed from the queue under the control of the receiving CCS user.
 Obijects are normally removed under the control of the CCS user in the same order as they were entered ex-
cept:
« if the object is of a type defined to be able to advance ahead of the preceding object, or
« if the following object is defined to be destructive with respect to the preceding object on the queue. If
necessary, the last object on the queue will be deleted to allow a destructive object to be entered — they
will therefore always be added to the queue. For example, "release™ objects are defined to be destructive
with respect to all other objects.

Table 3 shows the ordering relationship among the queue model objects.

$Revision: 0.8.2.2 $ Page 12 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

CC_SETUP_REQ \

CC_MORE_INFO_IND /

CC_INFORMATION_REQ
CC_INFORMATION_REQ

7
CC_OK_ACK >&>

CC_OK_ACK 4
CC_SETUP_CON
CC_PROCEEDING_IND

CC_ALERTING_IND

CC_PROGRESS IND

NONON NN

CC_CONNECT_IND
CC_SETUP_COMPLETE_REQ

(Network Sde Only)

7
CC_OK_ACK 4

CALL PROCEEDING
ALERTING
PROGRESS
CONNECT

CONNECT ACKNOWLEDGE

-

\ CC_SETUP IND
/ CC_MORE_INFO_REQ

N

N\ CcC_OK_ACK

CC_INFORMATION_IND

CC_INFORMATION_IND
CC_SETUP_RES

N\ CcC_OK_ACK
/ CC_PROCEEDING_REQ

~N

N
N\ CC_OK_ACK

/ CC_ALERTING_REQ

~N

N
N\ CC_OK_ACK

/ CC_PROGRESS REQ

~N

N
N\ CC_OK_ACK

/ CC_CONNECT_REQ

~N

N
N\ CC_OK_ACK

\ CC_SETUP_COMPLETE_IND
(User Side Only)

Figure 3-8. Sequence of Primitives: Call Control UNI Overview

3.2.1. Call Setup Phase

A pair of queuesis associated with a call between two call control addresses (facility group and channel(s)) when
the CCS provider receives a CC_SETUP_REQ primitive at one of the call control addresses resulting in a setup
object being entered into the queue. The queues will remain associated with the call until a CC_RE-
LEASE REQ or CC_RELEASE IND (resulting in a release object) is either entered into or removed from a
gueue. Similarly, in the queue from the called CCS user, objects can be entered into the queue only after the
setup object associated with the CC_SETUP_RES has been entered into the queue. Alternatively, the called CCS
user can enter arelease object into the queue instead of the setup object to terminate the call.

$Revision: 0.8.22 %

Page 13

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

The call establishment procedure will fail if the CCS provider is unable to establish the call, or if the destination
CCS user is unable to accept the CC_SETUP_IND (see call failure and call reject primitive definitions).

3.2.1.1. User Primitivesfor Successful Call Setup

 CC_SETUP_REQ: This primitive requests that the CCS provider setup a call to the specified destination
(called party number).

« CC_MORE_INFO_REQ: This primitive requests that the CCS provider provide more information to estab-
lish the call. This primitive is not issued for en bloc signalling mode.

* CC_INFORMATION_REQ: This primitive requests that the CCS provider provide more information (dig-
its) in addition to the destination (called party number) already specified in the CC_SETUP_REQ and subse-
guent CC_INFORMATION_REQ primitives. This primitive is not issued for en block signalling mode.

e CC_SETUP_RES: This primitive requests that the CCS provider accept a previous call setup indication on
the specified stream.

3.2.1.2. Provider Primitivesfor Successful Call Setup

e CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that an event has caused
call setup to fail on the selected address and that a reattempt should be made (or has been made) on another
call control address (facility group and channel(s)). This primitive is only issued by the CCS provider if the
CCS user is bound at the channel level rather than the facility group or equipment group levels.

e CC_SETUP_IND: This primitive indicates to the CCS user that a call setup request has been made by a user
at the specified call control address (facility group and channel(s)).

» CC_MORE_INFO_IND: This primitive indicates to the CCS user that more information is required to es-
tablish the call. This primitive is not issued for en block signalling mode.

e CC_INFORMATION_IND: This primitive indicates to the CCS user more information (digits) in addition
to the destination (called party number) already indicated in the CC_SETUP_IND and subsequent CC_IN-
FORMATION_IND primitives. This primitive is not issued for en block signalling mode.

* CC_INFO_TIMEOUT_IND: This primitive indicates to the called CCS user that a timeout occurred while
waiting for additional information (called party number). The receiving CCS User should determine whether
sufficient address digits have been received and either disconnect the call with the CCS_DISCON-
NECT_REQ primitive or continue the call with CC_SETUP_RES. This primitive is not issued for en block
signalling mode.

e CC_SETUP_CON: This primitive indicates to the CCS user that a call setup request has been confirmed on
the indicated call control address (channel(s)).

The sequence of primitives in a successful call setup is defined by the time sequence diagram shown in Figure
3-9. The sequence of primitives for the call response token value determination is shown in Figure 3-10 (proce-
dures for call response token value determination are discussed in section 4.1.3 and 4.1.4.)

$Revision: 0.8.22 % Page 14 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_SETUP_REQ

\ SETUP
____________ . \
CC_SETUP_IND

CC_MORE_INFO_REQ
SETUP ACKNOWLEDGE /
/ - ————— e ——— —
CC_MORE_INFO_IND

CC_INFORMATION_REQ

CC_INFORMATION_REQ INFORMATION -
\ INFORMATION - \
CC_INFORMATION_IND
1302 \ CC_INFORMATION_IND
CC_INFO_TIMEOUT_IND

CC_SETUP RES
CONNECT /

/ ------------ ~
CC_SETUP CON N cC_OK_ACK
CC_SETUP_COMPLETE_REQ
\ CONNECT ACKNOWLEDGE
D - \
CC_OK_ACK # CC_SETUP COMPLETE_IND

Figure 3-9. Sequence of Primitives: Call Control Call Setup Service

CC_BIND_REQ
(swith TOKEN_REQUEST set

CC_BIND_ACK /

(returns cc_token_value)

Figure 3-10. Sequence of Primitives: Call Control Token Request Service

If the CCS provider is unable to establish a call, it indicates this to the request by a CC_CALL_REAT-
TEMPT_IND. Thisisshown in Figure 3-11.

$Revision: 0.8.22 % Page 15 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_SETUP_REQ \

CC_REATTEMPT_IND

Figure 3-11. Sequence of Primitives: Call Reattempt — CCS Provider

The sequence of primitives for call reattempt on dual seizure are shown in Figure 3-12.

3.2.2.

CC_SETUP_REQ _- CC_SETUP_REQ
\ SETUP .
____________ »
// ‘_____><__>
CC_SETUP_IND # SETUP
------------ - \
CC_REATTEMPT_IND CC_SETUP_IND
CC_SETUP_RES
CONNECT /
/ ------------ ~
CC_SETUP_CON N cCc_OK_ACK

Figure 3-12. Sequence of Primitives: Call Reattempt — Dual Seizure

Call Establishment Phase

During the call establishment phase, a pair of queues has already been associated with the call between the se-
lected call control addresses (facility group and channel(s)) during the setup phase.

3.2.2.1. User Primitives for Successful Call Establishment

CC_PROCEEDING_REQ: This primitive requests that the CCS provider indicate to the call control peer
that the call is proceeding and that all necessary information has been received.

CC_ALERTING_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the terminating user is being alerted.

CC_PROGRESS _REQ: This primitive requests that the CCS provider indicate to the call control peer that
the specified progress event has occurred.

CC_IBI_REQ (CC_DISCONNECT_REQ): This primitive requests that the CCS provider indicate to the
call control peer that in-band information is now available. This will also invite the peer to release the call.

CC_CONNECT_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the call has been connected.

CC_SETUP_COMPLETE_REQ: This primitive request that the CCS provider complete the call setup.

3.2.2.2. Provider Primitivesfor Successful Call Establishment

CC_PROCEEDING_IND: This primitive indicates to the CCS user that the call control peer is proceeding
and that all necessary information has been received.

$Revision: 0.8.22$ Page 16 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

 CC_ALERTING_IND: This primitive indicates to the CCS user that the terminating user is being alerted.

* CC_PROGRESS IND: This primitive indicates to the CCS user that the specified progress event has oc-
curred.

e CC_IBI_IND (CC_DISCONNECT_IND): This primitive indicates to the CCS user that in-band informa-
tion is now available. It also invites the CCS user to release the call.

* CC_CONNECT_IND: This primitive indicates to the CCS user that the call has been connected.
e CC_SETUP_COMPLETE_IND: This primitive indicates to the CCS user that the call has completed setup.

3.2.2.3. Provider Primitivesfor Successful Call Setup

The sequence of primitives in a successful call establishment is defined by the time sequence diagrams as shown
in Figure 3-13.

CC_PROCEEDING_REQ

CALL PROCEEDING /
D e

~N

N cC_OK_ACK

CC_ALERTING_REQ
ALERTING /
- ————————

~N

N cC_OK_ACK

CC_PROGRESS_REQ
PROGRESS /
€« ——mmmm e ———

~N

N cC_OK_ACK

CC_IBI_REQ
DISCONNECT /
-« —mm—mmmm————

~N

CC_PROCEEDING_IND
CC_ALERTING_IND
CC_PROGRESS_IND

N cC_OK_ACK

CC_CONNECT REQ
CONNECT /
€« ——m—mm——————

~N

CC_IBI_IND

NN N NN

CC_CONNECT_IND N\ cC_OK_ACK

CC_SETUP_COMPLETE_REQ
CONNECT ACKNOWLEDGE

(Network SdeOnly) & | Z__ - _____-Z -
7

CC_OK_ACK » \ CC_SETUP_COMPLETE_IND
(User Side Only)

Figure 3-13. Sequence of Primitives: Call Control Successful Call Establishment Service

3.2.3. Call Established Phase

Flow control of the call is done by management of the queue capacity, and by allowing objects of certain types to
be inserted to the queues, as shown in Table X.

3.2.3.1. Suspend Service

$Revision: 0.8.22 % Page 17 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

3.2.3.1.1. User Primitivesfor Suspend Service

» CC_SUSPEND_REQ: This primitives requests that the CCS provider temporarily suspend a call at the net-
work, or indicate user suspension of a call.

e CC_SUSPEND_RES: This primitive indicates to the CCS provider that the CCS user (Network) is accepting
the request for suspension of the call.

 CC_SUSPEND_REJECT_REQ: This primitive indicates to the CCS provider that the CCS user (Network)
is rejecting the request for suspension of the call, and the cause for rejection.

3.2.3.1.2. Provider Primitivesfor Suspend Service

e CC_SUSPEND_IND: This primitive indicates to the CCS user that an established call has been temporarily
suspended at the network, or by the remote user.

» CC_SUSPEND_CON: This primitive confirms to the requesting CCS user (User) that the call has been tem-
porarily suspended at the network.

e CC_SUSPEND_REJECT_IND: This primitive indicates to the requesting CCS user (User) that the request
to suspend the call has been rejected by the network, and the cause for rejection.

Figure 3-14 and -15 show the sequence of primitives for suspend service. The sequence of primitives may re-
main incomplete if a CC_RESET or a CC_RELEASE primitive occurs.

The sequence of primitives to suspend a call is defined in the time sequence diagram as shown in Figure 3-14 and
Figure 3-15.

CC_SUSPEND_REQ
\ SUSPEND

------------ - \
CC_SUSPEND_IND

CC_SUSPEND_RES
SUSPEND ACKNOWLEDGE /
R

/ ™
CC_SUSPEND_CON \ cC_OK_ACK

Figure 3-14. Sequence of Primitives: Call Control Network Suspend Service: Successful

CC_SUSPEND_REQ
\ SUSPEND

------------ - \
CC_SUSPEND_IND

CC_SUSPEND_REJECT REQ

SUSPEND REJECT /
- ————

~N

/ N
CC_SUSPEND_REJECT_IND "\ cC_OK_ACK

Figure 3-15. Sequence of Primitives: Call Control Network Suspend Service: Unsuccessful

$Revision: 0.8.22 % Page 18 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_SUSPEND_REQ
\ NOTIFY
| e -

CC_SUSPEND_CON # \ CC_SUSPEND_IND

CC_SUSPEND_RES

Figure 3-16. Sequence of Primitives: Call Control User Suspend Service

3.2.3.2. Resume Service

3.2.3.2.1. User Primitivesfor Resume Service

*+ CC_RESUME_REQ: This primitive request that the CCS provider resume a previously network suspended
call, or indicates that the user has resumed a call.

« CC_RESUME_RES: This primitive indicates to the CCS provider that the CCS user (Network) is accepting
the request for resumption of the call.

» CC_RESUME_REJECT_REQ: This primitive indicates to the CCS provider that the CCS user (Network)
is rejecting the request for resumption of the call, and the cause for rejection.

3.2.3.2.2. Provider Primitivesfor Resume Service

e CC_RESUME_IND: This primitive indicates to the CCS user that a previously suspended call has been re-
sumed at the network, or by the remote user.

* CC_RESUME_CON: This primitive confirms to the requesting CCS user (User) that the call has been re-
sumed at the network.

e CC_RESUME_REJECT_IND: This primitive indicates to the requesting CCS user (User) that the request
to resume the call has been rejected by the network, and the cause for rejection.

Figure 3-17 and -18 show the sequence of primitives for resume service. The sequence of primitives may remain
incomplete if a CC_RESET or a CC_RELEASE primitive occurs.

The sequence of primitives to resume a call is defined in the time sequence diagram as shown in Figure 3-17 and
Figure 3-18.

CC_RESUME_REQ
\ RESUME

------------ - \
CC_RESUME_IND

CC_RESUME_RES
RESUME ACKNOWLEDGE /

/ ~TTTTTTTTTTo N
CC_RESUME_CON \ cC_oK_ACK

Figure 3-17. Sequence of Primitives: Call Control Resume Service: Successful

$Revision: 0.8.22 % Page 19 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_RESUME_REQ
\ RESUME

------------ - \
CC_RESUME_IND

CC_RESUME_REJECT_REQ

RESUME REJECT /
- —————

~N

/ N
CC_RESUME_REJECT_IND "\ cC_OK_ACK

Figure 3-18. Sequence of Primitives: Call Control Resume Service: Unsuccessful

CC_RESUME_REQ
\ NOTIFY
P -> \
CC_RESUME_CON # CC_RESUME_IND

CC_RESUME_RES

Figure 3-19. Sequence of Primitives: Call Control User Resume Service

The sequence of primitives as shown above may remain incomplete if a CC_RESET or CC_RELEASE primitive
occurs (see Table 3). A CCS user must not issue a CC_RESUME_REQ primitive if no CC_SUSPEND_REQ has
been sent previously. Following a reset procedure (CC_RESET_REQ or CC_RESET_IND), a CCS user may not
issue a CC_RESUME_REQ to resume a call suspended before the reset procedure was signaled.

3.2.4. Call Termination Phase
3.2.4.1. Call Rgect Service

3.2.4.1.1. User Primitivesfor Call Rgect Service
e CC_REJECT_REQ: This primitive indicates that the CCS user receiving the specified CC_SETUP_IND re-
quests that the specified call indication be rejected.
3.2.4.1.2. Provider Primitivesfor Call Regect Service
* CC_REJECT_IND: This primitive indicates to the calling CCS user that the call has been rejected.

The sequence of events for rejecting a call setup attempt at the UNI is defined in the time sequence diagram
shown in Figure 3-20.

$Revision: 0.8.22 % Page 20 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_SETUP_REQ
\ SETUP
____________ -

\ CC_SETUP_IND

CC_REJECT_REQ
RELEASE COMPLETE /
-

/ ™
CC_REJECT_IND "\ cC_OK_ACK

Figure 3-20. Sequence of Primitives: Rejecting a Call Setup

3.2.4.2. Call Failure Service

3.2.4.2.1. Provider Primitivesfor Call Failure Service

e CC_CALL_FAILURE_IND: This primitive indicates to the called CCS user that an event has caused the
call to fail and indicates the reason for the failure and the cause value associated with the failure. The CCS
user is required to release the call using the indicated cause value in a CC_DISCONNECT_REQ primitive.

The sequence of events for error indications is described in the time sequence diagram shown in Figure 3-21.

RESTART
STATUS
DL_ESTABLISH_CON

CC_CALL_FAILURE_IND /

\ DISCONNECT
------------ -

CC_DISCONNECT _REQ

\ CC_DISCONNECT_IND

Figure 3-21. Sequence of Primitives: Call Failure

3.2.4.3. Call Release Service

The call release procedure is initialized by the insertion of a release object (associated with a CC_DISCON-
NECT_REQ, CC_RELEASE_REQ, or CC_REJECT_REQ) in the queue. As shown in Table 3, the release pro-
cedure is destructive with respect to other objects in the queue, and eventually results in the emptying of queues
and termination of the call.

The Release procedure invokes the following interactions:

A. A CC_DISCONNECT_REQ from the CCS user, followed by a CC_RELEASE_IND from the CCS
provider and a subsequent CC_RELEASE_RES from the CCS user; or
B. A CC_DISCONNECT_IND from the CCS provider, followed by a CC_RELEASE _REQ from the

CCS user and a subsequent CCS_RELEASE_CON from the CCS provider.
The sequence of primitive depends on the origin of the release action. The sequence may be:

$Revision: 0.8.22 % Page 21 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

(1) invoked by the CCS user, with a request from that CCS user, leading to interaction (A) with that CCS
user and interaction (B) with the peer CCS user;

(2) invoked by both CCS users, with a request from each of the CCS users, leading to interaction (A) with
both CCS users;

(3) invoked by the CCS provider, leading to interaction (B) with both CCS users.

(4) invoked independently by one CCS user and the CCS provider, leading to interaction (A) with the origi-
nating CCS user and (B) with the peer CCS user.

3.2.4.3.1. User Primitives for Release Service

* CC_DISCONNECT_REQ: This primitive request that the CCS provider disconnect the B-Channel or indi-
cate tones and announcements present. Tones and announcements should be requested in the CC_IBI_REQ
primitive rather than the CC_DISCONNECT_REQ primitive.

» CC_RELEASE_REQ: This primitive requests that the CCS provider disconnect the B-Channel (if not al-
ready disconnected) and release the call reference.

 CC_RELEASE_RES: This primitive indicates to the CCS provider that the CCS user has accepted a release
indication and has released the call reference.

3.2.4.3.2. Provider Primitivesfor Release Service

* CC_DISCONNECT_IND: Thi primitive indicates that the remote CCS user or provider has disconnected
the B-Channel or has made tones and announcements available. The CCS provider should indicate tones and
announcements present only with the CC_IBI_IND primitive rather than the CC_DISCONNECT _IND primi-
tive.

e CC_RELEASE_IND: This primitive indicates that the remote CCS has disconnected the B-Channel and re-
leased the call reference.

* CC_RELEASE_CON: This primitive confirms that the remove CCS has disconnected the B-Channel and
released the call reference.

The sequence of primitives as shown in Figure 3-22, -23, -24, and -25 may remain incomplete if a
CC_RESTART primitive occurs.

A CCS user can release a call establishment attempt by issuing a CC_DISCONNECT_REQ. The sequence of
events is shown in Figure 3-22, -23, -24, and -25.

DISCONNECT

------------ - \
CC_DISCONNECT _IND

CC_RELEASE_REQ
RELEASE /

/ - s-ss—s=-
CC_RELEASE_IND
CC_RELEASE_RES
\ RELEASE COMPLETE
____________ -

e \
CC_OK_ACK 4 CC_RELEASE_CON

CC_DISCONNECT_REQ \

Figure 3-22. Sequence of Primitives: CCS User Invoked Release

$Revision: 0.8.22 % Page 22 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

CC_DISCONNECT _REQ

N

CC_RELEASE_CON /

-~
-~ -
-~ -
-~ -

_~ RELEASE "~ _
» w

e

N

CC_DISCONNECT _REQ

CC_RELEASE_CON

Figure 3-23. Sequence of Primitives: Simultaneous CCS User Invoked Release

CC_DISCONNECT _IND /

CC_RELEASE_REQ \

CC_RELEASE_CON

DISCONNECT

N/

CC_DISCONNECT_IND
CC_RELEASE_REQ

CC_RELEASE_CON

Figure 3-24. Sequence of Primitives: CCS Provider Invoked Release

CC_DISCONNECT_REQ \

CC_RELEASE_CON /

=~ DISCONNECT_ _ -~

~

”
”~ ~

N/

CC_DISCONNECT_IND
CC_RELEASE_REQ

CC_RELEASE_CON

Figure 3-25. Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release

3.2.5. Call Management

3.2.5.1. User Primitivesfor Call Management

» CC_RESTART_REQ: This primitive requests the CCS provider to restart all the call control addresses (sig-
nalling interface and channels) for the UNI interface.

$Revision: 0.8.22 %

Page 23

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

3.2.5.2. Provider Primitivesfor Call Management

 CC_RESTART_CON: This primitive confirms to the requesting CCS user that all call control addresses
(signalling interface and channels) for the UNI interface have been restarted and all calls are in the
CCS_IDLE state.

e« CC_MAINT_IND: This primitive indicates to CCS user that various events have occurred requiring mainte-
nance notification (e.g., restart indication).

$Revision: 0.8.22 % Page 24 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

3.3. Network-Network Interface Services Definition
This section describes the required call control service primitives that define the NNI interface.

The queue model for NNI is discussed in more detail in ITU-T Q.764. For Q.764 specific conformance consider-
ations, see Addendum 2. For ETSI EN 300 356-1 V3.2.2 specific conformance considerations, see Addendum 3.

CC_SETUP_REQ

\ IAM
o I s -
rd

CC_MORE_INFO_IND 4 CC_SETUP_IND
CC_MORE_INFO_REQ
CC_INFORMATION_REQ

CC_INFORMATION REQ~_ & | ——____ SAM_ e

CC_OK_ACK 4 -
CC_OK_ACK #

CC_INFORMATION_IND
CC_INFORMATION_IND
CC_SETUP_RES

\

CC_SETUP_CON CC_OK_ACK

CC_PROCEEDING_REQ

CC_PROCEEDING_IND CC_OK_ACK

CC_ALERTING_REQ

SAN NS

N\ CC_OK_ACK

CC_PROGRESS REQ
ACMI/CPG /
[iy
N ~
\

CC_OK_ACK

CC_IBI_REQ
ACM/CPG /
N

CC_ALERTING_IND

CC_PROGRESS_IND

N\ CC_OK_ACK
CC_CONNECT_REQ
CON/ANM /

CC_IBI_IND

~N

N cC_OK_ACK

NN N NN

CC_CONNECT_IND

Figure 3-26. Sequence of Primitives: Call Control NNI Overview

3.3.1. Call Setup Phase

A pair of queues is associated with a call between the two call control addresses when the CCS provider receives
a CC_SETUP_REQ primitive at one of the call control addresses resulting in a setup object being entered into
the queue. The queues will remain associated with the call until a CC_RELEASE_REQ (resulting in a release
object) is either entered into or removed from a queue. Similarly, in the queue from the called CCS user, objects
can be entered into the queue only after the setup object associated with the CC_SETUP_RES has been entered
into the queue. Alternatively, the called CCS user can enter a release object into the queue instead of the setup
object to terminate the call.

$Revision: 0.8.2.2 $ Page 25 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

The call establishment procedure will fail if the CCS provider is unable to establish the call, or if the destination
CCS user is unable to accept the CC_SETUP_IND (see call release primitive definition).

3.3.1.1. User Primitivesfor Successful Call Setup

 CC_SETUP_REQ: This primitive requests that the CCS provider setup a call to the specified destination
(called party address).

« CC_MORE_INFO_REQ: This primitive requests that the CCS provider provide more information to estab-
lish the call. This primitive is not issued for en block signalling mode.

* CC_INFORMATION_REQ: This primitive requests that the CCS provider provide more information (dig-
its) in addition to the destination (called party number) already specified in the CC_SETUP_REQ and subse-
quent CC_INFORMATION_REQ primitives. This primitive is not issued for en block signalling mode.

» CC_SETUP_RES: This primitive requests that the CCS provider accept a previous call setup indication on
the specified stream.

3.3.1.2. Provider Primitivesfor Successful Call Setup

* CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that an event has caused
call setup to fail on the selected address and that a reattempt should be made (or has been made) on another
call control address (signalling interface and circuit(s)). This primitive is only issued by the CCS provider if
the CCS user is bound at the circuit level rather than the circuit group or trunk group level.

e CC_SETUP_IND: This primitive indicates to the CCS user that a call setup request has been made by a user
at the specified call control address (circuit(s)).

¢ CC_MORE_INFO_IND: This primitive indicates to the CCS user that more information is required to es-
tablish the call. This primitive is not issued for en block signalling mode.

 CC_INFORMATION_IND: This primitive indicates to the CCS user more information (digits) in addition
to the destination (called party number) already indicated in the CC_SETUP_IND and subsequent CC_IN-
FORMATION_IND primitives. This primitive is not issued for en block signalling mode.

 CC_INFO_TIMEOUT_IND: This primitive indicates to the called CCS user that a timeout occurred while
waiting for additional information (called party number). The receiving CCS User should determine whether
sufficient address digits have been received and either disconnect the call with the CCS_DISCON-
NECT_REQ primitive or continue the call with CC_SETUP_RES.

e CC_SETUP_CON: This primitive indicates to the CCS user that a call setup request has been confirmed on
the indicated call control address (circuits(s)).

The sequence of primitives in a successful call setup is defined by the time sequence diagrams as shown in Figure
3-27 and Figure 3-28. The sequence of primitives for the call response token value determination is shown in
Figure 3-29 (procedures for call response token value determination are discussed in section 4.1.3 and 4.1.4.)

Figure 3-27. Sequence of Primitives: Call Control Call Setup Service: En Bloc Sending

$Revision: 0.8.22 % Page 26 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

CC_SETUP_REQ

N

CC_MORE_INFO_IND /

CC_INFORMATION_REQ
CC_INFORMATION_REQ

s

CC_OK_ACK # .-

CC_OK_ACK

CC_SETUP_CON /

CC_SETUP_COMPLETE_REQ \

7

7
CC_OK_ACK #*

IAM
------------ -
(no message)

SAM
------------ -
SAM
------------ -

T11
CON

\ CC_SETUP IND
/ CC_MORE_INFO_REQ

\ CC_INFORMATION_IND

\ CC_INFORMATION_IND

~N

CC_INFO_TIMEOUT_IND
CC_SETUP_RES

N
N CcC_OK_ACK

\ CC_SETUP_COMPLETE_IND

Figure 3-28. Sequence of Primitives: Call Control Call Setup Service: Overlap Sending

CC_BIND_REQ
(swith TOKEN_REQUEST sef

CC_BIND_ACK /

(returns cc_token_value)

Figure 3-29. Sequence of Primitives: Call Control Token Request Service

If the CCS provider is unable to establish a call, it indicates this to the request by a CC_CALL_REAT-
TEMPT_IND. Thisisshownin Figure 3-30.

$Revision: 0.8.22 %

Page 27

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_SETUP_REQ \

CC_REATTEMPT_IND

Figure 3-30. Sequence of Primitives: Call Reattempt — CCS Provider

The sequence of primitives for call reattempt on dual seizure are shown in Figure 3-31.

IAN »

e —_— —_——-—

CC_SETUP_REQ \ _- CC_SETUP_REQ
//

CC_SETUP_IND # IAM

------------ - \
CC_SETUP_IND
CC_SETUP_RES
CON /
- - — - ——

/ ™
CC_SETUP_CON N\ cC_OK_ACK

CC_REATTEMPT_IND

Figure 3-31. Sequence of Primitives: Call Reattempt — Dual Seizure

3.3.2. Continuity Test Phase
The continuity test service is only applicable to the NNI.

During the continuity test phase, a pair of queues has already been associated with the call between the selected
call control addresses (signalling interface and circuit(s)) during the setup phase. The continuity test phase be-
gins when the CCS provider returns a CC_CONT_TEST_IND primitive in response to a CC_SETUP_REQ
primitive which had the ISUP_NCI_CONT_CHECK_REQUIRED flag set in the call flags. The continuity test
phase also begins when the CCS user responds with a CC_CONT_TEST_REQ primitive in response to a
CC_SETUP_IND primitive which had the ISUP_NCI_CONT_CHECK_REQUIRED flag set in the call flags.

Upon entering the continuity test phase, it is the responsibility of the CCS user to establish a loop back on the
call control address (signalling interface and circuit(s)) or to attach tone generation and detection devices to the
call control address (signalling interface and circuit(s)).

3.3.2.1. Continuity Test Successful

3.3.2.1.1. User Primitivesfor Successful Continuity Test

e CC_SETUP_REQ: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, requests that
the CCS provider setup a call and include a continuity check before the call is established.

e CC_CONT_CHECK_REQ: This primitive requests that the CCS provider perform a continuity check on
the specified call control address (signalling interface and circuit(s)). This primitive is only necessary for per-
forming continuity checks that are not in conjunction with a call.

$Revision: 0.8.22 % Page 28 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

« CC_CONT_TEST_REQ: This primitive requests that the CCS provider accept an outstanding call setup in-
dication. When the CCS_SETUP_IND had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it indi-
cates to the CCS provider that the necessary loop back device has been install on the call control address (sig-
nalling interface and circuit(s)).

* CC_CONT_REPORT_REQ: This primitive requests that the CCS provider indicate to the remote CCS user
that the continuity test has succeeded (cc_result is set to ISUP_COT_SUCCESS).

3.3.2.1.2. Provider Primitivesfor Successful Continuity Test

e CC_SETUP_IND: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, indicates to
the CCS user that a call setup including a continuity check is requested.

* CC_CONT_CHECK _IND: This primitive indicates to the CCS user that a continuity check was requested
on the specified call control address (signalling interface and circuit(s)). This primitive is only necessary for
performing continuity checks that are not in conjunction with a call.

e CC_CONT_TEST_IND: This primitive indicates that the remote CCS user has accepted a call setup indica-
tion on the specified call control address (signalling interface and circuit(s)). When the CC_SETUP_IND
primitive had the ISUP_NCI_CONT_CHECK_ REQUIRED flag set, it indicates to the CCS user that the nec-
essary loop back device has been installed on the remote end of the call control address (signalling interface
and circuit(s)). The CCS user receiving this primitive must attach the necessary tone generation and detec-
tion devices to the circuit(s) and perform the continuity test.

* CC_CONT_REPORT_IND: This primitive indicates to the CCS user that the continuity test was successful.

The sequence of primitives in a successful continuity test associated with call setup when continuity check is re-
quired on the circuit(s) is defined by the time sequence diagrams as shown in Figure 3-32.

CC_SETUP_REQ

(with ISUP_NCI_CONT CH ECK}RQ{F £D) AM
____________ -
CC_INFORMATION_REQ CC_SETUP_IND
(with 1ISUP_NCI_CONT_CHECK_REQUIRED)
CC_INFORMATION REQ N | sam___ b oo
>‘s ______ SAM_ CC_CONT_TEST_REQ
CC_OK_ACK .-~ - LPA CC_INFORMATION_IND
CC_OK_ACK (dopending on protocol the CC_INFORMATION_IND

returned from the local

(apply tone and check continuity) CCS provider)

CC_CONT_REPORT REQ

(sticcess) \ coT
-

Al ——mmmmmr e - -
4
7

»
CC_OK_ACK CC_CONT_REPORT_IND

(remove loopback)
LPA /
- - - - - - - ——— - -

CC_SETUP_RES

~

CC_SETUP_CON

Figure 3-32. Sequence of Primitives: Call Setup Continuity Test Service: Required: Successful

The sequence of primitives in a successful continuity test associated with call setup when continuity check is be-
ing performed on a previous circuit is defined by the time sequence diagrams as shown in Figure 3-33.

$Revision: 0.8.22 % Page 29 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

CC_SETUP REQ

(with ISUP_NCI_CONT CH ECK}M@(C

CC_INFORMATION_REQ
CC_INFORMATION_REQ

s

CC_OK_ACK -~

CC_OK_ACK

CC_CONT_REPORT_REQ
(success)

CC_OK_ACK

CC_SETUP_CON

) IAM
———————————— -
SAM W
———————————— -
SAM
———————————— -
COoT
———————————— -
CON
- - — e —————— -

/

CC_SETUP_IND
th 1SUP_NCI_CONT_CHECK_PREVIOUS)

CC_INFORMATION_IND
CC_INFORMATION_IND

CC_CONT_REPORT_IND
CC_SETUP_RES

NS

Figure 3-33. Sequence of Primitives: Call Setup Continuity Test Service: Previous: Successful

The sequence of primitives in a successful continuity test not associated with call setup is defined by the time se-
guence diagrams as shown in Figure 3-34.

CC_CONT_CHECK_REQ \

CC_CONT_TEST_IND /

(apply tone and check continuity)

N

CC_RELEASE_REQ
(success)

CC_RELEASE_CON /

(depending on protocol, the

ICC_CONT_CHECK_CON might bq

returned from the local
CCSprovider)

\ CC_CONT_CHECK_IND

(esfablish loopback)
/ CC_CONT_TEST_REQ
\ CC_RELEASE_IND
(remove loopback)

CC_RELEASE_RES

Figure 3-34. Sequence of Primitives: Continuity Test Service: Successful

$Revision: 0.8.22 %

Page 30

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

3.3.2.2. Continuity Test Unsuccessful

3.3.2.2.1. User Primitivesfor Unsuccessful Continuity Test

e CC_SETUP_REQ: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, requests that
the CCS provider setup a call and include a continuity check before the call is established.

« CC_CONT_TEST_REQ: This primitive requests that the CCS provider accept an outstanding call setup in-
dication. When the CCS_SETUP_IND had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it also in-
dicates to the CCS provider that the necessary loop back device has been install on the call control address
(signalling interface and circuit(s)).

* CC_CONT_REPORT_REQ: This primitiive requests that the CCS provider indicate to the remote CCS
user that the continuity test has failed (cc_result is set to ISUP_COT_FAILURE).

3.3.2.2.2. Provider Primitivesfor Unsuccessful Continuity Test

e CC_SETUP_IND: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, indicates to
the CCS user that a call setup including a continuity check is requested.

 CC_CONT_TEST_IND: This primitive indicates that the remote CCS user has accepted a call setup indica-
tion on the specified call control address (signalling interface and circuit(s)). When the CC_SETUP_IND
primitive had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it indicates to the CCS user that the nec-
essary loop back device hass been installed on the remote end of the call control address (signalling interface
and circuit(s)). The CCS user receiving this primitive must attach the necessary tone generation and detec-
tion devices to the circuit(s) and perform the continuity test.

¢ CC_CONT_REPORT_IND: This primitive indicates to the CCS user that the continuity test failed.

e CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that the continuity test
failed and that a reattempt should be made (or has been made) on another call control address (signalling in-
terface and circuit(s)). This primitive is only issued by the CCS provider if the CCS user is bound at the cir-
cuit level rather than the circuit group or trunk group level.

The sequence of primitives for an unsuccessful continuity test associated with a call setup is defined by the time
sequence diagrams as shown in Figure 3-35.

$Revision: 0.8.22 % Page 31 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_SETUP_REQ
(with ISUP_NCI_CONT_CHECK_QECQ{?E D) AM

““““““ - \
CC_SETUP_IND

(with ISUP_NCI_CONT_CHECK_REQUIRED)

(establish loopback)
LPA /
-

CC_CONT_TEST_REQ

/ (depending on protocol, the
CC _CONT _TEST_IND CC_CONT_TEST_IND might be

(apply tonéand check continuity) returned from the local
CC_CONT_REPORT_REQ CCSprovider)
(failure) \ cort
e B -
, \
CC_OK_ACK #* CC_CONT_REPORT_IND
/ (failure)

CC_CALL _REATTEMPT_IND
CC_SETUP_REQ

(with ISJP_NCI_CONT_CHECK_M?E D) AM

““““““ - \
CC_SETUP_IND

(on a different circuit)

Figure 3-35. Sequence of Primitives: Call Setup Continuity Test Service: Unsuccessful

The sequence of primitives for an unsuccessful continuity test not associated with a call setup is defined by the
time sequence diagrams as shown in Figure 3-36.

CC_CONT_CHECK_REQ \

\ CC_CONT_CHECK_IND

(esfablish loopback)

CC_CONT_TEST REQ
LPA /

/ (depending on protocol, the

CC CONT TEST IND CC_CONT_CHECK_CON might bg

3001V tone and check continuit returned fromthe local
(apply toneand cl continuity) CCS provider)

CC_CONT_REPORT_REQ

(failure) \ coT
------------ -

4

P (failure) \
o CC_CONT_REPORT_IND

(remove | oopback)

CC_OK_ACK

Figure 3-36. Sequence of Primitives: Continuity Test Service: Unsuccessful

3.3.3. Call Establishment Phase

During the call establishment phase, a pair of queues has already been associated with the call between the se-
lected call control addresses (signalling interface and circuit(s)) during the setup phase. The call establishment

$Revision: 0.8.22 % Page 32 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

phase begins when the CCS provider returns a CC_SETUP_CON primitive (or receives a CC_CONT_RE-
PORT_REQ primitive) in response to a CC _SETUP_REQ primitive (which had the
ISUP_NCI_CONT_CHECK_REQUIRED flag set). The call establishment phase also begins when the CCS user
responds with a CC_SETUP_RES primitive (or receives a CC_CONT_REPORT _IND primitive) in response to a
CC_SETUP_IND primitive (which had the ISUP_NCI_CONT_CHECK_REQUIRED flag set).

Upon entering the call establishment phase, it is the responsibility of the CCS user to remove any loop back from
the call control address (signalling interface and circuit(s)) or to remove tone generation and detection devices
from the call controll address (signalling interface and circuit(s)).

3.3.3.1. User Primitivesfor Successful Call Establishment

 CC_PROCEEDING_REQ: This primitive requests that the CCS provider indicate to the call control peer
that the call is proceeding.

» CC_ALERTING_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the terminating user is being alerted.

 CC_PROGRESS REQ: This primitive requests that the CCS provider indicate to the call control peer that
the specified progress event has occurred.

» CC_IBI_REQ: This primitive requests that the CCS provider indicate to the call control peer that interwork-
ing has been encountered and in-band information is now available. This will also inform the peer CCS user
that no connect indication is pending.

« CC_CONNECT_REQ: This primitive requests that the CCS provider indicate to the call control peer that
the call has been connected.

e CC_SETUP_COMPLETE_REQ: This primitive requests that the CCS provider complete the call setup.
This primitive is used in NNI mode for interworking with UNI mode.

3.3.3.2. Provider Primitivesfor Successful Call Establishment
* CC_PROCEEDING_IND: This primitive indicates to the CCS user that the call control peer is proceeding.
* CC_ALERTING_IND: This primitive indicates to the CCS user that the terminating user is being alerted.

* CC_PROGRESS IND: This primitive indicates to the CCS user that the specified progress event has oc-
curred.

e CC_IBI_IND: This primitive indicates to the CCS user that interworking has been encountered and in-band
information is now available. It also indicates to the CCS user that no connect indication is pending.

e CC_CONNECT_IND: This primitive indicates to the CCS user that the call has been connected.

e CC_SETUP_COMPLETE_IND: This primitive indicates to the CCS user that the call has completed setup.
This primitive is used in NNI mode for interworking with UNI mode.

The sequence of primitives in a successful call establishment is defined by the time sequence diagrams as shown
in Figure 3-37.

$Revision: 0.8.22$ Page 33 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_PROCEEDING_REQ
\ ACM
D B -
CC_OK_ACK 4 CC_PROCEEDING_IND
CC_ALERTING_REQ
\ ACMICPG
D -
CC_OK_ACK 4 CC_ALERTING_IND
CC_PROGRESS_REQ
\ CPG

CC_OK_ACK #*

CC_IBI_REQ \ —
Pl e -

CC_OK_ACK #*

CC_CONNECT_REQ
\ ANM/CON
____________ .

-

CC_OK_ACK #*

CC_PROGRESS_IND

CC_IBI_IND

S oL S S S

CC_CONNECT_IND

Figure 3-37. Sequence of Primitives: Call Control Successful Call Establishment Service

3.3.4. Call Established Phase

Flow control of the call is done by management of the queue capacity, and by allowing objects of certain types to
be inserted to the queues, as shown in Table X.

3.3.4.1. User Primitivesfor Established Calls
» CC_SUSPEND_REQ: This primitives requests that the CCS provider temporarily suspend a call.
+ CC_RESUME_REQ: This primitive request that the CCS provider resume a previously suspended call.

3.3.4.2. Provider Primitivesfor Established Calls

e CC_SUSPEND_IND: This primitive indicates to the CCS user that an established call has been temporarily
suspended.

 CC_RESUME_IND: This primitive indicates to the CCS user that a previously suspended call has been re-
sumed.

Figure 3-38 shows the sequence of primitives for suspension and resumption of established calls. The sequence
of primitives may remain incomplete if a CC_RESET or a CC_RELEASE primitive occurs. The sequence of
primitives to successfully suspend and resume a call is defined in the time sequence diagram as shown in Figure
3-38.

$Revision: 0.8.22 % Page 34 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_SUSPEND_REQ
\ sus
Pl I - \
CC_OK_ACK 4 CC_SUSPEND_IND
CC_RESUME_REQ
\ RES
SOl TTTT T T T T T T - \
CC_OK_ACK # CC_RESUME_IND

Figure 3-38. Sequence of Primitives: Call Control Suspend and Resume Service

The sequence of primitives as shown above may remain incomplete if a CC_RESET or CC_RELEASE primitive
occurs (see Table 3). A CCS user must not issue a CC_RESUME_REQ primitive if no CC_SUSPEND_REQ has
been sent previously. Following a reset procedure (CC_RESET_REQ or CC_RESET_IND), a CCS user may not
issue a CC_RESUME_REQ to resume a call suspended before the reset procedure was signaled.

3.3.5. Call Termination Phase
3.35.1. Call Rgect Service

3.3.5.1.1. User Primitivesfor Call Rgect Service
e CC_REJECT_REQ: This primitive indicates that the CCS user receiving the specified CC_SETUP_IND re-
quests that the specified call indication be rejected.
3.3.5.1.2. Provider Primitivesfor Call Regect Service
» CC_REJECT_IND: This primitive indicates to the calling CCS user that the call has been rejected.

The sequence of events for rejecting a call setup attempt at the NNI is defined in the time sequence diagram
shown in Figure 3-39.

CC_SETUP REQ
\ 1AM
____________ -

\ CC SETUP IND

CC_REJECT REQ

-+ -—-——————————
/ ~~~~~ RLC

CC_REJECT_IND

Figure 3-39. Sequence of Primitives: CCS User Rejection of a Call Setup Attempt

3.3.5.2. Call Failure Service

The call error procedure is indicated by the removal of a reattempt or failure object (associated with a local event)
from the queue. The error procedure is destructive with respect to other objects in the queue, and eventually re-
sults in the emptying of queues and termination of the call.

$Revision: 0.8.22 % Page 35 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

3.3.5.2.1. Provider primitivesfor the Call Failure Service

e CC_CALL_FAILURE_IND: This primitive indicates to the CCS user that an event has caused the call to
fail and indicates the reason for the failure and the cause value associated with the failure. The CCS user is
required to immediately disconnect the circuit(s) and release the call on any previous legs using the indicated
cause value in the primitive.

The sequence of primitives for call failure are shown in Figure 3-40.

BLO/CGB/RSC/GRS
Timeout
Unexpected Message

CC_CALL_FAILURE_IND /

(Other messages are possibly
exchanged automatically.)

Figure 3-40. Sequence of Primitives: Call Failure

3.3.5.3. Call Release Service

The call release procedure is initialized by the insertion of a release object (associated with a CC_RE-
LEASE_REQ) into the queue. As shown in Table 3, the release procedure is destructive with respect to other ob-
jects in the queue, and eventually results in the emptying of queues and termination of the call.

The release procedure invokes the following interactions:

A. a CC_RELEASE_REQ from the CCS user, followed by a CC_RELEASE_CON from the CCS provider; or
B. A CC_RELEASE_IND from the CCS provider, followed by a CC_RELEASE_REQ from the CCS user.
The sequence of primitives depends on the origin of the release action. The sequence may be:

(1) invoked by one CCS user, with a request from that CCS user, leading to interaction (A) with that CCS
user and interaction (B) with the peer CCS user;

(2) invoked by both CCS users, with a request from each of the CCS users, leading to interaction (A) with
both CCS users;

(3) invoked by the CCS provider, leading to interaction (B) with both CCS users;

(4) invoked independently by on CCS user and the CCS provider, leading to interaction (A) with the origi-
nating CCS user and (B) with the peer CCS user.

3.3.5.3.1. User primitivesfor the Release Service
e CC_RELEASE_REQ: This primitive request that the CCS provider release the call.

» CC_RELEASE_RES: This primitive indicates to the CCS provider that the CCS user has accepted a release
indication.

3.3.5.3.2. Provider primitivesfor the Release Service
e CC_RELEASE_IND: This primitive indicates to the CCS user that the call has been released.
» CC_RELEASE_CON: This primitive indicates to the CCS user that the release request has been confirmed.

The sequence of primitives as shown in Figure 3-41, -42, -43, and -44 may remain incomplete if a CC_RESET
primitive occurs.

$Revision: 0.8.22 % Page 36 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

A CCS user can release a call establishment attempt by issuing a CC_RELEASE REQ. The sequence of events
isshown in Figure 3-41, -42, -43, and -44.

CC_RELEASE_REQ
\ REL

------------ > \
CC_RELEASE_IND

CC_RELEASE_RES
i i

CC_RELEASE_CON / N CcC_OK_ACK

Figure 3-41. Sequence of Primitives: CCS User Invoked Release

CC_RELEASE_REQ \ / CC_RELEASE_REQ

CC_RELEASE_CON TR CC_RELEASE_CON

------------- - \
CC RELEASE IND

CC_RELEASE_RES
RLC /
-« —————————————

~N

N\ cC OK_ACK

CC_CALL_FAILURE_IND /

Figure 3-43. Sequence of Primitives; CCS Provider Invoked Release

$Revision: 0.8.22 % Page 37 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

-
-
-
-
-

CC_RELEASE_REQ -
>< ALC CC_CALL_FAILURE_IND
CC_RELEASE_IND

-~
-~
-~
-~

-
-~
-~
-~

Figure 3-44. Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release

3.3.6. Circuit Management Services

3.3.6.1. Reset Service

The reset service is used by the CCS user or management to resynchronize the use of the call, or by the CCS
provider to report detected loss of a unrecoverable call.

The reset service is only applicable to the NNI.

The reset procedure invokes the following interactions:

A. aCC_RESET_REQ from the CCS user, followed by a CC_RESET_CON from the CCS provider; or

B. a CC_RESET_IND from the CCS provider, followed by a CC_RESET_RES from the CCS user.

The complete sequence of primitives depends upon the origin of the reset action. The reset service may be:

(1) invoked by one CCS user, leading to interaction (A) with that CCS user and interaction (B) with the peer
CCS user.

(2) invoked by both CCS users, leading to interaction (A) with both CCS users;
(3) invoked by the CCS provider, leading to interaction (B) with both CCS users;

(4) invoked by one CCS user and the CCS provider, leading to interaction (A) with the originating CCS user
and (B) with the peer CCS user.

3.3.6.1.1. User Primitivesfor Reset Service

» CC_RESET_REQ: This primitive requests that the CCS provider reset the specified call control address (cir-
cuit or circuit group).

e CC_RESET_RES: This primitive indicates to the CCS provider that the CCS user has accepted a reset indi-
cation and has performed local reset of the specified call control address (circuit or circuit group).*

3.3.6.1.2. Provider Primitives for Reset Service

e CC_RESET_IND: This primitive indicates to the CCS user that the user should reset the specified call con-
trol address (circuit or circuit group).

 CC_RESET_CON: This primitive indicates to the CCS user that the specified call control address (circuit or
circuit group) has been successfully reset by the peer.

The sequence of primitives are shown in Figure 3-45, -46, -47, and -48.

4 Note that the CC_RESET_RES primitive is not required and is only provided for completeness. The CCS provider is allowed to ac-
knowledge the reset request to the peer CCS user upon receipt of the necessary protocol messages. This permits automatic completion of the
reset service at the receiving CCS provider without he presence or involvement of a management entity associated with the receiving provider.

$Revision: 0.8.22 % Page 38 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_RESET REQ
\ RSC/GRS

------------ - \
CC_RESET_IND

CC_RESET RES
RLC/GRA /

/ ™
CC_RESET_CON N\ CcC_OK_ACK

Figure 3-45. Sequence of Primitives; CCS User Invoked Reset®

CC_RESET_REQ \ / CC_RESET_REQ

~ -
~<_ RSCIGRS _.~-
~ -
\\x,/
- ~
/’, \\\
- ~

~ -

~<_RLC/GRA _--
-><C

CC_RESET_CON -- - CC_RESET_CON

-~ N

- S

Figure 3-46. Sequence of Primitives: Simultaneous CCS User Invoked Reset®

/ ------------ - \
CC_RESET_IND CC_RESET_IND

CC_RESET_RES \ / CC_RESET RES
RLC
-+ -—-————-——————

4 N

CC_OK_ACK 4 N CC_OK_ACK

Figure 3-47. Sequence of Primitives: CCS Provider Invoked Reset’

5 Note that in Figure 3-45 additional primitives may be issued by the CCS provider to a CCS call control user if aCCS call control user is
engaged in acall.

5 Note that in Figure 3-46 additional primitives may be issued by the CCS provider to a CCS call control user if a CCS call control user is
engaged in acall.

" Note that in Figure 3-47 additional primitives may be issued by the CCS provider to a CCS call control user if a CCS call control user is
engaged in acall.

$Revision: 0.8.22 % Page 39 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_RESET_REQ \

CC_RESET_IND

CC_RESET_RES

~N

\

\

\ 7

A

17\

1

/
/\ /

CC_RESET_CON CC_OK_ACK

Figure 3-48. Sequence of Primitives: Simultaneous CCS user and CCS Provider Invoked
Reset?

3.3.6.2. Blocking Service

The blocking service is used by the CCS user or management to effect local maintenance or hardware blocking
on circuits, or by the CCS provider to indicate to CCS user or management the remote maintenance or hardware
blocking of circuits.

The blocking service is only applicable to the NNI.

The blocking service provides for the local and remote blocking of call control addresses (signalling interface
and circuit or circuit group) either for maintenance oriented or hardware failure purposes.

Blocking should only be invoked from streams which are listening on a circuit group which include the circuits
for which blocking is requested, or the CC_DEFAULT_LISTENER. Maintenance blocking will also only be in-
dicated on streams which are listening on circuit group which include the circuits for which blocking is re-
guested, or in the absence of such a stream, the CC_DEFAULT LISTENER. When no stream is available to re-
port maintenance blocking indications, the indication should be responded to by the CCS provider without user
or management indication.

3.3.6.2.1. User Primitivesfor Blocking Service

+ CC_BLOCKING_REQ: This primitive requests that the specified call control address(es) (signalling inter-
face and circuit or circuit group) be locally blocked either for maintenance oriented or hardware failure pur-
poses.

 CC_BLOCKING_RES: This primitive accepts a request and indicates the call control address(es) (circuit or
circuit group) that were remotely blocked for maintenance oriented or hardware failure purposes.®

3.3.6.2.2. Provider Primitivesfor Blocking Service

» CC_BLOCKING_IND: This primitive indicates that the CCS user has requested that the specified call con-
trol address(es) (signalling interface and circuit or circuit group) be remotely blocked either for maintenance
oriented or hardware failure purposes.

8 Note that in Figure 3-48 additional primitives may be issued by the CCS provider to a CCS call control user if a CCS call control user is
engaged in a call.

® Note that the CC_BLOCKING_RES primitive is not required and is only provided for completeness. The CCS provider is allowed to
acknowledge the blocking request to the peer CCS user upon receipt of the necessary protocol messages. This permits automatic completion of
the blocking service at the receiving CCS provider without he presence or involvement of a management entity associated with the receiving
provider.

$Revision: 0.8.22 % Page 40 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

e CC_BLOCKING_CON: This primitive indicates that the remote CCS user has confirmed the specified call
control address(es) (signalling interfaces and circuit or circuit group) as locally blocked either for mainte-
nance oriented or hardware failure purposes

The sequence of primitives are shown in Figure 3-49.

CC_BLOCKING_REQ
\ BLO/CGB

------------ - \
CC _BLOCKING_IND

CC_BLOCKING_RES
BLA/CGBA /

CC_BLOCKING_CON / N\ CcC_OK_ACK

Figure 3-49. Sequence of Primitives: Successful Blocking Service

3.3.6.3. Unblocking Service
The unblocking service is only applicable to the NNI.

The unblocking service provides for the local and remote unblocking of call control addresses (signalling inter-
face and circuit or circuit group) either for maintenance oriented or hardware failure purposes.

3.3.6.3.1. User Primitivesfor Unblocking Service

 CC_UNBLOCKING_REQ: This primitive requests that the specified call control address(es) (signalling in-
terfaces and circuit or circuit groups) be locally unblocked either for maintenance oriented or hardware fail-
ure purposes.

*+ CC_UNBLOCKING_RES: This primitive accepts a request and indicates the call control address(es) (cir-
cuit or circuit group) that were remotely unblocked for maintenance oriented or hardware failure purposes.'°

3.3.6.3.2. Provider Primitivesfor Unblocking Service

« CC_UNBLOCKING_IND: This primitive indicates that the CCS user has requested that the specified call
control address(es) (signalling interface and circuit or circuit group) be remotely blocked either for mainte-
nance oriented or hardware failure purposes.

» CC_UNBLOCKING_CON: This primitive indicates that the remote CCS user has confirmed the specified
call control address(es) (signalling interfaces and circuit or circuit group) as locally unblocked either for
maintenance oriented or hardware failure purposes.

The sequence of primitives are shown in Figure 3-50.

10 Note that the CC_UNBLOCKING_RES primitive is not required and is only provided for completeness. The CCS provider is allowed
to acknowledge the unblocking request to the peer CCS user upon receipt of the necessary protocol messages. This permits automatic comple-
tion of the unblocking service at the receiving CCS provider without he presence or involvement of a management entity associated with the re-
ceiving provider.

$Revision: 0.8.22$ Page 41 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

UBL/CGU

CC_UNBLOCKING_REQ \

\ CC_UNBLOCKING_IND

UBA/CGUA /
-

~N

/ N
CC_UNBLOCKING_CON "\ cC_OK_ACK

CC_UNBLOCKING_RES

Figure 3-50. Sequence of Primitives: Successful Unblocking Service

3.3.6.4. Query Service
The query service is only applicable to the NNI.

The query service provides for the query of the remote state and blocking level of call control addresses (sig-
nalling interface and circuit group).

3.3.6.4.1. User Primitivesfor Query Service

» CC_QUERY_REQ: This primitive request that the specified call control address(es) (signalling interfaces
and circuit group) be queried for remote state and blocking level.

 CC_QUERY_RES: This primitive accepts a request and indicates the local state and blocking level for the
previously requested specified call control addresses (circuit group).*!

3.3.6.4.2. Provider Primitivesfor Query Service

» CC_QUERY_IND: This primitive indicates that the CCS user has requested that the local state and blocking
level for the call control address(es) (signalling interface and circuit group).

« CC_QUERY_CON: This primitive indicates that the remote CCS user has confirmed the specified call con-
trol addresses (signalling interface and circuit group) and has returned the remote state and blocking level for
each address.

The sequence of primitives are shown in Figure 3-51.

11 Note that the CC_QUERY_RES primitive is not required and is only provided for completeness. The CCS provider is allowed to ac-
knowledge the query request to the peer CCS user upon receipt of the necessary protocol messages. This permits automatic completion of the
query service at the receiving CCS provider without he presence or involvement of a management entity associated with the receiving provider.

$Revision: 0.8.22 % Page 42 April 15, 2003

Call Control Interface (CClI)

CC_QUERY_REQ
\ com

/ ittt
CC_QUERY_CON

\ CC_QUERY_IND

CC_QUERY_RES

e

~N

N
N cC OK_ACK

$Revision: 0.8.22 %

Figure 3-51. Sequence of Primitives: Successful Query Service

Page 43

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4. CCI Primitives

This section describes the format and parameters of the CCI primitives (Appendix A shows the mapping of CCI
primitives fo the primitives defined in Q.931 and Q.764). In addition, it discusses the states the primitive is valid
in, the resulting state, and the acknowledgment that the primitive expects. (The state/event tables for these primi-
tives are shown in Appendix B. The precedence tables for the CCI primitives are shown in Appendix C.) Rules
for ITU-T conformance are described in Addendum 1 to this document.

Tables 5, 6, and 7 provide a summary of the CCS primitives and their parameters.

4.1. Management Primitives
These primitives apply to UNI (User and Network) and NNI.

4.1.1. Call Control Information Request
CC_INFO_REQ

This primitive request the CCS provider to return the values of all supported protocol parameters (see under
CC_INFO_ACK) , and also the current state of the CCS provider (as defined in Appendix B). This primitive
does not affect the state of the CCS provider and does not appear in the state tables.

Format

The format of the message is one M_PCPROTO message block and its structure is as follows:
typedef struct CC.info_req {
ulong cc_primtive; /* always CC_| NFO_REQ */
} CC.info_req_t;
Parameters
cc_primitive: Indicates the primitive type.

Valid States

This primitive is valid in any state where a local acknowledgment is not pending.

New State
The new state remains unchanged.

Acknowledgments

This primitive requires the CCS provider to generate one of the following acknowledgments upon receipt of the
primitive:

 Successful: Acknowledgment of the primitive via the CC_INFO_ACK primitive.
» Non-fatal errors: There are no errors associated with the issuance of this primitive.

$Revision: 0.8.22 % Page 44 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.1.2. Call Control Information Acknowledgment

CC_INFO_ACK

This primitive indicates to the CCS user any relevant protocol-dependent parameters. It should be initiated in re-
sponse to the CC_INFO_REQ primitive described above.

For mat
The format of this message is one M_PCPROTO message block and its structure is as follows:

typedef struct CC_info_ack {
ulong cc_primtive; /* always CC_| NFO ACK */
/* FIXME ... nmore ... */

} CC.info_ack_t;

Parameters
The above fields have the following meaning:
cc_primitive: Indicates the primitive type.
Flags
Valid States

This primitive is valid in any state in response to a CC_INFO_REQ primitive.

New State
The state remains the same.

$Revision: 0.8.22 % Page 45 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.1.3. Protocol Address Request

CC_ADDR_REQ
This primitive requests that the CCS provider return information concerning the call control addresses upon
which the CCS user is bound or engage in a call.
The format of the message is one M_PROTO message block and its structure is as follows:

typedef struct CC addr_req {
ulong cc_primtive; /* always CC_ADDR _REQ */
ulong cc_call ref; /* call reference */

} CC addr_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference for which to obtain the connected address.

Valid States This primitive is valid in any state.
New State The new state is CCS_WACK_AREQ.

Rules

« If the call reference is specified as zero (0), then no connected address information will be returned in the
CC_ADDR_ACK.

Acknowledgments
The CCS provider will generate on of the following acknowledgments upon receipt of the CC_ADDR_REQ
primitive:
» Successful: Correct acknowledgment of the primitive is indicated via the CC_ADDR_ACK primitive.
» Unsuccessful (Non-fatal errors): These errors will be indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are as follows:

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 46 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.1.4. Protocol Address Acknowledgment

CC_ADDR_ACK

This primitive acknowledges the corresponding request primitive and is used by the CCS provider to return infor-
mation concerning the bound and connected protocol addresses for the stream.

The format of the message is one M_PROTO message block and its structure is as follows:
t ypedef struct CC_addr_ack {

ulong cc_primtive; /* always CC_ADDR_ACK */

ul ong cc_bi nd_I engt h; /* length of bound address */

ul ong cc_bi nd_of fset; /* offset of bound address */
ulong cc_call ref; /* call reference */

ul ong cc_conn_I engt h; /* length of connected address */
ul ong cc_conn_of fset; /* offset of connected address */

} CC addr_ack_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_bind_length: Indicates the length of the bound call control address.
cc_bind_offset: Indicates the offset of the bound call control address.
cc_call_ref: Indicates the call reference for the connected call control address.
cc_conn_length: Indicates the length of the connected call control address.
cc_conn_offset: Indicates the offset of the connected call control address.

Valid State

This primitive is valid in state CC_WACK_AREQ.

New State
The new state is the state previous to the CC_ADDR_REQ.

Rules

* |If the requesting stream is not bound to a call control address, the CCS provider will code the cc_bind_length
and cc_hind_offset fields to zero. Otherwise, the CCS provider will return the same call control address that
was returned in the CC_BIND_ACK.

* If the requesting stream is not connected to a call, the CCS provider will code the cc_conn_length and
cc_conn_offset fields to zero. Otherwise, the CCS provider will indicate the call control address (circuit)
upon which the call is connected.

$Revision: 0.8.22 % Page 47 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

4.1.5. Bind Protocol Address Request

CC_BIND_REQ

This primitive requests that the CCS provider bind a CCS user entity to a call control address (circuit, circuit
group) and negotiate the number of setup indications allowed to be outstanding by the CCS provider for the spec-
ified CCS user entity being bound.

Format

The format of the message is one M_PROTO message block and its structure is as follows:

t ypedef struct CC_bind_req {

} CC bind_req_t;

ulong cc_primtive; /* always CC _BI ND_REQ */
ul ong cc_addr _| engt h; /* length of address */
ul ong cc_addr _of fset; /* offset of address */
ul ong cc_setup_i nd; /* req # of setup inds to be queued */
ul ong cc_bi nd_fl ags; /* bind options flags */

/* Flags associated with CC Bl ND REQ */

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

Parameters
cc_primitive:

CC_DEFAULT_LI STENER 0x000000001UL

CC_TOKEN_REQUEST 0x000000002UL

CC_MANAGEMENT 0x000000004UL

CC_TEST 0x000000008UL

CC_MAI NTENANCE 0x000000010UL
Is the primitive type.

cc_addr_length:

cc_addr_offset:

cc_setup_ind:
cc_bind_flags:
Flags

Is the length in bytes of the call control (circuit, circuit group) address to be bound to
the stream.

Is the offset from the beginning of the M_PROTO block where the call control (circuit,
circuit group) address begins.

Is the requested number of setup indications (simultaneous incoming calls) allowed to
be outstanding by the CCS provider for the specified protocol address. (If the number of
outstanding setup indications equals cc_setup_ind, the CCS provider need not discard
further incoming setup indications, but may choose to queue them internally until the
number of outstanding setup indications drops below the cc_setup_ind number.) Only
one stream per call control address is allowed to have a cc_setup_ind number value
greater than zero. This indicates to the CCS provider that this stream is the listener
stream for the CCS user. This stream will be used by the CCS provider for setup indica-
tions for that call control address.

if a stream is bound as a listener stream, it is still able to initiate outgoing call setup re-
quests.

See "Flags" below.

CC_DEFAULT_LISTENER:

$Revision: 0.8.22 %

When set, this flag specifies that this stream is the "default listener stream.” This stream
is used to pass setup indications (or continuity check requests) for all incoming calls that
contain protocol identifiers that are not bound to any other listener, or when a listener
stream with cc_setup_ind value of greater than zero is not found. Also, the default lis-
tener will receive all incoming call indications that contain no user data (i.e., test calls)
and all maintenance indications (i.e., CC_MAINT_IND). Only one default listener
stream is allowed per occurrence of CCl. An attempt to bind a default listener stream
when one is already bound should result in an error (of type CCADDRBUSY).

Page 48 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_TOKEN_REQUEST:
When set, this flag specifies to the CCS provider that the CCS user has requested that a
"token" be assigned to the stream (to be used in the call response message), and the to-
ken value be returned to the CCS user via the CC_BIND_ACK primitive. The token as-
signed by the CCS provider can then be used by the CCS user in a subsequent
CC_SETUP_RES primitive to identify the stream on which the call is to be established.

CC_MANAGEMENT: When set, this flag specifies to the CCS provider that this stream is to be used for circuit
management indications for the specified addresses.

CC_TEST: When set, this flag specifies to the CCS provider that this stream is to be used for conti-
nuity and test call indications for the specified addresses.

CC_MAINTENANCE: When set, this flag specifies to the CCS provider that this stream is to be used for main-
tenance indications for the specified addresses.

Valid States
This primitive is valid in state CCS_UNBND (see Appendix B).

New State
The new state is CCS_WACK_BREQ.

Acknowledgments
The CCS provider will generate one of the following acknowledgments upon receipt of the CC_BIND_REQ
primitive:
» Successful: Correct acknowledgment of the primitive is indicated via the CC_BIND_ACK primitive.

» Non-fatal errors: These errors will be indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADADDR: The call control address was in an incorrect format or the address contained illegal
information. It is not intended to indicate protocol errors.

CCNOADDR: The CCS user did not provide a call control address and the CCS provider could not
allocate an address to the user.

CCADDRBUSY: The CCS user attempted to bind a second stream to a call control address with the

cc_setup_ind number set to a non-zero value, or attempted to bind a second stream
with the CC_DEFAULT _LISTENER flag value set to non-zero.

CCBADFLAG: The flags were invalid or unsupported, or the combination of flags was invalid. This
error is returned if more than one of CC_TEST, CC_MANAGEMENT, or
CC_MAINTENANCE flags are set.

CCBADPRIM: The primitive format was incorrect (i.e. too short).
CCACCESS: The user did not have proper permissions.

$Revision: 0.8.22 % Page 49 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.1.6. Bind Protocol Address Acknowledgment

CC_BIND_ACK

This primitive indicates to the CCS user that the specified call control user entity has been bound to the requested
call control address and that the specified number of connect indications are allowed to be queued by the CCS
provider for the specified network address.

For mat
The format of the message is one M_PCPROTO message block, and its structure is the following:
t ypedef struct CC_bind_ack {

ulong cc_primtive; /* always CC _BI ND_ACK */
ul ong cc_addr _| engt h; /* length of address */
ul ong cc_addr _of fset; /* offset of address */
ul ong cc_setup_i nd; /* setup indications */
ul ong cc_token_val ue; /* setup response token value */

} CC bind_ack_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_addr_length: Is the length of the call control address that was bound.
cc_addr_offset: Is the offset from the beginning of the M_PCPROTO block where the call control ad-
dress begins.
cc_setup_ind: Is the accepted number of setup indications allowed to be outstanding by the CCS

provider for the specified call control address. If its value is zero, this stream cannot ac-
cept CC_SETUP_IND messages. If its value is greater than zero, then the CCS user can
accept CC_SETUP_IND messages up to the value specified in this parameter before
having to respond with a CC_SETUP_RES or a CC_DISCON_REQ message.

cc_token_value: Conveys the value of the "token™ assigned to this stream that can be used by the CCS
user in a CC_SETUP_RES primitive to accept a call on this stream. It is a non-zero
value, and is unique to all streams bound to the CCS provider.

The proper alignment of the address in the M_PCPROTO message block is not guaranteed.

Rules
The following rules apply to the binding of the specified call control address to the stream:

« If the cc_addr_length field in the CC_BIND_REQ primitive is zero, then the CCS provider is to assign a call
control address to the user.

» The CCS provider is to bind the call control address as specified in the CC_BIND_REQ primitive. If the CCS
provider cannot bind the specified address, it may assign another call control address to the user. It is the call
control user’s responsibility to check the call control address returned in the CC_BIND_ACK primitive to see
if it is the same as the one requested.

The following rules apply to negotiating cc_setup_ind argument:

» The cc_setup_ind number in the CC_BIND_ACK primitive must be less than or equal to the corresponding
requested number as indicated in the CC_BIND_REQ primitive.

» Only one stream that is bound to the indicated call control address may have a negotiated accepted number of
maximum setup indications greater than zero. If a CC_BIND_REQ primitive specifies a value greater than
zero, but another stream has already bound itself to the given call control address with a value greater than
zero, the CCS provider should assign another protocol address to the user.

« If a stream with cc_setup_ind number greater than zero is used to accept a call, the stream will be found busy
during the duration of that call and no other streams may be bound to that call control address with a
cc_setup_ind number greater than zero. This will prevent more than one stream bound to the identical call

$Revision: 0.8.22 % Page 50 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

control address from accepting setup indications.

» A stream requesting a cc_setup_ind number of zero should always be legal. This indicates to the CCS
provider that the stream is to be used to request call setup only.

» A stream with a negotiated cc_setup_ind number greater than zero may generate setup requests or accept
setup indications.

If the above rules result in an error condition, then the CCS provider must issue a CC_ERROR_ACK primitive to
the CCS user specifying the error as defined in the description of the CC_BIND_REQ primitive.

Valid States
This primitive is in response to a CC_BIND_REQ primitive and is valid in the state CCS_ WACK_BREQ.

New State
The new state is CCS_IDLE.

$Revision: 0.8.22 % Page 51 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.1.7. Unbind Protocol Address Request

CC_UNBIND_REQ

This primitive request that the CCS provider unbind the CCS user entity that was previously bound to the call
control address.

For mat
The format of the message is one M_PROTO block, and its structure is as follows:

typedef struct CC unbind_req {
ulong cc_primtive; /* always CC_UNBI ND _REQ */
} CC_ unbind_req_t;

Parameters
cc_primitive: Indicates the primitive type.

Valid States
This primitive is valid in the CCS_IDLE state.

New State
The new state is CCS_WACK_UREQ.

Acknowledgments

This primitive requires the CCS provider to generate the following acknowledgments upon receipt of the primi-
tive:

» Successful: Correct acknowledgment of the primitive is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): These errors will be indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are as follows:

CCOUTSTATE: The primitive was issued from an invalid state.
CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 52 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.1.8. Call Processing Options Management Request

CC_OPTMGMT_REQ
This primitive allows the CCS user to manage the call processing parameter values associated with the stream.

For mat
The format of the message is one M_PROTO message block, and its structure is as follows:
typedef struct CC optngnt_req {

ulong cc_primtive; /* always CC_OPTMGMI_REQ */
ulong cc_call ref; /* call reference */

ul ong cc_opt _I engt h; /* length of option values */
ul ong cc_opt _of fset; /* offset of option values */
ul ong cc_opt _fl ags; /* option flags */

} CC optmgnt _req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference for which to manage options.
cc_opt_length: Specifies the length of the default values of the options parameters as selected by the
CCS user. These values will be used in subsequent CC_SETUP_REQ primitives on the
stream that do not specify values for these options. If the CCS user cannot determine
the value of an option, it value should be set to CC_UNKNOWN. If the CCS user does
not specify any option paramter values, the length of this field should be set to zero.
cc_opt_offset: Specifies the offset of the options parameters from the beginning of the M_PROTO mes-
sage block.
cc_opt_flags: See "Flags" below.
Flags
Valid States

This primitive is valid in the CCS_IDLE state.

New State
The new state is CCS_WACK_OPTREQ.

Acknowledgments

The CC_OPTMGMT_REQ primitive requires the CCS provider to generate one of the following acknowledg-
ments upon receipt of the primitive:

» Successful: Acknowledgment is via the CC_OK_ACK primitive. At successful completions, the resulting
state is CCS_IDLE.

» Non-fatal errors: These errors are indicated in the CC_ERROR_ACK primitive. The resulting state remains
unchanged. The applicable non-fatal errors are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADOPT: The option parameter values specified are outside the range supported by the CCS
provider.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The flags were invalid or unsupported, or the combination of flags was invalid.

$Revision: 0.8.22 % Page 53 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCBADPRIM: The primitive format was incorrect (i.e. too short).
CCACCESS: The user did not have proper permissions.

$Revision: 0.8.22 % Page 54 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.1.9. Call Processing Options Management Acknowledgment

CC_ OPTMGMT_ACK
This primitive allows the CCS user to manage the call processing parameter values associated with the stream.

For mat
The format of the message isone M_PCPROTO message block, and it structure is as follows:
t ypedef struct CC optngnt _ack {

ulong cc_primtive; /* always CC_OPTMGMI_ACK */
ulong cc_call ref; /* call reference */

ul ong cc_opt _I engt h; /* length of option values */
ul ong cc_opt _of fset; /* offset of option values */
ul ong cc_opt _fl ags; /* option flags */

} CC optmgnt _ack_t;

Parameters
Flags

Valid States
This primitiveisvalid in any state.

New State
The new state is unchanged.

Acknowledgments

$Revision: 0.8.22 % Page 55 April 15, 2003

Call Control Interface (CClI)

4.1.10. Error Acknowledgment

CC_ERROR_ACK

This primitive indicates to the CCS user that a non-fatal error has occurred in the last CCS user originated primi-
tive. This may only be initiated as an acknowledgment for those primitives that require one. It also indicates to

the user that no action was taken on the primitive that caused the error.

Format

The format of the mssage is one M_PCPROTO message block, and its structure is as follows:

typedef struct CC error_ack {

ul ong
ul ong
ul ong
ul ong
ul ong
ul ong

cc_primtive; /* always CC_ERROR_ACK */
cc_error_primtive; /* primtive in error */
cc_error_type; /* CCl error code */

cc_uni x_error; /* UNI X system error code */
cc_state; /* current state */

cc_call _ref; /* call reference */

} CC error_ack_t;

Parameters
cc_primitive:
cc_error_primitive:
cc_error_type:

Identifies the primitive type.
Identifies the primitive type that cause the error.
Contains the Call Control Interface error code.

OpenSS7 Corpor ation

CC_unix_error:
cc_state:

cc_call_ref:

Valid Error Codes

Contains the UNIX system error code. This may only be non-zero if the cc_error_type
is equal to CCSYSERR.

Identifies the state of the interface at the time that the CC_ERROR_ACK primitive was
issued by the CCS provider.

Identifies the CCS provider or CCS user call reference associated with the request or re-
sponse primitive that was in error. If no call reference is associated with the request or
response primitive that caused the error, this field is coded zero (0) by the CCS provider.

The following error codes are allows to be returned:

CCSYSERR:
CCOUTSTATE:
CCBADADDR:

CCBADDIGS:

CCBADOPT:

CCNOADDR:

CCADDRBUSY:

CCBADCLR:
CCBADTOK:
CCBADFLAG:
CCNOTSUPP:

$Revision: 0.8.22 %

A system error has occurred and the UNIX system error is indicated in the primitive.
The primitive was issued from an invalid state.

The call control address as specified in the primitive was in an incorrect format, or the
address contained illegal information.

The digits provided in the called party number or subsequent number specified in the
primitive are of an incorrect format or are invalid.

The options values as specified in the primitive were in an incorrect format, or they con-
tained illegal information.

The CCS provider could not allocate an address.

The CCS provider could not use the specified address because the specified address is
already in use.

The call reference specified in the primitive was incorrect or illegal.
Token used is not associated with an open stream.

The flags specified in the primitive were incorrect or illegal.
Specified primitive type is not known to the CCS provider.

Page 56 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out of range).
CCACCESS: The user did not have proper permissions.
Valid States

This primitive is valid in all states that have a pending acknowledgment or confirmation.

New State
The new stat is the same as the one from which the acknowledged request or response was issued.

$Revision: 0.8.22 % Page 57 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.1.11. Successful Receipt Acknowledgments

CC_OK_ACK

The primitive indicates to the CCS user that the previous call control user originated primitive was received suc-
cessfully by the call control provider. It does not indicate to the CCS user any call control protocol action taken
due to the issuance of the last primitive. The CC_OK_ACK primitive may only be initiated as an acknowledg-
ment for those user-originated primitives that have no other means of confirmation.

For mat
The format of the message is one M_PCPROTO message block, and its structure is as follows:
typedef struct CC ok_ack {

ulong cc_primtive; /* always CC_OK _ACK */

ul ong cc_correct_prim /* primtive being acknow edged */
ul ong cc_state; /* current state */

ulong cc_call ref; /* call reference */

} CC ok_ack_t;

Parameters
cc_primitive: Identifies the primitive.
cc_correct_prim; Identifies the successfully received primitive type.
cc_state: Identifies the state of the interface at the time that the CC_OK_ACK primitive was is-
sued by the CCS provider.
cc_call_ref: Identifies the CCS provider or CCS user call reference associated with the request or re-
sponse primitive that was in error. If no call reference is associated with the request or
response primitive that caused the error, this field is coded zero (0) by the CCS provider.
Valid States

This primitive is issued in states CCS_WACK_UREQ and CCS_WACK_OPTREQ.

New State
The resulting state depends on the current state (see Appendix B, Tables B-7 and B-8.).

$Revision: 0.8.22 % Page 58 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

4.2. Primitive Format and Rules

This section describes the format of the UNI (User and Newtork) and NNI primitives and the rules associated
with these primitives. The default values of the options parameters associated with a call may be selected via the
CC_OPTMGMT_REQ primitive.

4.2.1. Call Setup Phase

The following call control service primitives pertain to the setup of a call, provided the CCS users exist, and are
known to the CCS provider.

4.2.1.1. Call Control Setup Request

CC_SETUP REQ

This primitive requests that the CCS provider make a call to the specified destination.

Format

The format of the message is one M_PROTO message block. The structure of the M_PROTO message block is

as follows:

typedef struct CC setup_req {

ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_

} CC setup_req_t;

Parameters
cc_primitive:
cc_user_ref:

cc_call_type:
cc_call_flags:

cc_cdpn_length:

cc_cdpn_offset:

cc_opt_length:

$Revision: 0.8.22 %

primtive; /* always CC _SETUP_REQ */

user _ref; /* user call reference */

cal | _type; /* call type */

call _fl ags; /* call flags */

cdpn_| engt h; /* called party nunmber length */
cdpn_of f set; /* called party nunmber offset */
opt _I engt h; /* optional paraneters length */
opt _of fset; /* optional paraneters offset */
addr _| engt h; /* connect to address length */
addr_of fset; /* connect to address offset */

Specifies the primitive type.

Specifies a reference number known to the CCS user that uniquely identifies the current
setup request. When this value is non-zero, it permits the CCS User to have multiple
outstanding setup requests pending on the same stream. Responses made by the CCS
provider to the CC_SETUP_REQ primitive will contain this CCS user call attempt ref-
erence.

Specifies the type of call to be set up. Call types supported are dependent upon the CCS
provider and protocol, see the addendum for call types for specific protocols.

Specifies a bit field of call options. Call flags supported are depeddent upon the CCS
provider and protocol, see the addendum for call flags for specific protocols.

Specifies the length of the called party number parameter that conveys an address identi-
fying the CCS user to which the call is to be established. This field will accommodate
variable length numbers within a range supported by the CCS provider. If no called
party address is provided by the CCS user, this field must be coded to zero. The coding
of the called party number is protocol and provider-specific.

Is the offset of the called party number from the beginning of the M_PROTO message
block.

Specifies the length of optional parameters to be conveyed in the call setup. This field
will accomodate variable length addresses within a range supported by the CCS
provider. If no optional parameters are provided by the CCS user, this field must be

Page 59 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

coded to zero. The format of optional parameters are protocol and provider-specific, see
the addendum for the format of optional parameters for specific protocols.

cc_opt_offset: Specifies the offset of the optional parameters from the beginning of the M_PROTO
message block.

cc_addr_length: Specifies the length of the call control address parameter that conveys the call control
address (circuit, circuit group) of the CCS user entity to which the call is to be estab-
lished. The semantics of the values in the CC_SETUP_REQ is identical to the values in
the CC_BIND_REQ.

cc_addr_offset: Specifies the offset of the call control address from the beginning of the M_PROTO
message block.

Rules
The following rules apply to the setup of calls to the specified addresses:

* If the cc_cdpn_length field in the CC_SETUP_REQ primitive is zero, then the CCS provider is to select a
called party number for the call. If the CCS provider cannot select a called party number for the call, the CCS
provider responds with a CC_ERROR_ACK primitive with error CCNOADDR.

* If the cc_cdpn_length field in the CC_SETUP_REQ primitive is non-zero, the CCS provider is to setup the
call to the specified number. If the CCS provider cannot setup a call of the specified call type to the specified
number the call will fail and the CCS provider will return a CC_ERROR_ACK with the appropriate error
value (e.g., CCBADADDR).

The following rules apply to the call control addresses (trunk groups and circuit identifiers):

« If the CCS user does not specify a call control address (i.e. cc_addr_length is set to zero), then the CCS
provider may attempt to assign a call control address, assign it a call reference and associate it with the stream
for the duration of the call.

The following rules apply to the CCS user call attempt reference:

« If the CCS user does not specify a call attempt reference (i.e. the cc_user_ref is set to zero), then the CCS
provider can only support one outstanding outgoing call attempt for the stream. If the CCS user specifies a
call attempt reference, all replies made by the CCS provider to this CC_SETUP_REQ primitive will contain
the CCS user specified call attempt reference until either the call fails or is released, or after the CCS provider
sends a CC_SETUP_CON primitive.

Valid States
This primitive is valid in state CCS_IDLE.

New State
The new state depends upon the information provided in the CC_SETUP_REQ message as follows:

« If the setup request specifies that a continuity check was performed on a previous circuit, the new state is
CCS_WREQ_CCREP (awaiting report of the result of continuity test performed on the previous circuit).

o If the setup request specifies that a continuity check is required on the circuit, the new state is
CCS_WIND_CTEST (awaiting indication of remote loop back on the circuit).

« If the setup request specifies that no continuity test is required on this or a previous circuit and that the called
party address contains partial information, the new state is CCS_WIND_MORE (awaiting the indication that
more information is required).

« If the setup request specifies that no continuity test is required on this or a previous circuit and that the called
party address contains complete information, the new state is CCS_WCON_SREQ (awaiting confirmation of
the setup request).

$Revision: 0.8.22 % Page 60 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Acknowledgments
The following acknowledgments are valid for this primitive:

» Successful Call Establishment: This is indicated via the CC_SETUP_CON primitive. This results in the
Call Establishment state. For CC_SETUP_REQ primitives where ISUP_NCI_CONT_CHECK_REQUIRED
is set, or where the CCS provider otherwise determines that a continuity check is required on the circuit, suc-
cess is still indicated via the CC_SETUP_CON primitive. In this case, the CC_SETUP_CON primitive is not
sent by the CCS provider unless the continuity check is successful. For CCS_SETUP primitives where
ISUP_NCI_CONT_CHECK PREVIOUS is set, the CC_SETUP_CON primitive is not sent by the CCS
provider until the CCS user sends a CC_CONT_REPORT_REQ primitive indicating that continuity check on
the previous circuit has been successful. Receipt of the CC_SETUP_CON primitive always results in the Call
Establishment state.

e Unsuccessful Call Establishment: This is indicated via the CC_CALL REATTEMPT_IND,
CC_CALL_FAILURE_IND, or CC_RELEASE_IND primitives. For example, a call may be rejected because
either the called CCS user cannot be reached, or the CCS provider and/or the called CCS user did not agree
on the specified call type or options. This results in the Idle state. Where the CC_CALL_REATTEMPT_IND
or CC_RELEASE_IND primitives are sent before the CC_SETUP_CON primitive, the CC_CALL_REAT-
TEMPT_IND or CC_RELEASE_IND primitives will contain the CCS user specified call attempt reference.

» Non-fatal errors. These are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system eror is indicated in the primitive.
CCOUTSTATE: The primitive was issued from an invalid state.
CCBADADDR: The call control address as specified in the primitive was in an incorrect format, or

the address contained illegal information.

CCBADDIGS: The called party number was in the incorrect format, or contained illegal informa-
tion. This is used only to handle coding errors of the number and is not intended to
provide for protocol errors. Protocol errors should be conveyed in the
CC_CALL_REATTEMPT_IND, CC_CALL_FAILURE_IND or CC_RE-
LEASE_IND primitives.

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

CCNOADDR: The user did not provide a called party address field and one was required by the call
type. The CCS provider could not select a called party address.

CCADDRBUSY: The CCS provider could not use the specified address because the specified address
is already in use.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal (not unique).

CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out of range).

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

$Revision: 0.8.22 % Page 61 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

4.2.1.2. Call Control Setup Indication

CC_SETUP_IND

This primitive indicates
specified source address.

Format

to the destination CCS user that a call setup request has been made by the user at the

The format of the message is one M_PROTO message block. The structure of the M_PROTO message block is

as follows:

typedef struct CC setup_ind {

ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_
ul ong cc_

} CC setup_ind_t;

Parameters
cc_primitive:
cc_call_ref:
cc_call_type:

cc_call_flags:

cc_cdpn_length:

cc_cdpn_offset:

cc_opt_length:
cc_opt_offset:

cc_addr_length:

cc_addr_offset:

Valid States
This primitive is valid in

$Revision: 0.8.22 %

primtive; /* always CC _SETUP_I ND */

call _ref; /* call reference */

cal | _type; /* call type */

call _fl ags; /* call flags */

cdpn_I engt h; /* called party nunmber length */
cdpn_of f set; /* called party nunmber offset */
opt _I engt h; /* optional paraneters length */
opt _of fset; /* optional paraneters offset */
addr _| engt h; /* connecting address length */
addr_of fset; /* connecting address offset */

Indicates the primitive type.

Identifies the call reference that can be used by the CCS user to associate this message
with the CC_SETUP_RES or CC_RELEASE_REQ primitive that is to follow. This
value must be unigue among the outstanding CC_SETUP_IND messages.

Indicates the type of call to be set up. Call types supported are dependent upon the CCS
provider and protocol, see the addendum for call types for specific protocols.

Indicates a bit field of call options. Call flags supported are dependent upon the CCS
provider and protocol, see the addendum for call flags for specific protocols.

Indicates the length of the called party number address parameter that conveys an ad-
dress identifying the CCS user to which the call is to be established. This field will ac-
commodate variable length addresses within a range supported by the CCS provider.

Is the offset of the called party number address from the beginning of the M_PROTO
message block.

Indicates the length of the optional parameters that were used in the call setup.

Indicates the offset of the optional parameters from the beginning of the M_PROTO
message block.

Indicates the length of the connecting address parameter that conveys the call control
address the CCS user entity (circuit) on which the call is being established. The seman-
tics of the values in the CC _SETUP_IND is identical to the wvalues in the
CC_BIND_ACK.

Indicates the offset of the connecting address from the beginning of the M_PROTO
message block.

state CCS_IDLE for the indicated call reference.

Page 62 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

New State
The new state depends upon the information provided in the CC_SETUP_IND message as follows:

« If the setup indication indicates that a continuity check was performed on a previous circuit, the new state is
CCS_WIND_CCREP (awaiting the report of continuity test results).

 If the setup indication indicates that a continuity check is required on the circuit, the new state is
CCS_WREQ_CTEST (awaiting confirmation of installation of loop back device on the circuit).

« If the setup indication indicates that no continuity tests are required on this or a previous circuit and that the
called party number contains partial information, the new state is CCS_ WREQ_ MORE (awaiting the request
for more information to confirm the partial address).

« If the setup indication indicates that no continuity tests are required on this or a previous circuit and that the
called party number contains complete information, the new state is CCS_WRES_SIND (awaiting response to
the setup indication).

In any event, the number of outstanding setup indications waiting for user response is incremented by one.

Rules
The rules for issuing the CC_SETUP_IND primitive are as follows:

* This primitive will only be issued to streams that have been bound with a non-zero negotiated maximum num-
ber of setup indications (i.e. on a listening stream), and where the number of outstanding setup indications
(call references) for the stream is less than the negotiated maximum number of setup indications.

* If the call setup indicated is for a normal call, the stream upon which it is indicated was not bound with the
CC_TEST, CC_MANAGEMENT or CC_MAINTENANCE flags set.

« If the call setup indicated is for an ISUP test call, the stream upon which it is indicated was bound with the
CC_TEST flag set and a non-zero number of negotiated maximum setup indications.

$Revision: 0.8.22 % Page 63 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.1.3. Call Control Setup Response

CC_SETUP _RES

This primitive allows the destination CCS user to request that the call control provider accept a previous setup in-
dication. This primitive also indicates that overlap receiving is complete. The CCS use is still expected to com-
plete the setup process by issuing the CCS_PROCEED_REQ, CCS_ALERTING_REQ, CCS_PROGRESS_REQ,
CCS_IBI_REQ, CCS_CONNECT_REQ, or CCS_DISCONNECT_REQ messages.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC setup_res {
ulong cc_primtive; /* always CC _SETUP_RES */
ulong cc_call ref; /* call reference */
ul ong cc_token_val ue; /* call response token value */

} CC setup_res_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the CC_SETUP_RES message. It is used by the CCS
provider to associated the CC_SETUP_RES message with an outstanding
CC_SETUP_IND message. An invalid call reference should result in error with the er-
ror type CCBADCLR.

cc_token_value: Is used to identify the stream that the CCS user wants to establish the call on. (Its value
is determined by the CCS user by issuing a CC_BIND_REQ primitive with the CC_TO-
KEN_REQUEST flag set. The token value is returned in the CC_BIND_ACK.) The
value of this field should be non-zero when the CCS user wants to establish the call on a
stream other than the stream on which the CC_SETUP_IND arrived. If the CCS user
wants to establish a call on the same stream that the CC_SETUP_IND arrived on, then
the value of this field should be zero.

Valid States
This primitive is valid in state CCS_WRES_SIND.

New State
The new state is CCS_WREQ_PROCEED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccesful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.
CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADTOK: The token specified is not associated with an open stream.

CCBADPRIM: The primitive format was incorrect (i.e. too short).

$Revision: 0.8.22 % Page 64 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.2.1.4. Call Control Setup Confirm

CC_SETUP_CON

This primitive indicates to the calling CCS user that the call control setup request has been sent on the specified
call control address (circuit, circuit group). For «calls that were requested setup with the
ISUP_NCI_CONT_CHECK_REQUIRED flag set in the CC_SETUP_REQ), or for which the CCS provider has
otherwise decide to perform continuity check, this also confirms that the continuity check was successful.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message block is
as follows:

typedef struct CC setup_con {

ulong cc_primtive; /* always CC_SETUP_CON */

ul ong cc_user _ref; /* user call reference */
ulong cc_call ref; /* call reference */

ul ong cc_addr _| engt h; /* connecting address length */
ul ong cc_addr _of fset; /* connecting address offset */

} CC _setup_con_t;

Parameters
cc_primitive: Indicates the primitives type.
cc_user_ref: Indicates the CCS user call attempt reference value which was provided by the CCS

user in the CC_SETUP_REQ message. This permits the CCS user to associate this
CC_SETUP_CON primitive with the previous CC_SETUP_REQ primitive and permits
multiple outstanding CC_SETUP_REQ primitives.

cc_call_ref: Indicates the CCS provider assigned call reference. If the CCS user wishes to establish
more than one simultaneous call on a given stream, the CCS user must use this CCS
provider indicated call reference in subsequent call control primitives sent to the CCS
provider. This permits the CCS provider to associate a CCS user primitive with one of
multiple simultaneous calls associated with a given stream.

cc_addr_length: Indicates the length of the connecting address parameter that conveys the call control
address of the CCS user entity (circuit) on which the call is being established. The se-
mantics of the values in the CC_SETUP_CON is identical to the values in the
CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the connecting address from the beginning of the M_PROTO
message block.
Valid States
This primitive is valid in state CCS_WCON_SREQ and state CCS_ WREQ_CCREP.

New State

The new state depends on whether an end-of-pulsing signal was present in the called party number in the associ-
ated CC_SETUP_REQ primitive. If an ST signal was present, the new state is CCS_WREQ_PROCEED, other-
wise the new state is CCS_ WREQ MORE. In either case, the call enters the Call Establishment Phase.

$Revision: 0.8.2.2 $ Page 65 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.1.5. Call Control Reattempt Indication

CC_CALL_REATTEMPT_IND

This primitive indicates to the calling CCS user that the selected address (circuit) is unavailable and that a reat-
tempt should be made on a new call control address (circuit).

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC call_reattenpt_ind {
ulong cc_primtive; /* always CC _CALL_REATTEMPT_IND */
ul ong cc_user _ref; /* user call reference */
ul ong cc_reason; /* reason for reattenpt */

} CC.call _reattenpt_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_user_ref: Indicates the CCS user call attempt reference value which was provided by the CCS
user in the CC_SETUP_REQ message. This permits the CCS user to associate this
CC_CALL_REATTEMPT_IND primitive with the previous CC_SETUP_REQ primi-
tive and permits multiple outstanding CC_SETUP_REQ primitives.
CcC_reason: Indicates the cause of the reattempt. the cc_reason field is protocol and implementation
specific. See the Addendum for protocol-specific values.
Valid M odes

This primitive is only valid in NNI mode.

Valid States

This primitive is wvalid in states CCS_WCON_SREQ, CCS WREQ _CCREP, CCS_WIND_MORE
CCS_WREQ INFO and CCS_WIND_PROCEED.

New State
The new state is CCS_IDLE.

Rules

» The CC_CALL_REATTEMPT_IND indicates that call repeat attempt should be made by the CCS user, and
the reason for the reattempt.

o If the CC_CALL_REATTEMPT_IND is issued before the CC_SETUP_CON primitive, the user reference
value will be the same value as appeared in the corresponding CC_SETUP_REQ primitive, and the call refer-
ence value will be zero.

* If the CC_CALL_ATTEMPT_IND primitive is issued subsequent to the CC_SETUP_CON primitive, the user
reference value will be zero, and the call reference value will be the same as appeared in the corresponding
CC_SETUP_CON primitive.

$Revision: 0.8.22 3% Page 66 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.2. Continuity Check Phase
The following call control service primitives pertain to the continuity check phase of a call.

4.2.2.1. Call Control Continuity Check Request

CC _CONT_CHECK_REQ
This primitive requests that the CCS provider perform a continuity check procedure.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC_cont_check_req {
ulong cc_primtive; /* always CC_CONT_CHECK REQ */
ul ong cc_addr _I| engt h; /* adress length */
ul ong cc_addr _of fset; /* adress offset */

} CC_cont_check_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_addr_length: Specifies the length of the call control address (circuit identifier) upon which the CCS
user is requesting a continuity check.
cc_addr_offset: Specifies the offset of the call control address from the beginning of the M_PROTO
message block.
Rules

The following rules apply to the continuity check of call control addresses (circuit identifiers):

« If the CCS user does not specify a call control address (i.e, cc_addr_length is set to zero), then the CCS
provider may attempt to assign a call control address and associate it with the stream for the duration of the
continuitu test procedure. This can be useful for automated continuity testing.

Valid M odes
This primitive is only valid in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the selected circuit.

New State
The new state is CKS_WIND_CTEST for the selected address.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_CONT_TEST_IND primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCOUTSTATE: The primitive was issued from an invalid state.

CCNOADDR: The call control address was not provided (cc_addr_length coded zero).
CCBADADDR: The call control address contained in the primitive were poorly formatted or con-

tained invalid information.

$Revision: 0.8.22 % Page 67 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling address
was provided in the call control address or the address was issued to a UNI CCS
provider.

CCACCESS: The user did not have sufficient permission to perform the operation on the specified

call control addresses.

$Revision: 0.8.22 % Page 68 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.2.2. Call Control Continuity Check Indication

CC_CONT_CHECK_IND

This primitive indicates to the CCS user that a continuity check is being requested by the CCS user peer on the
specified call control address(es) (signalling interface and circuit identifiers). Upon receipt of this primitive, the
CCS user should establish a loop back device on the specified channel and issues the CC_CONT_TEST_REQ
primitive confirming the loop back. The CCS user should then wait for the CC_CONT_REPORT_IND indicat-
ing the success or failure of the continuity check.

This primitive is only delivered to listening streams listening on the specified call control addresses or to a stream
bound as a default listener in the same manner as the CC_SETUP_IND. (A continuity test indication is treated as
a special form of call setup.)

This primitive is only issued to CCS users that successfully bound using the CC_BIND_REQ primitive with flag
CC_TEST set and a non-zero number of setup indications was provided in the CC_BIND_REQ and returned in
the CC_BIND_ACK.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC cont_check_ind {

ulong cc_primtive; /* always CC_CONT_CHECK I ND */
ulong cc_call ref; /* call reference */
ul ong cc_addr _| engt h; /* adress length */
ul ong cc_addr _of fset; /* adress offset */

} CC cont_check_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Identifies the call reference that can be used by the CCS user to associate this message
with the CC_CONT_TEST_REQ or CC_RELEASE_REQ primitive that is to follow.
This value must be unique among the outstanding CC_CONT_CHECK _IND messages.
cc_addr_length: Indicates the length of the call control address (circuit identifier) upon which a continu-
ity check is indicated.
cc_addr_offset: Indicates the offset of the requesting address from the beginning of the M_PROTO mes-
sage block.
Valid M odes

This primitive is only valid for addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the specified addresses.

New State
The new state is CKS_WREQ_CTEST for the specified addresses.

$Revision: 0.8.22 % Page 69 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.2.3. Call Control Continuity Test Request

CC_CONT_TEST REQ

This message is used either to respond to a CC_SETUP_IND primitive which contains the
ISUP_NCI_CONT_CHECK_REQUIRED flag, or to respond to a CC_CONT_CHECK_IND primitive. Before
responding to either primitive, the CCS User should install a loop back device on the requested channel and then
respond with this response primitive to confirm the loop back.

For mat
The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as follows:
t ypedef struct CC cont_test_req {

ulong cc_primtive; /* always CC_CONT_TEST_REQ */
ul ong cc_cal |l _ref; /* call reference */
ul ong cc_t oken_val ue; /* token val ue */

} CC cont_test_req_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the CC_CONT_TEST_REQ message. It is used by the
CCS provider to associate the CC_CONT_TEST_REQ message with an outstanding
CC_SETUP_IND message. An invalid call reference should result in error with the er-
ror type CCBADCLR.

cc_token_value: Is used to identify the stream that the CCS user wants to establish the continuity check
call on. (Its value is determined by the CCS user by issuing a CC_BIND_REQ primi-
tive with the CC_TOKEN_REQUEST flag set. The token value is returned in the
CC_BIND_ACK.) The value of this field should be non-zero when the CCS user wants
to establish the call on a stream other than the stream on which the
CC_CONT_CHECK _IND arrived. If the CCS user wants to establish a call on the same
stream that the CC_CONT_CHECK _IND arrived on, then the value of this field should
be zero.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CKS_ WREQ_CTEST.

New State
The new state is CKS_WIND_CCREP.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_CONT_REPORT_IND in the case that the primi-
tive was issued in response to a CC_SETUP_IND, or CC_RELEASE_IND primitive in the case that the prim-
itive was issued in response to the CC_CONT_CHECK_IND primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_CONT_REPORT _IND primitive.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22$ Page 70 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCACCESS: The user did not have proper permissions for the operation.
CCNOTSUPP: The CCS provider does not support the operation.

$Revision: 0.8.22 % Page 71 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.2.4. Call Control Continuity Test Indication

CC_CONT_TEST_IND

This message confirms to the testing CCS user that a loop back device has been (or will be) installed on the spec-
ified call control address (circuit). Upon receiving this message, the testing CCS user should connect tone gener-
ation and detection equipment to the specified circuit, perform the continuity test and issue a report using the
CC_CONT_REPORT_REQ primitive.

This primitive will only be issued to streams successfully bound with the CC_BIND_REQ primitive with a non-
zero number of setup indications and the CC_TEST bind flag set.
Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as follows:
t ypedef struct CC cont_test_ind {

ulong cc_primtive; /* always CC_CONT_TEST_ I ND */
ul ong cc_cal |l _ref; /* call reference */
ul ong cc_addr _I| engt h; /* adress length */
ul ong cc_addr _of fset; /* adress offset */

} CC cont_test_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference associated with the continuity check call for the specified
call control address (circuit identifier).
cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identifier)

upon which a continuity check is confirmed. The semantics of the values in the
CC_CONT_TEST _IND is identical to the values in the CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the connecting address from the beginning of the M_PROTO
message block.

Valid M odes
This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CCS_WCON_CREQ.
New State

The new state is CCS_WAIT_COR.

$Revision: 0.8.22 % Page 72 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.2.5. Call Control Continuity Report Request

CC_CONT_REPORT_REQ

This primitive requests that the CCS provider indicate to the called CCS user that the continuity check succeeded
or failed. The CCS user should remove any continuity test tone generator/detection device from the circuit and
verify silent code loop back before issuing this primitive.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC cont_report_req {

ulong cc_primtive; /* always CC_CONT_REPORT_REQ */
ul ong cc_user _ref; /* user call reference */
ulong cc_call ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC cont_report_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_user_ref: Specifies the CCS user reference of the associated CC_SETUP_REQ primitive. This
value is non-zero when the CC_CONT_REPORT_REQ primitive is issued subsequent
to a CC_SETUP_REQ primitive which had the flag ISUP_NCI_CONTINU-
ITY_CHECK_PREVIOUS set to indicate the result of the continuity check on the previ-
ous circuit. Otherwise, this value is coded zero.
cc_call_ref: Specifies the call reference of the associated CC_CONT_TEST_IND primitive for the
continuity check call. This value is non-zero when the CC_CONT_REPORT_REQ
primitive is issued in response to a CC_CONT_TEST_IND primitive. Otherwise, this
value is coded zero.
cc_result: Specifies the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.
Valid M odes

This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CCREP.

New State

When issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE. When issued
subsequent to a CC_SETUP_REQ primitive, the new state is either CCS_WREQ_MORE or CCS_WREQ_PRO-
CEED, depending upon whether the sent address contain an ST pulse.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 73 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCOUTSTATE: The primitive was issued from an invalid state.
CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCBADPRIM: The primitive format was incorrect.

$Revision: 0.8.22 % Page 74 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.2.6. Call Control Continuity Report Indication

CC_CONT_REPORT_IND

This primitive indicates to the called CCS user that the continuity check succeeded or failed. The called CCS
user can remove the loop back or tone generation/detection devices from the circuit and the call either moves to
the idle state or a call setup state.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC cont_report_ind {
ulong cc_primtive; /* always CC_CONT_REPORT_IND */
ulong cc_call ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC cont_report_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference associated with the continuity check report as it appeared in
the associated CC_CONT_CHECK _IND primitive.
cc_result: Indicates the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.
Valid M odes

This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CTEST or CCS_WIND_CCREFP.

New State

If the primitive is issued subsequent to the CC_SETUP_REQ), the new state is CCS_WCON_SREQ. If the prim-
itive is issued in response to the CC_CONT_TEST _IND primitive, the new state is CCS_IDLE.

$Revision: 0.8.22 % Page 75 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.3. Collecting Information Phase
The following call control service primitive pertain to the collecting information phase of a call. During this
phase requests for more information are issued and indicated, and additional information is provided.

4.2.3.1. Call Control More Information Request

CC_MORE_INFO_REQ

This message request more information (digits in the called party address, or optional parameters) from the call-
ing CCS user. This specifies to the CCS provider that overlap receiving is in effect and the number of digits re-
ceived are not sufficient to complete the call.

For mat
The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as follows:

t ypedef struct CC nore_info_req {

ulong cc_primtive; /* always CC_MORE_I NFO REQ */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC_nore_info_req_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference for the CC_MORE_INFO_REQ message. It is used by the
CCS provider to associated the CC_MORE_INFO_REQ message with an previous
CC_SETUP_IND message and identify the incoming call.
cc_opt_length: Indicates the length of the optional parameters associated with the nore information re-
quest.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in UNI (User and Network) mode and for compatibility in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_MORE.

New State
The new state is CCS_WIND_INFO.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:
» Successful: Successful completion is indicated via the CC_INFORMATION_IND and CC_INFO_TIME-
OUT _IND primitives.
» Unsuccessful: Unsuccessful completion is indicated by the CC_CALL_FAILURE_IND primitive with a pro-
tocol specific reason indicating that additional information was not provided within a sufficient period of time.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 76 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCNOTSUPP: The CCS provider does not support the operation.

CCACCESS: The user did not have proper permissions for the operation.

CCBADPRIM: The primitive was incorrectly formatted (i.e. the M_PROTO message block was too
short).

$Revision: 0.8.22 % Page 77 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.3.2. Call Control More Information Indication

CC_MORE_INFO_IND

This message indicates that the calling CCS user needs to provide additional information (called party address
digits) to complete call processing. The CCS user should generate CC_INFORMATION_REQ primitives, if pos-
sible. Thisisalso anindication that overlap receiving isin effect. Appropriate protocol timerswill be started.

In contrast to the the CC_INFORMATION_REQ primitive(s) which are sent by the CCS user in response to this
message, the CC_MORE_INFO_IND message is normally only issued once per call setup.

Format

The format of this message ison M_PROTO message block. The structure of the M_PROTO block is as follows:
t ypedef struct CC nore_info_ind {

ulong cc_prinmitive; /* always CC_MORE_I NFO_IND */
ul ong cc_user_ref; /* user call reference */

ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC nore_info_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_user_ref: Indicates the user call reference of the CC_MORE_INFO_IND message. It is used by

the CCS user to associate the CC_MORE_INFO_IND message with an outstanding
CC_SETUP_REQ message.

cc_opt_length: Indicates the length of the optional parameters associated with the more information in-
dication. If no optional parameters are associated with the more information indica-
tions, this parameter must be coded zero by the CCS provider.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid M odes
This primitiveisvalid in UNI (Network and User) mode, and for compatibility in NNI mode.

Valid States
This primitiveisvalid in state CCS_WIND_MORE.

New State
The new stateis CCS WREQ_INFO.

4.2.3.3. Call Control Information Request

CC_INFORMATION_REQ
This message request that the CCS provider include the subsequent number information in addition to the called
party number information previously supplied with a CC_SETUP_REQ primitive.

For mat
The format of this message ison M_PROTO message block. The structure of the M_PROTO block is as follows:

typedef struct CC_information_req {

ulong cc_primtive; /* always CC_| NFORMVATI ON_REQ */
ul ong cc_user _ref; /* call reference */
ul ong cc_subn_I engt h; /* subsequent nunber |ength */

$Revision: 0.8.22 % Page 78 April 15, 2003

Call Control Interface (CClI)

ul ong cc_subn_of fset;
ul ong cc_opt _I engt h;
ul ong cc_opt _of fset;

OpenSS7 Corpor ation

/* subsequent nunber offset */
/* optional paraneter |length */
/* optional paraneter offset */

} CC.infornation_req_t;

Parameters

cc_primitive:
cc_user_ref:

cc_subn_length:

cc_subn_offset:

cc_opt_length:
cc_opt_offset:

Valid Modes

Specifies the primitive type.

Specifies the user call reference. It is used by the CCS user to associate the message
with an outstanding CC_SETUP_REQ message.

Specifies the length of the subsequent called party address parameter that conveys more
of an address identifying the CCS user to which the call is to be established. This field
will accommodate variable length addresses within a range supported by the CCS
provider. If no subsequent called party address is provided by the CCS user, this field
must be coded to zero. The coding of the subsequent called party address is protocol
and provider-specific.

Is the offset of the subsequent called party address from the beginning of the M_PROTO
message block.

Specifies the length of the optional parameters associated with the alerting indication.

Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

This primitive is valid in UNI (both User and Network) and NNI.

Valid States

This primitive is valid in state CCS_WIND_MORE and CCS_WREQ_INFO.

New State

The new state is CCS_WIND_MORE if the subsequent number still does not contain complete address informa-
tion or CCS_WIND_PROCEED if it does.

Acknowledgments

The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCNOADDR:

CCSYSERR:

CCOUTSTATE:

CCBADCLR:

CCBADADDR:

CCBADOPT:

$Revision: 0.8.22 %

The user did not provide a subsequent called party address field and one was re-
quired by the call type. The CCS provider could not select a called party address.

A system error has occurred and the UNIX system eror is indicated in the primitive.
The primitive was issued from an invalid state.
The specified call reference was invalid.

The subsequent called party address was in the incorrect format, or contained illegal
information. This is used only to handle coding errors of the address and is not in-
tended to provide for protocol errors. Protocol errors should be conveyed in the
CC_CALL_FAILURE_IND or CC_RELEASE_IND primitives.

The optional parameters were in an incorrect format, or contained illegal informa-
tion.

Page 79 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.
CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the

M_PROTO block.

$Revision: 0.8.22 % Page 80 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.3.4. Call Control Information Indication

CC_INFORMATION_IND
For mat
The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as follows:

typedef struct CC_information_ind {

ulong cc_primtive; /* always CC_| NFORVATI ON_I ND */
ulong cc_call ref; /* call reference */

ul ong cc_subn_I engt h; /* subsequent nunber |ength */
ul ong cc_subn_of fset; /* subsequent nunber offset */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC.infornation_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference of the message. It is used by the CCS provider to associated
the message with an preceding CC_SETUP_IND message.
cc_subn_length: Indicates the length of the subsequent called party address parameter that conveys more

of an address identifying the CCS user to which the call is to be established. This field
will accommodate variable length addresses within a range supported by the CCS
provider. If no subsequent called party address is provided by the CCS user, this field
must be coded to zero. The coding of the subsequent called party address is protocol
and provider-specific.

cc_subn_offset: Is the offset of the subsequent called party address from the beginning of the M_PROTO
message block.

cc_opt_length: Indicates the length of the optional parameters associated with the alerting indication.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes

This primitive is valid in UNI (both User and Network) and NNI.

Valid States
This primitive is valid in state CCS_ WREQ_MORE or CCS_WIND_INFO.

New State

The new state is CCS_WREQ_MORE if more information is still pending, or CCS_WREQ_PROCEED if the in-
formation is complete.

$Revision: 0.8.22 % Page 81 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.3.5. Call Control Information Timeout | ndication

CC_INFO_TIMEOUT_IND

This message indicates that a timeout has occurred while waiting for additional digits. It is up to the CCS user to
decide whether the digits collected are sufficient, in which case the call can proceed; or, to decide that the digits
collected are insufficient and begin tearing down the call with a CC_DISCONNECT_REQ or CC_RE-
LEASE_REQ with cause value CC_CAUS_ADDRESS_INCOMPLETE.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC.info_tineout_ind {
ulong cc_primtive; /* always CC_| NFO TI MEQUT_I ND */
ulong cc_call ref; /* call reference */

} CC.info_tineout_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference of the CC_SETUP_IND when the CC_INFO_TIME-
OUT _IND primitive is used in response to the CC_SETUP_IND on a listening stream.
Otherwise, this parameter is coded zero and is ignored by the CCS provider.
Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid State
This primitive is valid in state CCS_WIND_INFO or CCS_WREQ _INFO.

New State
The new state is unchanged.

$Revision: 0.8.22 % Page 82 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation
4.2.4. Call Establishment Phase
The following call control service primitives pertain to the establishment of a call.

4.2.4.1. Call Control Proceeding Request

CC_PROCEEDING_REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the call is proceeding towards
the called CCS user. This also means that there is sufficient called party address information to complete the call.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC _proceeding_req {

ulong cc_primtive; /* al ways CC_PROCEEDI NG_REQ */
ul ong cc_call _ref; /* call reference */
ul ong cc_fl ags; /* proceeding flags */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _offset; /* optional paraneter offset */

} CC_proceeding_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference for the request. The call reference is used by the CCS
provider to identify the call.
cc_flags: Specifies proceeding flags associated with the proceeding request. Proceeding flags are
protocol specific (see the Addendum).
cc_opt_length: Specifies the length of the optional parameters associated with the alerting indication.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.
Valid States

This primitive is valid in state CCS_ICC_WAIT_ACM.

New State
The new state is CCS_ WREQ_MORE or CCS_WIND_PROCEED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCBADFLAG: The specified flags were incorrect or unsupported.

$Revision: 0.8.22 % Page 83 April 15, 2003

Call Control Interface (CClI)

CCBADORPT:

CCACCESS:

CCBADPRIM:

$Revision: 0.8.22 %

OpenSS7 Corpor ation

The optional parameters were in an incorrect format, or contained illegal informa-
tion.

The user did not have proper permissions for the use of the requested address or op-
tions.

The primitive is of an incorrect format or an offset exceeds the size of the
M_PROTO block.

Page 84 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.2. Call Control Proceeding Indication

CC_PROCEEDING_IND

This primitive indicates to the calling CCS user that the call is proceeding to the called CCS user. This also
means that there is sufficient called party address information to complete the call.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC _proceeding_ind {

ulong cc_primtive; /* always CC_PROCEEDI NG | ND */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* proceeding flags */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC _proceeding_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. It is used by the CCS provider to indicate the call.
cc_flags: Indicates the proceeding flags associated with the proceeding indication. Proceeding
flags are protocol specific (see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the proceeding indica-
tion.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_MORE or CCS_WIND_PROCEED.

New State
The new state is CCS_WIND_ALERTING.

$Revision: 0.8.22 % Page 85 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.3. Call Control Alerting Request

CC_ALERTING_REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the called CCS user is being
alerted.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC alerting_req {

ulong cc_primtive; /* always CC_ALERTI NG REQ */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* alerting flags */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _offset; /* optional paraneter offset */

} CC alerting_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. It is used by the CCS provider to identify the call.
cc_flags: Specifies the alerting flags associated with the alerting request. Alerting flags are proto-
col specific (see Addendum).
cc_opt_length: Specifies the length of the optional parameters associated with the alerting indication.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States

This primiitve is valid in states CCS_WREQ_MORE, CCW_WREQ_PROCEED and CCS_WREQ_ALERTING
states.

New State
The new state is CCS_ WREQ PROGRESS.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The specified flags contained incorrect or unsupported information.

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

$Revision: 0.8.22 % Page 86 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.
CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the

M_PROTO block.

$Revision: 0.8.22 % Page 87 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.4. Call Control Alerting Indication

CC_ALERTING_IND
This primitive indicates to the calling CCS user that the called CCS user is being alerted.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC alerting_ind {

ulong cc_primtive; /* always CC_ALERTI NG I ND */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* alerting flags */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC alerting_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_flags: Indicates the alerting flags.
cc_opt_length: Indicates the length of the optional parameters associated with the alerting indication. If
no optional parameters are associated with the alerting indication, then this parameter
must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in states CCS_WREQ_MORE, CCS_WIND_PROCEED and CCS_WIND_ALERTING.

New State
The new state is CCS_WIND_PROGRESS.

$Revision: 0.8.22 % Page 88 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.5. Call Control Progress Request

CC_PROGRESS REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the call is progressing towards
the called CCS user, with the specified event.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC progress_req {

ulong cc_primtive; /* always CC_PROGRESS REQ */
ulong cc_call ref; /* call reference */
ul ong cc_event; /* progress event */
ul ong cc_fl ags; /* progress flags */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC progress_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.
cc_event: Specifies the progress event. Progress events are protocol specific (see Addendum).
cc_flags: Indicates progress flags. Progress flags are protocol specific (see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the progress request. If
no optional parameters are associated with the progress request, then this parameter
must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.
Valid States

This primitive is valid in states CCS_ WREQ PROGRESS.

New State
The new state is CCS_ WREQ_ PROGRESS.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCBADFLAG: The specified flags contained incorrect or unsupported information.

$Revision: 0.8.22 % Page 89 April 15, 2003

Call Control Interface (CClI)

CCBADORPT:

CCACCESS:

CCBADPRIM:

$Revision: 0.8.22 %

OpenSS7 Corpor ation

The optional parameters were in an incorrect format, or contained illegal informa-
tion.

The user did not have proper permissions for the use of the requested address or op-
tions.

The primitive is of an incorrect format or an offset exceeds the size of the
M_PROTO block.

Page 90 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.6. Call Control ProgressIndication

CC_PROGRESS IND

This primitive indicates to the calling CCS user that the call is progressing towards the called CCS user with the
specified progress event.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC progress_ind {

ulong cc_primtive; /* always CC _PROGRESS | ND */
ulong cc_call ref; /* call reference */
ul ong cc_event; /* progress event */
ul ong cc_fl ags; /* progress flags */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC progress_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_event: Indicates the progress event. Progress events are protocol speccific (see Addendum).
cc_flags: Indicates progress flags. Progress flags are protocol specific (see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the progress request. If
no optional parameters are associated with the progress request, then this parameter
must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid instates CCS_WIND_PROGRESS.

New State
The new state is CCS_WIND_PROGRESS.

$Revision: 0.8.22 % Page 91 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.7. Call Control In-Band Information Request

CC_IBI_REQ

This primitive request that the CCS provider indicate to the calling CCS user that the in-band information is now
available.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC.ibi_req {

ulong cc_primtive; /* always CC_| Bl _REQ */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* ibi flags */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _offset; /* optional paraneter offset */

} CC.ibi_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.
cc_flags: Specifies the flags associated with the primitive. In band information flags are protocol
specific (see Addendum).
cc_opt_length: Specifies the length of the optional parameters associated with the in-band information
request. If no optional parameters are associated with the in band information request,
then this parameter must be coded zero.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in NNI mode and in UNI (User and Network) mode for compatibility with the NNI.

Valid States

This primitive is valid in states CCS_WREQ_MORE, CCS_WREQ PROCEED, CCS_WREQ ALERTING,
CCS_WREQ PROGRESS and CCS_WREQ CONNECT.

New State
The new state is CCS_ WREQ_CONNECT.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCBADFLAG: The specified flags contained incorrect or unsupported information.

$Revision: 0.8.22 % Page 92 April 15, 2003

Call Control Interface (CClI)

CCBADORPT:

CCACCESS:

CCBADPRIM:

$Revision: 0.8.22 %

OpenSS7 Corpor ation

The optional parameters were in an incorrect format, or contained illegal informa-
tion.

The user did not have proper permissions for the use of the requested address or op-
tions.

The primitive is of an incorrect format or an offset exceeds the size of the
M_PROTO block.

Page 93 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.8. Call Control In-Band Information I ndication

CC_IBI_IND
This primitive indicates to the calling CCS user that there is in-band information now available in the voice chan-
nel.
Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC_ibi_ind {
ulong cc_primtive; /* always CC_|BI _IND */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* ibi flags */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CCibi_ind t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_flags: Indicates the flags associated with the primitive. In band information flags are provider
and protocol specific (see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the in-band information
indication. If no optional parameters are associated with the in band information re-
quest, then this parameter must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in NNI mode and in UNI (User and Network) mode for compatibility with the NNI.

Valid States

This primitive is valid in states CCS_WIND_MORE, CCS_WIND_PROCEED, CCS_WIND_ALERTING and
CCS_WIND_PROGRESS.

New State
The new state is CCS_WIND_CONNECT.

$Revision: 0.8.22 % Page 94 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.9. Call Control Connect Request

CC_CONNECT_REQ

This primitive requests that the CCS provide indicate to the remote CCS user that the call control setup has com-
plete and the called CCS use is connected on the call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message block is
as follows:

t ypedef struct CC _connect_req {

ulong cc_primtive; /* always CC_CONNECT_REQ */
ulong cc_call ref; /* call reference */

ul ong cc_fl ags; /* connect flags */

ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC _connect _req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify

the call. The call reference is the same value which was indicated in the corresponding
CC_SETUP_IND primitive for the incoming call.

cc_flags: Specifies the connect flags associated with the primitive. Connect flags are protocol
specific (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the connect request. If
no optional parameters are associated with the connect request, then this parameter must
be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid M odes
This primitive is valid in NNI mode and in UNI (User) mode.

Valid States

This primitive is only valid for incoming calls in the CCS_WREQ MORE, CCS WREQ PROCEED,
CCS_WREQ_ALERTING, CCS_WREQ_PROGRESS, CCS_WREQ_CONNECT states.

New State
The new state is CCS_WIND_SCOMP (waiting for indication of setup complete).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_SETUP_COMPLETE_IND primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_CALL_FAILURE_IND, CC_DISCON-
NECT_IND or CC_RELEASE_IND primitives.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.22 % Page 95 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG: The specified flags contained incorrect or unsupported information.

CCBADOPT: The optional parameters were in an incorrect format, or contained illegal informa-
tion.

CCACCESS: The user did not have proper permissions for the use of the requested address or op-
tions.

CCBADPRIM: The primitive is of an incorrect format or an offset exceeds the size of the

M_PROTO block.

$Revision: 0.8.22 % Page 96 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.10. Call Control Connect I ndication

CC_CONNECT_IND

This primitive indicates that the called CCS user has connected to the call. Upon receving this primitive the CCS
user operating in UNI (Network) mode should connect the calling CCS user to the call and acknowledge connec-
tion of the calling CCS user by responding with the CC_SETUP_COMPLETE_REQ primitive.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO message block is
as follows:
t ypedef struct CC _connect_ind {

ulong cc_primtive; /* always CC_CONNECT_IND */
ul ong cc_call ref; /* call reference */
ul ong cc_fl ags; /* connect flags */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC_connect _ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call. The call reference is the same value which was indicated in the corresponding
CC_SETUP_CON primitive for the outgoing call.
cc_flags: Indicates the connect flags associated with the primitive. Connect flags are protocol
specific (see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the connect indication. If
no optional parameters are associated with the connect indication, then this parameter is
coded zero by the CCS provider.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in NNI mode and in UNI (Network) mode.

Valid States
This primitive is valid in state CCS_WIND_SCOMP.

New State
The new state is CCS_CONNECTED.

$Revision: 0.8.22 % Page 97 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.11. Call Control Setup Complete Request

CC_SETUP_COMPLETE_REQ

This primitive request that the CCS provider indicate to the remote CCS user that the call control setup has com-
pleted (the calling CCS user is connected) by the requesting CCS user. It is used in response to the CC_CON-
NECT_IND primitive.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message block is
as follows:

typedef struct CC setup_conplete_req {

ulong cc_primtive; /* always CC_SETUP_COWPLETE_REQ */
ul ong cc_call ref; /* call reference */

ul ong cc_opt _I engt h; /* optional paraneter |length */

ul ong cc_opt _offset; /* optional paraneter offset */

} CC setup_conplete_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.
cc_opt_length: Specifies the length of the optional parameters associated with the setup complete re-
quest. If no optional parameters are associated with the setup complete request, then
this parameter must be coded zero. The CCS provider may include additional protocol-
specific optional parameters.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes

This primitive is valid in UNI mode (Network only) and NNI mode for compatibility.

Valid States
This primitive is valid in state CCS_WREQ_SCOMP.

For compatibility between NNI mode and UNI Network mode, the CCS provider in NNI mode should acknowl-
edge this primitive with a CC_OK_ACK if it is issued in the CCS_CONNECTED state.

New State
The new state is CCS_CONNECTED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out of range).
CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

$Revision: 0.8.22 % Page 98 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.22 % Page 99 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.4.12. Call Control Setup Complete Indication

CC_SETUP_COMPLETE_IND

This primitive indicates to the called CCS user, operating in UNI (User) mode, that the call control setup was
completed (the call is answered and connected) by the calling CCS user. In UNI (User) mode, the CCS user may
defer connecting the receive path to the called CCS user until this message is received. In response to this primi-
tive, the CCS user should connect the receive path to the called CCS user and consider the call connected.

CCS users operating in UNI (Network) mode or NNI mode should ignore this primitive if issued by the CCS
provider.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message block is
as follows:

t ypedef struct CC_setup_conplete_ind {

ulong cc_prinmitive; /* al ways CC_SETUP_COWPLETE_I ND */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter length */

ul ong cc_opt _of fset; /* optional paraneter offset */

} CC_setup_conplete_ind_t;

Parameters
cc_primitive: Indicates the primitives type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_opt_length: Indicates the length of the optional parameters associated with the setup complete indi-
cation. If no optional parameters were associated with the setup complete indication,
then this parameter must be coded zero. The CCS provider may include additional op-
tional protocol-specific optional parameters.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in UNI (User only) mode.

Valid States
This primitive is valid in states CCS_WIND_SCOMP and CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

$Revision: 0.8.22 % Page 100 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5. Call Established Phase
The following call control service primitives pertain to the Established phase of a call.

4.25.1. Forward Transfer Request

CC FORWXFER_REQ
This message requests that the CCS provider forward transfer an established call.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC forwxfer_req {

ulong cc_primtive; /* always CC_FORWKFER_REQ */
ul ong cc_call _ref; /* call reference */
ul ong cc_opt _| engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC forwxfer_req_t;

Parameters

cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length: Specifies the length of the optional parameters associated with the forward transfer re-
quest. If no optional parameters were associated with the forward transfer request, then
this parameter must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message

block.
Valid Modes This primitive is only valid in NNI mode.

Valid States
This primitive is valid in state CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

Acknowledgements
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCOUTSTATE: The primitive was issued from an invalid state.
CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 101 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.25.2. Forward Transfer Indication

CC_FORWXFER_IND

This primitive indicates to the CCS user that the peer CCS user has requested a forward transfer of an established
call.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC forwxfer_ind {

ulong cc_primtive; /* always CC_FORWKFER_ I ND */
ulong cc_call ref; /* call reference */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC forwxfer_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_opt_length: Specifies the length of the optional parameters associated with the forward transfer indi-
cation. If no optional parameters were associated with the forward transfer indication,
then this parameter must be coded zero.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes

This primitive is valid in NNI mode only.

Valid States
This primitive is valied in state CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

$Revision: 0.8.22 % Page 102 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.3. Call Control Suspend Request

CC_SUSPEND REQ
This message requests that the CCS provider suspend an established call.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC suspend_req {

ulong cc_primtive; /* always CC_SUSPEND REQ */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* suspend flags */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC _suspend_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.
cc_flags: Specifies the suspend flags associated with the suspend request. Suspend flags specify

whether the request is for a user suspend or a network suspend. Suspend flags are
provider and protocol specific (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the suspend request. If
no optional parameters were associated with the suspend request, then this parameter
must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid M odes
This primitive is valid in mode UNI (User) and NNI.

Valid States
This primitive is valid in state CCS_CONNECTED.

New State
The new state is CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_SUSPEND_CON primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_SUSPEND REJECT_IND or CC_RE-
LEASE_IND primitive. The cause value in the CC_SUSPEND_REJECT IND or CC_RELEASE_IND prim-
itive indicates the cause of failure.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCOUTSTATE: The primitive was issued from an invalid state.
CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 103 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.4. Call Control Suspend Indication

CC_SUSPEND_IND

This message indicates to the CCS user that the peer CCS user has requested the suspension of an establisehd
call.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC suspend_ind {

ulong cc_primtive; /* always CC_SUSPEND | ND */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* suspend flags */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC _suspend_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_flags: Indicates the options associated with the suspend. Suspend flags are mode and protocol
dependent, see the addendum. Indicates the suspend flags associated with the suspend
indication. Suspend flags indicate whether the request is for a user suspend or a network
suspend. Suspend flags are provider and protocol specific (see Addendum).
cc_opt_length: Specifies the length of the optional parameters associated with the suspend indication.
If no optional parameters were associated with the suspend indication, then this parame-
ter must be coded zero.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid in mode UNI (Network) and NNI.

Valid States
This primitive is valid in state CCS_CONNECTED or CCS_SUSPENDED.

New State
The new state is CCS_WRES_SUSIND for UNI and CCS_SUSPENDED for NNI.

$Revision: 0.8.22 % Page 104 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.5. Call Control Suspend Response

CC_SUSPEND RES
This message requests that the CCS provider accept a previous suspend indication.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC suspend_res {

ulong cc_primtive; /* always CC _SUSPEND RES */
ulong cc_call ref; /* call reference */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC _suspend_res_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS provider to identify
the call.
cc_opt_length: Specifies the length of the optional parameters associated with the suspend response. If
no optional parameters were associated with the suspend response, then this parameter
must be coded zero.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes

This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_WRES_SUSIND.

New State
The new state is CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCOUTSTATE: The primitive was issued from an invalid state.
CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 105 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.2.5.6. Call Control Suspend Confirmation

CC_SUSPEND_CON

This message indicates to the CCS user that the CCS provider has confirmed the CCS user request to suspend an
established call.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC _suspend_con {

ulong cc_primtive; /* always CC_SUSPEND CON */
ulong cc_call ref; /* call reference */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC_suspend_con_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_opt_length: Indicates the length of the optional parameters associated with the suspend indication.
If no optional parameters were associated with the suspend indication, then this parame-
ter must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes

This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State
The new state is CCS_SUSPENDED.

$Revision: 0.8.2.2 $ Page 106 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.7. Call Control Suspend Reject Request

CC_SUSPEND REJECT_REQ
This message request that the CCS provider reject a previous suspend indication with the specified cause.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC suspend_reject_req {

ulong cc_primtive; /* always CC_SUSPEND REJECT REQ */
ulong cc_call ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC suspend_reject_req_t;

Parameters

cc_primitive: Specifies the primitive type.

cc_call_ref: Specifies the call reference. The call reference is used by the CCS user to identify the
call. Its value should be the same as the value returned by the CCS provider in the
CC_SETUP_IND or CC_SETUP_CON primitive.

CC_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the suspend reject re-

quest. If no optional parameters are associated with the suspend reject request, then this
parameter must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the suspend reject request, then this
parameter must be coded zero.

Valid M odes
This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_WRES_SUSIND.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out
CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.22 % Page 107 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADORPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.22 % Page 108 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.2.5.8. Call Control Suspend Reject Confirmation

CC_SUSPEND_REJECT IND

This message indicates to the requesting CCS user that a previous suspend request for an established call was re-
jected and the cause for rejection.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC suspend_reject_ind {

ulong cc_primtive; /* always CC_SUSPEND REJECT |IND */
ulong cc_call ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _offset; /* optional paraneter offset */

} CC suspend_reject_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
CC_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the suspend reject indica-

tion. If no optional parameters are associated with the suspend reject indication, then
this parameter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the suspend reject indication, then
this parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

$Revision: 0.8.2.2 $ Page 109 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.9. Call Control Resume Request

CC_ RESUME_REQ
This message requests that the CCS provider resume a previously suspended call.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC resunme_req {

ulong cc_primtive; /* always CC_RESUME REQ */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* suspend flags */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC resune_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS user to identify the

call to the CCS provider. The value should be the same as the value indicated by the
CCS provider in a previous CC_SETUP_IND or CC_SETUP_CON primitive.

cc_flags: Specifies the options associated with the resume. Resume flags are provider and proto-
col dependent (see Addendum).

cc_opt_length: Specifies the length of the optional parameters associated with the resume request. If no
optional parameters are associated with the resume request, then this parameter must be
coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message

block. If no optional parameter are associated with the resume request, then this param-
eter must be coded zero.

Valid M odes
This primitive is valid in mode UNI (User) and NNI.

Valid States
This primitive is valid in state CCS_SUSPENDED.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out
CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.22 % Page 110 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADORPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.22 % Page 111 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.10. Call Control Resume Indication

CC_RESUME_IND

This message indicates to the CCS user that the peer CCS user has requested that a previously suspended call be
resumed.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC resune_ind {

ulong cc_primtive; /* always CC _RESUME | ND */
ulong cc_call ref; /* call reference */
ul ong cc_fl ags; /* suspend flags */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC resune_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_flags: Indicates the options associated with the resume. Resume flags are mode and protocol
dependent, see the addendum.
cc_opt_length: Indicates the length of the optional parameters associated with the resume indication. If
no optional parameters are associated with the resume indication, then this parameter
must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the resume indication, then this pa-
rameter must be coded zero.
Valid M odes

This primitive is valid in mode UNI (Network) and NNI.

Valid States
This primitive is valid in state CCS_SUSPENDED.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or in another
sense (network or user), otherwise the new state remains CCS_SUSPENDED.

$Revision: 0.8.22 % Page 112 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.11. Call Control Resume Response

CC_RESUME_RES
This message requests that the CCS provider accept a previous request to resume a suspended call.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC resunme_res {

ulong cc_primtive; /* always CC _RESUME RES */
ulong cc_call ref; /* call reference */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC resune_res_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS user to identify the

call to the CCS provider. Its value should be the same as the value indicated by a previ-
ous CC_SETUP_IND or CC_SETUP_CON primitive for the call.

cc_opt_length: Specifies the length of the optional parameters associated with the resume response. If
no optional parameters are associated with the resume response, then this parameter
must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the resume response, then this pa-
rameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (Network) and for compatibility in NNI mode.

Valid States
This primitive is valid in state CCS_WRES_SUSIND.

For compatibility with UNI, NNI should ignore, yet positively acknowledge, this primitive if received in the
CCS_CONNECTED or CCS_SUSPENDED states where the all is not suspended in the sense confirmed.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out
CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

$Revision: 0.8.22 % Page 113 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.22 % Page 114 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.25.12. Call Control Resume Confirmation

CC_RESUME_CON

This message indicates to the requesting CCS user that a previous request to resume a suspended call has been
confirmed.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC resunme_con {

ulong cc_primtive; /* always CC_RESUME CON */
ulong cc_call ref; /* call reference */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC_resune_con_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_opt_length: Indicates the length of the optional parameters associated with the resume confirmation.
If no optional parameters are associated with the resume confirmation, then this parame-
ter must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the resume confirmation, then this
parameter must be coded zero.
Valid Modes

This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another sense
(network or user), otherwise the new state remains CCS_SUSPENDED.

$Revision: 0.8.2.2 $ Page 115 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.13. Call Control Resume Regject Request

CC_RESUME_REJECT REQ

This message requests that the CCS provider reject a previous requst to resume a suspended call with the speci-
fied cause.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC resune_reject_req {

ulong cc_primtive; /* always CC _RESUME REJECT REQ */
ulong cc_call ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _offset; /* optional paraneter offset */

} CC resune_reject_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference. The call reference is used by the CCS user to identify the
call to the CCS provider. Its value should be the same as the value indicated in a previ-
ous CC_SETUP_IND or CC_SETUP_CON primitive by the CCS provider for the call.
CcC_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).
cc_opt_length: Specifies the length of the optional parameters associated with the resume reject request.
If no optional parameters are associated with the resume reject request, then this param-
eter must be coded zero.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the resume reject request, then this
parameter must be coded zero.
Valid M odes

This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_WRES_SUSIND.

New State
The new state is CCS_SUSPENDED.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out
CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.22 % Page 116 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADORPT: The options values as specified in the primitive were in an incorrect format, or they
contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.22 % Page 117 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.5.14. Call Control Resume Regject Indication

CC_RESUME_REJECT_IND

This message indicates to the requesting CCS user that a previous request to resume a suspended call has been
rejected and the cause for rejection.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC resune_reject_ind {

ulong cc_primtive; /* always CC RESUME REJECT |IND */
ulong cc_call ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _offset; /* optional paraneter offset */

} CC resune_reject_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
CC_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the resume reject indica-

tion. If no optional parameters are associated with the resume reject indication, then
this parameter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the resume reject indication, then
this parameter must be coded zero.

Valid M odes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State
The new state is CCS_SUSPENDED.

$Revision: 0.8.22$ Page 118 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.6. Call Termination Phase
The following call control service primitives pertain to the Termination phase of a call.

4.2.6.1. Call Control Rgject Request

CC_REJECT_REQ

This message is used to reject a call before any request for more information, or request for indication of pro-
ceeding, alerting, progress, or in-band information has been attempted. The message also includes the cause of
the rejection.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC reject_req {

ulong cc_primtive; /* always CC_REJECT_REQ */
ulong cc_call _ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I ength; /* optional paraneter |length */
ul ong cc_opt _offset; /* optional paraneter offset */

} CCreject_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_call_ref: Specifies the call reference of the CC_SETUP_IND when the CC_REJECT_REQ prim-
itive is used in response to the CC_SETUP_IND on a listening stream. Otherwise, this
parameter is coded zero and is ignored by the CCS provider.
CC_cause: Specifies the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).
cc_opt_length: Specifies the length of the optional parameters associated with the reject request. If no
optional parameters are associated with the reject request, then this parameter must be
coded zero.
cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the reject request, then this parame-
ter must be coded zero.
Valid Modes

This primitive is only valid in the UNI mode (User or Network). (NNI users should use the CC_RE-
LEASE_REQ primitive in the same situation.)

Valid State
This primitive is valid in state CCS_WRES_SIND.

New State
The new state is CCS_IDLE.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

$Revision: 0.8.22 % Page 119 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out
CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they

contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.22 % Page 120 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.6.2. Call Control Regject Indication

CC_REJECT_IND

This message indicates to the CCS user that a previous setup request has been rejected by the peer CCS user and
indicates the cause of the rejection.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC reject_ind {

ulong cc_primtive; /* always CC _REJECT_IND */
ul ong cc_user _ref; /* user call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _offset; /* optional paraneter offset */

} CCreject_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_user_ref: Indicates the CCS user reference of the associated CC_SETUP_REQ primitive that was
rejected.
CC_cause: Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the reject indication. If

no optional parameters are associated with the reject indication, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the reject indication, then this pa-
rameter must be coded zero.

Valid M odes
This primitive is only valid in the UNI mode (User or Network).

Valid State
This primitive is valid in state CCS_WCON_SREQ.

New State
The new state is CCS_IDLE.

$Revision: 0.8.22 % Page 121 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.6.3. Call Control Call FailureIndication

CC _CALL _FAILURE_IND
This primitive indicates to the CCS user that the call on the selected address (circuit, circuit group) has failed.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC call _failure_ind {

ulong cc_primtive; /* always CC _CALL_FAI LURE I ND */
ulong cc_call ref; /* call reference */
ul ong cc_reason; /* reason for failure */
ul ong cc_cause; /* cause to use in release */

} CCcall_failure_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
CC_reason: Indicates the reason for the failure. Reasons are provider and protocol specific (see Ad-
dendum).
CC_cause: Indicates the cause value for the failure. Cause values are provider and protocol specific
(see Addendum).
cc_opt_length: Indicates the length of the optional parameters associated with the call failure indication.
If no optional parameters are associated with the call failure indication, then this param-
eter must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the call failure indication, then this
parameter must be coded zero.
Valid Modes"
Valid Modes

This primitive is valid in NNI mode only.

Valid States

This primitive is valid in any state other than CCS_IDLE, CCS WIND_MORE, CCS WREQ_INFO,
CCS_WCON_SREQ, and CCS_WIND_PROCEED. In the aforementioned states (other than CCS_IDLE), a
CC_CALL_REATTEMPT_IND should be issued instead.

New State
The new state is CCS_IDLE.

$Revision: 0.8.22 % Page 122 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.6.4. Call Control Disconnect Request

CC_DISCONNECT _REQ

This primitive request that the CCS provider indicate to the calling CCS user that in-band information may now
be available in the voice channel reflecting the specified cause. The CC_DISCONNECT_REQ primitive is an in-
vitation to the remote CCS user to release the call channel.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC di sconnect_req {

ulong cc_primtive; /* always CC_DI SCONNECT_REQ */
ul ong cc_call ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC_di sconnect_req_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference of the CC_DISCONNECT_REQ message. It is used by the
CCS provider to associated the CC_DISCONNECT_REQ message with an outstanding
CC_SETUP_IND message. An invalid call reference should result in error with the er-
ror type CCBADCLR.
cC_cause: Indicates the cause value for the disconnect.
cc_opt_length: Indicates the length of the optional parameters associated with the disconnect request.
If no optional parameters are associated with the disconnect request, then this parameter
must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid M odes

This primitive is valid only in UNI (Network or User) mode.

Valid States

This primitive is valid in states CCS_WREQ_MORE, CCS_WREQ_PROCEED, CCS_WREQ_ALERTING and
CCS_WREQ PROGRESS.

New State
The new state is CCS_ WREQ_CONNECT.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out

$Revision: 0.8.22 % Page 123 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCOUTSTATE: The primitive was issued from an invalid state.
CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they

contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.22 % Page 124 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.6.5. Call Control Disconnect I ndication

CC_DISCONNECT_IND

This primitive indicates to the calling CCS user that there is in-band information now available in the voice chan-
nel.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC _di sconnect_ind {

ulong cc_primtive; /* always CC_DI SCONNECT | ND */
ulong cc_call ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC_di sconnect_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
CC_cause: I ndicates the cause value for the disconnect.
cc_opt_length: Indicates the length of the optional parameters associated with the in-band information
request. If no optional parameters are associated with the in band information request,
then this parameter must be coded zero.
cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid States

This primitive is valid in states CCS WIND_MORE, CCS WREQ INFO, CCS WIND_PROCEED,
CCS_WIND_ALERTING, CCS_WIND_PROGRESS and CCS_WIND_CONNECT.

New State
The new stateis CCS WIND_ CONNECT

$Revision: 0.8.22 % Page 125 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.6.6. Call Control Release Request

CC_RELEASE_REQ

This primitive request that the CCS provider release the call and provide the specified cause value to the remote
CCS user.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC release_req {

ulong cc_primtive; /* always CC_RELEASE REQ */
ul ong cc_user _ref; /* user call reference */
ulong cc_call ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC release_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_user_ref: Specifies the user call reference of the CC _SETUP_REQ when the CC_RE-

LEASE _REQ primitive is used in response to the CC_SETUP_REQ and before a
CC_SETUP_CON is issued. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc_call_ref: Specifies the call reference of the CC_SETUP_IND when the CC_RELEASE_REQ
primitive is used in response to the CC_SETUP_IND on a listening stream. Otherwise,
this parameter is coded zero and is ignored by the CCS provider.

CC_cause: Specifies the cause of the release. Cause values are CCS provider and protocol specific.
See the addendum for protocol specific values.

cc_opt_length: Specifies the length of the optional parameters associated with the release request. If no
optional parameters are associated with the release request, then this parameter must be
coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes

This primitive is valid in UNI (User or Network) and NNI modes.

Valid States
This primitive is valid from any call state other than CCS_IDLE and CCS_WCON_RELREQ.
New State

If the current state is CCS_WRES_RELIND, the new state is CCS_IDLE. If the current state is other than
CCS_WRES_RELIND, the new state is CCS_WCON_RELREQ.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_RELEASE_IND or CC_RELEASE_CON primi-
tives.

» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

$Revision: 0.8.22 % Page 126 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCBADPRIM: The primitive was of an incorrect format (i.e. too small, or an offset it out
CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.

CCBADOPT: The options values as specified in the primitive were in an incorrect format, or they

contained illegal information.

CCACCESS: The user did not have proper permissions to request the operation or to use the op-
tions specified.

CCNOTSUPP: The specified primitive type is not known to or not supported by the CCS provider.

$Revision: 0.8.22 % Page 127 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.6.7. Call Control Release I ndication

CC_RELEASE IND
This primitive indicates that the remote CCS user or CCS provider hsa released the call with the specified cause

value.
Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC release_ind {

ulong cc_primtive; /* always CC _RELEASE |IND */
ul ong cc_user _ref; /* user call reference */
ulong cc_call ref; /* call reference */
ul ong cc_cause; /* cause val ue */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC release_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_user_ref: Indicates the user call reference of the CC_SETUP REQ when the CC_RE-

LEASE IND primitive is used in response to the CC_SETUP_REQ and before a
CC_SETUP_CON is issued. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc_call_ref: Indicates the call reference of the CC_SETUP_IND when the CC_RELEASE_IND
primitive is used in response to the CC_SETUP_IND on a listening stream. Otherwise,
this parameter is coded zero and is ignored by the CCS provider.

CC_cause: Indicates the cause of the release. Cause values are CCS provider and protocol specific.
See the addendum for protocol specific values.
cc_opt_length: Indicates the length of the optional parameters associated with the release indication. If

no optional parameters are associated with the release indication, then this parameter
must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes
This primitive is valid in UNI (User or Network) and NNI modes.
Valid States

This primitive is valid in any setup or established call state other than CCS_IDLE and CCS_WRES_RELIND.

New State

If the current state is CCS_WCON_RELREQ, the new state is CCS_IDLE. If the current state is other than
CCS_WCON_RELREQ), then new state is CCS_ WRES RELIND.

$Revision: 0.8.22 % Page 128 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.2.6.8. Call Control Release Response

CC_RELEASE _RES
This primitive indicates to the CCS provider that the release of the associated circuit is complete.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC release_res {

ulong cc_primtive; /* always CC _RELEASE RES */
ul ong cc_user _ref; /* user call reference */
ulong cc_call ref; /* call reference */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC release_res_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_user_ref: Specifies the user call reference of the CC _SETUP_REQ when the CC_RE-

LEASE _REQ primitive is used in response to the CC_SETUP_REQ and before a
CC_SETUP_CON is issued. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc_call_ref: Specifies the call reference of the CC_SETUP_IND when the CC_RELEASE_REQ
primitive is used in response to the CC_SETUP_IND on a listening stream. Otherwise,
this parameter is coded zero and is ignored by the CCS provider.

cc_opt_length: Specifies the length of the optional parameters associated with the release response. If
no optional parameters are associated with the release response, then this parameter
must be coded zero.

cc_opt_offset: Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid M odes
This primitive is valid in UNI (User or Network) and NNI modes.

Valid States
This primitive is valid in state CCS_WRES_RELIND.

New State
The new state is CCS_IDLE.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCOUTSTATE: The primitive was issued from an invalid state.
CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 129 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.2.6.9. Call Control Release Confirmation

CC_RELEASE _CON
This primitive indicates to the releasing CCS user that the release of the associated circuit is complete.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC rel ease_con {

ulong cc_primtive; /* always CC_RELEASE CON */
ul ong cc_user _ref; /* user call reference */
ulong cc_call ref; /* call reference */
ul ong cc_opt _I engt h; /* optional paraneter |length */
ul ong cc_opt _of fset; /* optional paraneter offset */

} CC rel ease_con_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_user_ref: Indicates the user call reference of the CC_SETUP REQ when the CC_RE-

LEASE IND primitive is used in response to the CC_SETUP_REQ and before a
CC_SETUP_CON is issued. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc_call_ref: Indicates the call reference of the CC_SETUP_IND when the CC_RELEASE_IND
primitive is used in response to the CC_SETUP_IND on a listening stream. Otherwise,
this parameter is coded zero and is ignored by the CCS provider.

cc_opt_length: Indicates the length of the optional parameters associated with the release confirmation.
If no optional parameters are associated with the release confirmation, then this parame-
ter must be coded zero.

cc_opt_offset: Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI (User or Network) and NNI modes.

Valid States
This primitive is valid in state CCS_WCON_RELREQ.

New State
The new state is CCS_IDLE.

$Revision: 0.8.2.2 $ Page 130 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3. Management Primitive Formats and Rules

This section describes the format of the UNI (Network and User) and NNI management primitives and rules as-
sociated with these primitives.

4.3.1. Interface Management Primitives
4.3.1.1. Interface Management Restart Request

CC_RESTART REQ

This primitive request the CCS provider to restart all the call control addresses (signalling interaface and chan-
nels) for the specified UNI interface.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC restart_req {

ulong cc_primtive; /* al ways CC_RESTART_REQ */
ul ong cc_fI ags; /* restart flags */
ul ong cc_addr _I| engt h; /* adddress length */
ul ong cc_addr _of f set; /* adddress offset */

} CCrestart_req_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identi-
fiers) upon which a restart was requested. The semantics of the values in the CC_RE-
SET_REQ is identical to the values in the CC_BIND_REQ.
cc_addr_offset: Indicates the offset of the reporting address from the beginning of the M_PROTO mes-
sage block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

$Revision: 0.8.22 % Page 131 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.3.1.2. Interface Management Restart Confirmation

CC_RESTART_CON

This primitive confirms to the requesting CCS user that the restart of the requested call control addresses (sig-
nalling interface and channels) for the specified UNI interace is complete.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC restart_ind {

ulong cc_primtive; /* always CC _RESTART IND */
ul ong cc_fl ags; /* restart flags */
ul ong cc_addr _| engt h; /* adddress length */
ul ong cc_addr _of fset; /* adddress of fset */

} CCrestart_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identi-
fiers) upon which a restart was requested. The semantics of the values in the CC_RE-
SET_REQ is identical to the values in the CC_BIND_REQ.
cc_addr_offset: Indicates the offset of the reporting address from the beginning of the M_PROTO mes-
sage block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

$Revision: 0.8.2.2 $ Page 132 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2. Circuit Management Primitives
4.3.2.1. Circuit Management Reset Request

CC_RESET_REQ

This primitive requests that the CCS provider reset the specified call control address(es) (signalling interface and
circuit identifiers) with the CCS user peer. For the NNI this primitive supports both the Circuit Reset Service as
well as the Circuit Group Reset Service.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC reset_req {

ulong cc_primtive; /* always CC _RESET_REQ */
ul ong cc_fl ags; /* reset flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CCreset_req_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identi-
fiers) upon which a reset is requested. The semantics of the values in the CC_RE-
SET_REQ is identical to the values in the CC_BIND_REQ.
cc_addr_offset: Indicates the offset of the reporting address from the beginning of the M_PROTO mes-
sage block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules
The following rules apply to the reset of call control addresses (signalling interface and circuit identifiers):

» The call control address must contain a signalling interface identifier and one or more circuit identifiers.

+ The signalling interface identifier must identify an NNI signalling interface.

» When the call control address contains one circuit identifier, a non-group reset will be performed.

» When the call control address contains more than one circuit identifier, the CCS provider may either issue in-
dividual circuit resets, or may issue one or more group circuit resets.

Valid M odes
This primitive is only valid for call control address(es) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

New State
The new state is CCS_WCON_RESREQ for the specified address(es).

$Revision: 0.8.22 % Page 133 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_RESET_CON primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCACCESS: The user did not have sufficient permission to perform the operation on the specified
call control addresses.

CCNOADDR: The call control address was not provided (cc_addr_length coded zero).

CCBADADDR: The call control address(es) contained in the primitive were poorly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state for the requested address(es).

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 134 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.2. Circuit Management Reset Indication

CC_RESET_IND

This primitive indicates that the peer CCS user has requested that the specified call control address(es) (signalling
interface and circuit identifiers) be reset.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC reset_ind {

ulong cc_primtive; /* always CC _RESET_IND */
ul ong cc_fl ags; /* reset flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CCreset_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) that the peer CCS user has requested be reset.
cc_addr_offset: Indicates the offset of the call control address(es) (signalling interface and circuit identi-
fiers) from the beginning of the M_PROTO message block.
Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.
Valid M odes
This primitive will not be issued for call control addresses in modes other than NNI mode.
Valid States

This primitive will only be issued for call control addresses for which no reset indication (CCS_IDLE) is already
pending.

New State
The new state is CCS_WRES_RESIND.

$Revision: 0.8.22 % Page 135 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.3. Circuit Management Reset Response

CC_RESET RES

This primitive request the CCS provider to complete the reset operation for the specified call control address(es)
(signalling interface and circuit identifiers) which was previously indicated with a CC_RESET_IND.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC reset_res {

ulong cc_primtive; /* always CC _RESET_RES */
ul ong cc_fl ags; /* reset flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CCreset_res_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_flags: Indicates options flags for the operation. (See "Flags" below.)
cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) upon which the CCS user has accepted a reset.
cc_addr_offset: Indicates the offset of the call control address(es) (signalling interface and circuit identi-
fiers) from the beginning of the M_PROTO message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules
The following rules apply to the reset of call control addresses (signalling interface and circuit identifiers):

» The set of addresses specified must be a non-empty subset of the addresses which were specified in the indi-
cation primitive to which this primitive is responding.

» Only once the primitive is succesfully accepted by the CCS provider should the CCS provider take any ac-
tions whatsoever with regard to reset.

* Call control addresses included in the call control address list which are not equipped may be ignored by the
CCS provider.

Valid States
This primitive is valid in state CCS_WRES_RESIND for the specified address(es).

New State
The new state is CCS_WACK_RESRES for the specified address(es).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCACCESS: The user did not have sufficient permission to perform the operation on the specified
call control addresses.

$Revision: 0.8.22 % Page 136 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCNOADDR: The call control address was not provided (cc_addr_length coded zero).

CCBADADDR: The call control address(es) contained in the primitive were poorly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state.

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 137 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.3.2.4. Circuit Management Reset Confirmation

CC_RESET_CON

This primitive confirms to the requesting CCS user that the specified call control address(es) (signalling interface
and circuit identifiers) have been successfully confirmed reset to the peer CCS user.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC reset_con {

ulong cc_primtive; /* always CC_RESET_CON */
ul ong cc_fl ags; /* reset flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC reset_con_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) upon which the CCS provider has confirmed a reset.
cc_addr_offset: Indicates the offset of the call control address(es) (signalling interface and circuit identi-
fiers) from the beginning of the M_PROTO message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for call control addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_WCON_RESREQ for the specified addresses.

New State
The new state is CCS_IDLE for the specified addresses.

$Revision: 0.8.2.2 $ Page 138 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.5. Circuit Management Blocking Request

CC_BLOCKING_REQ

This primitive request that the CCS provider locally block the specified call control address(es) (signalling inter-
face and circuit or circuit group) with the peer CCS user. For the NNI, this primitive supports both the Circuit
Blocking Service as well as the Circuit Group Blocking Service.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC bl ocking_req {

ulong cc_primtive; /* always CC_BLOCKI NG REQ */
ul ong cc_fl ags; /* blocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC bl ocking_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local blocking is requested. The semantics of the values
in the call control address is described in Section 2.
cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules

The following rules apply to the blocking of call control addresses (signalling interface and circuit or circuit
group identifiers):

« If the stream upon which the blocking request is issued is not bound (see CC_BIND_REQ), the call control
address must contain a signalling interface identifier and a circuit or circuit group identifier.

« If the stream upon which the blocking request is bound to a signalling interface and trunk group, and no call
control address(es) are provided (i.e, cc_addr_length is set to zero), the CCS provider may interpret the primi-
tive to be requesting blocking on all circuits in the trunk group.

At any time that the primitive is issued without specifying a call control address (i.e, cc_addr_length is zero to
zero), the CCS provider may assign a call control address or addresses.

* If the CCS provider fails to assign a call control address or addresses, the primitive will fail with error CC-
NOADDR.

Valid M odes
This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

$Revision: 0.8.22$ Page 139 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

New State
The new state is CCS_WCON_BLREQ for the specified address(es).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive.

 Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND primi-
tive.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation on the specified
addresses.

CCFLAGS: The flags were invalid or unsupported.

CCNOADDR: An address or addresses was not provided by the CCS user (i.e., cc_addr_length set
to zero) and the CCS provider could not assign an address or addresses.

CCBADADDR: The call control address contained in the primitive were illegaly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state for the requested address(es).

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 140 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.6. Circuit Management Blocking I ndication

CC_BLOCKING_IND

This primitive indicates that the peer CCS user has requested that the specified call control address(es) (signalling
interface and circuit identifiers) be remotely blocked.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message block is
as follows:

t ypedef struct CC_bl ocking_ind {

ulong cc_primtive; /* always CC _BLOCKI NG I ND */
ul ong cc_fl ags; /* blocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC_bl ocking_ind_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies the options flags. See "Flags" below.
cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) that the peer CCS user has requested to be remotely blocked.
cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid M odes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the remote blocking state of the specified address(es) is
CCS_UNBLOCKED or CCS_BLOCKED.

New State
The new remote blocking state will be CCS_WRES_BLIND for the specified call control addresses.

$Revision: 0.8.22 % Page 141 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.7. Circuit Management Blocking Response

CC _BLOCKING_RES
This primitive requests that the CCS provider respond to the previous blocking indication.

Format

The format is one M_PROTO message block. The structure of the M_PROTO message block is as follows:
t ypedef struct CC bl ocking_res {

ulong cc_primtive; /* always CC _BLOCKI NG RES */
ul ong cc_fl ags; /* blocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC bl ocking_res_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit

group identifiers) upon which local blocking is requested. The semantics of the values
in the call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid M odes
This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States

This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State
The new blocking state of the previously specified call controla addresses is the CCS_BLOCKED state.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE IND or CCS _RESET_IND
primitive.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation.
CCOUSTATE: The primitive was issued from an invalid state.
CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 142 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.3.2.8. Circuit Management Blocking Confirmation

CC_BLOCKING_CON
This primitive confirms a previous blocking request (or indicates failure of a previous blocking request).

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC_bl ocki ng_con {

ulong cc_primtive; /* always CC_BLOCKI NG CON */
ul ong cc_fl ags; /* blocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC_bl ocking_con_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies the options flags and result of the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which local blocking is confirmed.
cc_addr_offset: Specifies the offset of the call controll adress(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the local blocking state of the specified address(es) is
CCS_WCON_BLREQ.

New State
The new local blocking state will be CCS_BLOCKED for the specified call control addresses.

$Revision: 0.8.2.2 $ Page 143 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.9. Circuit Management Unblocking Request

CC_UNBLOCKING_REQ

This primitive requests that the CCS provider locally unblock the specified call control address(es) (signalling in-
terface and circuit or circuit group) with the peer CCS user. For the NNI, this primitive supports both Circuit Un-
blocking Servce as well as the Circuit Group Unblocking Service.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC unbl ocking_req {

ulong cc_primtive; /* always CC_UNBLOCKI NG REQ */
ul ong cc_fl ags; /* unbl ocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC_unbl ocking_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local unblocking is requested. The semantics of the val-
ues in the call control address is described in Section 2.
cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules

The following rules apply to the unblocking of call control addresses (signalling interface and circuit or circuit
group identifiers):

« If the stream upon which the unblocking request is issued is not bound (see CC_BIND_REQ), the call control
address must contain a signalling interface identifier and a circuit or circuit group identifier.

« If the stream upon which the unblocking request is bound to a signalling interface and trunk group, and no
call control address(es) are provided (i.e, cc_addr_length is set to zero), the CCS provider may interpret the
primitive to be requesting unblocking on all circuits in the trunk group.

At any time that the primitive is issued without specifying a call control address (i.e, cc_addr_length is zero to
zero), the CCS provider may assign a call control address or addresses.

* If the CCS provider fails to assign a call control address or addresses, the primitive will fail with error CC-
NOADDR.

Valid M odes
This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

$Revision: 0.8.22 % Page 144 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

New State
The new state is CCS_WCON_BLREQ for the specified address(es).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive.

 Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND primi-
tive.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation on the specified
addresses.

CCFLAGS: The flags were invalid or unsupported.

CCNOADDR: An address or addresses was not provided by the CCS user (i.e., cc_addr_length set
to zero) and the CCS provider could not assign an address or addresses.

CCBADADDR: The call control address contained in the primitive were illegaly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state for the requested address(es).

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 145 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.10. Circuit Management Unblocking Indication

CC_UNBLOCKING_IND

This primitive indicates that the peer CCS user has requested that the specified call control address(es) (signalling
interface and circuit identifiers) be remotely unblocked.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO message block is
as follows:
t ypedef struct CC _unbl ocking_ind {

ulong cc_primtive; /* always CC_UNBLOCKI NG | ND */
ul ong cc_fl ags; /* unbl ocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC_unbl ocking_ind_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies the options flags. See "Flags" below.
cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) that the peer CCS user has requested to be remotely unblocked.
cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid M odes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the remote blocking state of the specified address(es) is
CCS_UNBLOCKED or CCS_BLOCKED.

New State
The new remote blocking state will be CCS_WRES_UBIND for the specified call control addresses.

$Revision: 0.8.22 % Page 146 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.11. Circuit Management Unblocking Response

CC_UNBLOCKING_RES
This primitive requests that the CCS provider respond to the previous unblocking indication.

Format

The format is one M_PROTO message block. The structure of the M_PROTO message block is as follows:
t ypedef struct CC unbl ocking_res {

ulong cc_primtive; /* always CC_UNBLOCKI NG _RES */
ul ong cc_fl ags; /* blocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC_unbl ocking_res_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit

group identifiers) upon which local unblocking is requested. The semantics of the val-
ues in the call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.
Valid Modes

This primitive is only valid for indications for signalling interfaces in the NNI mode.
Valid States

This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State
The new blocking state of the previously specified call control addresses is the CCS_UNBLOCKED state.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE IND or CCS _RESET_IND
primitive.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation.
CCOUSTATE: The primitive was issued from an invalid state.
CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 147 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.3.2.12. Circuit Management Unblocking Confirmation

CC_UNBLOCKING_CON
This primitive confirms a previous unblocking request (or indicates failure of a previous unblocking request).

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC _unbl ocking_con {

ulong cc_primtive; /* always CC_UNBLOCKI NG_CON */
ul ong cc_fl ags; /* unbl ocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC_unbl ocking_con_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies the options flags and result of the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which local unblocking is confirmed.
cc_addr_offset: Specifies the offset of the call controll adress(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the local unblocking state of the specified address(es) is
CCS_WCON_UBREQ.

New State
The new local unblocking state will be CCS_UNBLOCKED for the specified call control addresses.

$Revision: 0.8.2.2 $ Page 148 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.13. Circuit Management Query Request

CC_QUERY_REQ

This primitive requests that the CCS provider query specified call control address(es) (signalling interface and
circuit or circuit group) to the peer CCS user. For the NNI, this primitive supports the Circuit Group Query Ser-
vice.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC query_req {

ulong cc_primtive; /* always CC_QUERY_REQ */
ul ong cc_fl ags; /* query flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC query_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which the query is requested. The semantics of the values in the
call control address is described in Section 2.
cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules

The following rules apply to the querying of call control addresses (signalling interface and circuit or circuit
group identifiers):

* If the stream upon which the query request is issued is not bound (see CC_BIND_REQ), the call control ad-
dress must contain a signalling interface identifier and a circuit or circuit group identifier.

« If the stream upon which the query request is bound to a signalling interface and trunk group, and no call con-
trol address(es) are provided (i.e, cc_addr_length is set to zero), the CCS provider may interpret the primitive
to be requesting status on all circuits in the trunk group.

At any time that the primitive is issued without specifying a call control address (i.e, cc_addr_length is zero to
zero), the CCS provider may assign a call control address or addresses.

* If the CCS provider fails to assign a call control address or addresses, the primitive will fail with error CC-
NOADDR.

Valid M odes
This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

$Revision: 0.8.22 % Page 149 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

New State
The new state is CCS_WCON_BLREQ for the specified address(es).

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive.

 Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND primi-
tive.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation on the specified
addresses.

CCFLAGS: The flags were invalid or unsupported.

CCNOADDR: An address or addresses was not provided by the CCS user (i.e., cc_addr_length set
to zero) and the CCS provider could not assign an address or addresses.

CCBADADDR: The call control address contained in the primitive were illegaly formatted or con-
tained invalid information.

CCNOTSUPP: The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

CCOUTSTATE: The primitive was issued from an invalid state for the requested address(es).

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 150 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.14. Circuit Management Query Indication

CC_QUERY_IND

This primitive indicates that the peer CCS user has requested that the specified call control address(es) (signalling
interface and circuit identifiers) be queried.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message block is
as follows:

typedef struct CC query_ind {

ulong cc_primtive; /* always CC _QUERY_IND */
ul ong cc_fl ags; /* query flags */

ul ong cc_addr _| engt h; /* address length */

ul ong cc_addr _of fset; /* address offset */

} CC query_ind_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies the options flags. See "Flags" below.
cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) that the peer CCS user has requested to be queried.
cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid M odes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States
This primitive is valid in any state for the specified address(es).

New State

The new query state will be CCS_WRES_QIND for the specified call control addresses and the number of out-
standing queries for the specified call control addresses will be incremented.

$Revision: 0.8.22 % Page 151 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.2.15. Circuit Management Query Response

CC_QUERY_RES
This primitive requests that the CCS provider respond to the previous query indication.

Format

The format is one M_PROTO message block. The structure of the M_PROTO message block is as follows:
typedef struct CC query_res {

ulong cc_primtive; /* always CC _QUERY_RES */
ul ong cc_fl ags; /* blocking flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC query_res_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies options flags for the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit

group identifiers) upon which the query is requested. The semantics of the values in the
call control address is described in Section 2.

cc_addr_offset: Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Flags
The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid M odes
This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States

This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State

The new query state of the previously specified call control addresses is the CCS_IDLE or CCS_WRES_QIND
state and the query backlog is decremented.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_OK_ACK primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE IND or CCS _RESET_IND
primitive.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCACCESS: The user did not have sufficient permission to invoke the operation.
CCOUSTATE: The primitive was issued from an invalid state.
CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 152 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

4.3.2.16. Circuit Management Query Confirmation

CC_QUERY_CON
This primitive confirms a previous query request (or indicates failure of a previous query request).

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC_query_con {

ulong cc_primtive; /* always CC_QUERY_CON */
ul ong cc_fl ags; /* query flags */
ul ong cc_addr _| engt h; /* address length */
ul ong cc_addr _of fset; /* address offset */

} CC query_con_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_flags: Specifies the options flags and result of the operation. (See "Flags" below.)
cc_addr_length: Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which status is confirmed.
cc_addr_offset: Specifies the offset of the call controll adress(es) from the beginning of the M_PROTO
message block.
Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the query state of the specified address(es) is
CCS_WCON_QREQ.

New State
The new query state will be CCS_IDLE for the specified call control addresses.

$Revision: 0.8.2.2 $ Page 153 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.3. Maintenance Primitives
4.3.3.1. Maintenance Indication

CC_MAINT_IND

This primitive indicates that the CCS provider has observed an event on the indicated call control address(es)
which requires a maintenance action.

Format

The format of this message is one M_PROTO message block followed by zero or more M_DATA blocks. The
structure of the M_PROTO message block is as follows:

typedef struct CC maint_ind {

ulong cc_primtive; /* always CC _MAI NT_IND */
ul ong cc_reason; /* reason for indication */
ulong cc_call ref; /* call reference */

ul ong cc_addr _| engt h; /* length of address */

ul ong cc_addr _of fset; /* length of address */

} CC_maint_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
CC_reason: Indicates the reason for the maintenance indication. Maintenance indication reasons are
protocol and provider-specific. For additional information see the Addendum.
cc_call_ref: Indicates the call reference. The call reference is used by the CCS provider to identify
the call.
cc_addr_length: Indicates the length of the call control address(es) (signalling interface and circuit iden-
tifiers) upon which the CCS provider is giving a maintenance indication.
cc_addr_offset: Indicates the offset of the call control address(es) from the beginning of the M_PROTO
message block.
Valid M odes

This primitive is valid in UNI (Network) mode and NNI mode.

Valid States
This primitive is valid in any state.

New State
The new state is unchanged.

$Revision: 0.8.22 % Page 154 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.4. Circuit Continuity Test Primitives

This section describes the format of the NNI circuit continuity test primitives and rules associated with these
primitives. Continuity test primitives are used by NNI management interfaces for performing continuity test re-
guests or responding to continuity test indications for specified or indicated circuits. These primitives are pro-
vided to allow the NNI to meet Q.764 conformance.

4.3.4.1. Circuit Continuity Check Request

CC _CONT_CHECK_REQ
This primitive requests that the CCS provider perform a continuity check procedure.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC_cont_check_req {
ulong cc_primtive; /* always CC_CONT_CHECK REQ */
ul ong cc_addr _I| engt h; /* adress length */
ul ong cc_addr _of fset; /* adress offset */

} CC_cont_check_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_addr_length: Specifies the length of the call control address (circuit identifier) upon which the CCS
user is requesting a continuity check.
cc_addr_offset: Specifies the offset of the call control address from the beginning of the M_PROTO
message block.
Rules

The following rules apply to the continuity check of call control addresses (circuit identifiers):

« If the CCS user does not specify a call control address (i.e, cc_addr_length is set to zero), then the CCS
provider may attempt to assign a call control address and associate it with the stream for the duration of the
continuit test procedure. This can be useful for automated continuity testing.

Valid M odes
This primitive is only valid in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the selected circuit.

New State
The new state is CKS_WIND_CTEST for the selected address.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

 Successful: Successful completion is indicated via the CC_CONT_TEST_IND primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.
CCOUTSTATE: The primitive was issued from an invalid state.

$Revision: 0.8.22 % Page 155 April 15, 2003

Call Control Interface (CClI)

CCNOADDR:
CCBADADDR:

CCNOTSUPP:

CCACCESS:

$Revision: 0.8.22 %

OpenSS7 Corpor ation

The call control address was not provided (cc_addr_length coded zero).

The call control address contained in the primitive were poorly formatted or con-
tained invalid information.

The primitive is not supported for the UNI interface and a UNI signalling address
was provided in the call control address or the address was issued to a UNI CCS
provider.

The user did not have sufficient permission to perform the operation on the specified
call control addresses.

Page 156 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.4.2. Circuit Continuity Check Indication

CC_CONT_CHECK_IND

This primitive indicates to the CCS user that a continuity check is being requested by the CCS user peer on the
specified call control address(es) (signalling interface and circuit identifiers). Upon receipt of this primitive, the
CCS user should establish a loop back device on the specified channel and issues the CC_CONT_TEST_REQ
primitive confirming the loop back. The CCS user should then wait for the CC_CONT_REPORT_IND indicat-
ing the success or failure of the continuity check.

This primitive is only delivered to listening streams listening on the specified call control addresses or to a stream
bound as a default listener in the same manner as the CC_SETUP_IND. (A continuity test indication is treated as
a special form of call setup.)

This primitive is only issued to CCS users that successfully bound using the CC_BIND_REQ primitive with flag
CC_TEST set and a non-zero number of setup indications was provided in the CC_BIND_REQ and returned in
the CC_BIND_ACK.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
t ypedef struct CC cont_check_ind {

ulong cc_primtive; /* always CC_CONT_CHECK I ND */
ulong cc_call ref; /* call reference */
ul ong cc_addr _| engt h; /* adress length */
ul ong cc_addr _of fset; /* adress offset */

} CC cont_check_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Identifies the call reference that can be used by the CCS user to associate this message
with the CC_CONT_TEST_REQ or CC_RELEASE_REQ primitive that is to follow.
This value must be unique among the outstanding CC_CONT_CHECK _IND messages.
cc_addr_length: Indicates the length of the call control address (circuit identifier) upon which a continu-
ity check is indicated.
cc_addr_offset: Indicates the offset of the requesting address from the beginning of the M_PROTO mes-
sage block.
Valid M odes

This primitive is only valid for addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the specified addresses.

New State
The new state is CKS_WREQ_CTEST for the specified addresses.

$Revision: 0.8.22 % Page 157 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.4.3. Circuit Continuity Test Request

CC_CONT_TEST REQ

This message is used either to respond to a CC_SETUP_IND primitive which contains the
ISUP_NCI_CONT_CHECK_REQUIRED flag, or to respond to a CC_CONT_CHECK_IND primitive. Before
responding to either primitive, the CCS User should install a loop back device on the requested channel and then
respond with this response primitive to confirm the loop back.

For mat
The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as follows:
t ypedef struct CC cont_test_req {

ulong cc_primtive; /* always CC_CONT_TEST_REQ */
ul ong cc_cal |l _ref; /* call reference */
ul ong cc_t oken_val ue; /* token val ue */

} CC cont_test_req_t;

Parameters
cc_primitive: Indicates the primitive type.

cc_call_ref: Indicates the call reference of the CC_CONT_TEST_REQ message. It is used by the
CCS provider to associate the CC_CONT_TEST_REQ message with an outstanding
CC_SETUP_IND message. An invalid call reference should result in error with the er-
ror type CCBADCLR.

cc_token_value: Is used to identify the stream that the CCS user wants to establish the continuity check
call on. (Its value is determined by the CCS user by issuing a CC_BIND_REQ primi-
tive with the CC_TOKEN_REQUEST flag set. The token value is returned in the
CC_BIND_ACK.) The value of this field should be non-zero when the CCS user wants
to establish the call on a stream other than the stream on which the
CC_CONT_CHECK _IND arrived. If the CCS user wants to establish a call on the same
stream that the CC_CONT_CHECK _IND arrived on, then the value of this field should
be zero.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CKS_ WREQ_CTEST.

New State
The new state is CKS_WIND_CCREP.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_CONT_REPORT_IND in the case that the primi-
tive was issued in response to a CC_SETUP_IND, or CC_RELEASE_IND primitive in the case that the prim-
itive was issued in response to the CC_CONT_CHECK_IND primitive.

» Unsuccessful: Unsuccessful completion is indicated via the CC_CONT_REPORT _IND primitive.

» Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal errors
are defined as follows:

CCSYSERR: A system error has occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22$ Page 158 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCOUTSTATE: The primitive was issued from an invalid state.

CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCACCESS: The user did not have proper permissions for the operation.
CCNOTSUPP: The CCS provider does not support the operation.

$Revision: 0.8.22 % Page 159 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.4.4. Circuit Continuity Test Indication

CC_CONT_TEST_IND

This message confirms to the testing CCS user that a loop back device has been (or will be) installed on the spec-
ified call control address (circuit). Upon receiving this message, the testing CCS user should connect tone gener-
ation and detection equipment to the specified circuit, perform the continuity test and issue a report using the
CC_CONT_REPORT_REQ primitive.

This primitive will only be issued to streams successfully bound with the CC_BIND_REQ primitive with a non-
zero number of setup indications and the CC_TEST bind flag set.
Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as follows:
t ypedef struct CC cont_test_ind {

ulong cc_primtive; /* always CC_CONT_TEST_ I ND */
ul ong cc_cal |l _ref; /* call reference */
ul ong cc_addr _I| engt h; /* adress length */
ul ong cc_addr _of fset; /* adress offset */

} CC cont_test_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference associated with the continuity check call for the specified
call control address (circuit identifier).
cc_addr_length: Indicates the length of the call control address (signalling interface and circuit identifier)

upon which a continuity check is confirmed. The semantics of the values in the
CC_CONT_TEST _IND is identical to the values in the CC_BIND_REQ.

cc_addr_offset: Indicates the offset of the connecting address from the beginning of the M_PROTO
message block.

Valid M odes
This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CCS_WCON_CREQ.
New State

The new state is CCS_WAIT_COR.

$Revision: 0.8.22 % Page 160 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.4.5. Circuit Continuity Report Request

CC_CONT_REPORT_REQ

This primitive requests that the CCS provider indicate to the called CCS user that the continuity check succeeded
or failed. The CCS user should remove any continuity test tone generator/detection device from the circuit and
verify silent code loop back before issuing this primitive.

For mat
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC cont_report_req {

ulong cc_primtive; /* always CC_CONT_REPORT_REQ */
ul ong cc_user _ref; /* user call reference */
ulong cc_call ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC cont_report_req_t;

Parameters
cc_primitive: Specifies the primitive type.
cc_user_ref: Specifies the CCS user reference of the associated CC_SETUP_REQ primitive. This
value is non-zero when the CC_CONT_REPORT_REQ primitive is issued subsequent
to a CC_SETUP_REQ primitive which had the flag ISUP_NCI_CONTINU-
ITY_CHECK_PREVIOUS set to indicate the result of the continuity check on the previ-
ous circuit. Otherwise, this value is coded zero.
cc_call_ref: Specifies the call reference of the associated CC_CONT_TEST_IND primitive for the
continuity check call. This value is non-zero when the CC_CONT_REPORT_REQ
primitive is issued in response to a CC_CONT_TEST_IND primitive. Otherwise, this
value is coded zero.
cc_result: Specifies the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.
Valid M odes

This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CCREP.

New State

When issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE. When issued
subsequent to a CC_SETUP_REQ primitive, the new state is either CCS_WREQ_MORE or CCS_WREQ_PRO-
CEED, depending upon whether the sent address contain an ST pulse.

Acknowledgments
The CCS provider should generate one of the following acknowledgments upon receipt of this primitive:

» Successful: Successful completion is indicated via the CC_OK_ACK primitive.
» Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

CCSYSERR: A system error occurred and the UNIX system error is indicated in the primitive.

$Revision: 0.8.22 % Page 161 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CCOUTSTATE: The primitive was issued from an invalid state.
CCBADCLR: The call reference specified in the primitive was incorrect or illegal.
CCBADPRIM: The primitive format was incorrect.

$Revision: 0.8.22 % Page 162 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.4.6. Circuit Continuity Report Indication

CC_CONT_REPORT_IND

This primitive indicates to the called CCS user that the continuity check succeeded or failed. The called CCS
user can remove the loop back or tone generation/detection devices from the circuit and the call either moves to
the idle state or a call setup state.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as fol-
lows:
typedef struct CC cont_report_ind {
ulong cc_primtive; /* always CC_CONT_REPORT_IND */
ulong cc_call ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC cont_report_ind_t;

Parameters
cc_primitive: Indicates the primitive type.
cc_call_ref: Indicates the call reference associated with the continuity check report as it appeared in
the associated CC_CONT_CHECK _IND primitive.
cc_result: Indicates the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.
Valid M odes

This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CTEST or CCS_WIND_CCREFP.

New State

If the primitive is issued subsequent to the CC_SETUP_REQ), the new state is CCS_WCON_SREQ. If the prim-
itive is issued in response to the CC_CONT_TEST _IND primitive, the new state is CCS_IDLE.

$Revision: 0.8.22 % Page 163 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

4.3.5. Collecting Information Phase
The following call control service primitive pertain to the collecting information phase of acall.

$Revision: 0.8.22 % Page 164 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

5. Diagnostics Requirements

Two error handling facilities should be provided to the call control service user: one to handle non-fatal errors,
ant the other to handle fatal errors.

5.1. Non-Fatal Error Handling Facility

These are errors that do not change the state of the call control service interface or the call reference as seen by
the call control service user, and provide the user the option of reissuing the call control service primitive with
the corrected options specification. The non-fatal error handling is provided only to those primitive that require
acknowledgments, and uses the CC_ERROR_ACK primitive to report these errors. These errors retain the state
of the call control service interface and call reference the same as it was before the call control service provider
received the primitive that was in error. Syntax errors and rule violations are reported via the non-fatal error han-
dling facility.

5.2. Fatal Error Handling Facility

These errors are issued by the CCS provider when it detects errors that are not correctable by the call control ser-
vice user, or if it is unable to report a correctable error to the call control service user. Fatal errors are indicated
via the STREAMS message type M_ERROR with the UNIX system error EPROTO. The M_ERROR
STREAMS message type will result in the failure of all the UNIX system calls on the stream. The call control
service user can recover from a fatal error by having all the processes close the files associated with the stream,
and then reopening them for processing.

$Revision: 0.8.22 % Page 165 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

6. Addendum for Q.931 Conformance

This addendum describes the formats and rules that are specific to ISDN Q.931. The addendum must be used
along with the generic CCI as defined in the main document when implementing a CCS provider that will be
configured with the Q.931 call processing layer.

6.1. Primitivesand Rulesfor Q.931 Conformance
The following are the rules that apply to the CCI primitives for Q.931 compatibility.

6.1.1. Common Primitive Parameters

6.1.1.1. Call Control Addresses

Format

The format of call control addresses is as follows:

Parameters
cc_addr_length:

cc_addr_offset:

Address For mat

Specifies or indicates the length of the call control address. If a call control address is
not included in the primitive, this parameter must be coded zero (0).

Specifies or indicates the offset of the address from the begining of the primitive. If a
call control address is not included with the primitive, this parameter must be coded zero

0).

The format of the call control addresses for Q.931 conforming CCS providers is as follows:

typedef struct isdn_addr {

ul ong scope; /* the scope of the identifier */

ul ong id; /* the identifier within the scope */

ulong ci; /* channel identifier within the scope */
} isdn_addr_t;

#define | SDN_SCOPE_CH 1 /* channel scope */
#define |1 SDN_SCOPE_FG 2 /* facility group scope */
#define |1 SDN_SCOPE_TG 3 /* transm ssion group scope */
#defi ne | SDN_SCOPE_EG 4 |* equipnent group scope */
#def i ne | SDN_SCOPE_XG 5 /* custoner/provider group scope */
#define | SDN_SCOPE_DF 6 /* default scope */
Address Fields
scope: Specifies or indicates the scope of the call control address. See "Scope™ below.
id: Specifies or indicates the identifier within the scope.
cic: Specifies or indicates the Channel Indicator significant within the scope.
Scope

The scope of the address is one of the following:

ISDN_SCOPE_CH

$Revision: 0.8.22 %

Specifies or indicates that the scope of the call control address is an ISDN B-channel.
The identifier within the scope is an identifier which uniquely identifies the channel to
the CCS provider. Channel scope addresses may also be used to specify or indicate
transmission groups, equipment groups and customer/provider groups. When used in an
indication or confirmation primitive, the CCS provider includes the Channel Identifica-
tion associated with the circuit in the address.

Page 166 April 15, 2003

Call Control Interface (CClI)

ISDN_SCOPE_FG

ISDN_SCOPE_TG

ISDN_SCOPE_EG

ISDN_SCOPE_XG

ISDN_SCOPE_DF

Rules
Rulesfor scope:

OpenSS7 Corpor ation

For multi-rate calls where multiple channels are involved, the channel scoped address
specifies the lowest numerical Channel Identifier in the group of circuits and the Chan-
nel Identifier provides the channel map of the group of channels.

Specifies or indicates that the scope of the call control address is an ISDN facility group
(group of one or more redundant D-channels). The identifier within the scope is an
identifier which uniquely identifies the ISDN interface to the CCS provider. Facility
group scope addresses may also be used to specify or indicate channels, equipment
groups or customer/provider groups. When used in an indication or confirmation primi-
tive, the CCS provider includes the Channel Identifier associated with the indicated
channels.

Specifies or indicates that the scope of the call control address is an ISDN transmission
group (PRI interface). The identifier within the scope is an indentifier which uniquely
identifies the ISDN physical interface to the CCS provider. Transmission group scope
addresses may also be used to specify or indicate equipment groups or cus-
tomer/provider groups. When used in an indication or confirmation primitive, the CCS
provider may include the Channel Identifier associated with the facility group for the
physical interface.

Specifies or indicates that the scope of the call control address is an ISDN equipment
group. The identifier within the scope is an identifier that uniquely identifies the equip-
ment group to the CCS provider. Equipment group scoped addresses may aslo be used
to specify or indicate customer/provider groups.

Specifies or indicates that the scope of the call control address is an ISDN cus-
tomer/provider group. The identifier within the scope is an identifier that uniquely iden-
tifies the customer/provider group to the CCS provider.

Specifies or indicates that the scope of the call control address is the default scope. The
identifier within the scope and Channel Identifier are unused and should be ignored by
the CCS user and will be coded zero (0) by the CCS provider.

(1) In primitives in which the address parameter occurs, the scope field setting indicates the scope of the ad-

dress parameter.

(2) Only one call control address can be specified with a signle scope.

(3) Not all scopes are necessarily supported by all primitives. See the particular primitive in this addendum.

Rulesfor addresses:

(1) The address contained in the primitive contains the following:

* A scope.

 An identifier within the scope or zero (0).
A channel indication within the scope or zero (0).

(2) If the scope of the address is ISDN_SCOPE_DF, then both the identifier and channel indication fields
should be coded zero (0) and will be ignored by the CCS user or provider.

(3) If the scope of the address is ISDN_SCOPE_EG or ISDN_SCOPE_XG, then the channel indication field
should be coded zero (0) and will be ignored by the CCS user or provider.

(4) Inall other scopes, the channel indication field is optional and is coded zero (0) if unused.

6.1.1.2. Optional Information Elements

$Revision: 0.8.22 %

Page 167 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

For mat
The format of the optional information elements is as follows:

Parameters
cc_opt_length: Indicates the length of the optional information elements associated with the primitive.
For Q.931 conforming CCS providers, the format of the optional information elements
is the format of a Information Element list as specified in Q.931.
cc_opt_offset: indicates the offset of the option information elements from the beginning of the block.
Rules

Rulesfor optional information elements:

(1) The optional information elements provided by the CCS user may be checked for syntax by the CCS
provider. If the CCS provider discovers a syntax error in the format of the optional information elements,
the CCS provider should respond with a CC_ERROR_ACK primitive with error CCBADOPT.

(2) For some primitives, specific optional information elements might be interpreted by the CCS provider
and alter the function of some primitives. See the specific primitive descriptions later in this addendum.

(3) Except for optional information elements interpreted by the CCS provider as specified later in this adden-
dum, the optional information elements are treated as opaque and the optional information element list
only is checked for syntax. Opaque information elements will be passed to the ISDN message without
examination by the CCS provider.

(4) To perform specific functions, additional optional information elements may be added to ISDN messages
by the CCS provider.

(5) To perform specific functions, optional information elements may be modified by the CCS provider be-
fore they are added to ISDN messages.

6.1.2. Local Management Primitives
6.1.2.1. CC_INFO_ACK
Parameters

Flags

Rules

6.1.2.2. CC_BIND_REQ

Parameters
cc_addr_length: Specifies the length of the address to bind.
cc_addr_offset: Specifies the offset of the address to bind.
cc_setup_ind: Specifies the requested maximum number of setup indications that will be outstanding
for the listening stream.
Flags
CC _DEFAULT _LISTENER
CC_CHANNEL

CC_CHANNEL_GROUP

CC_TRUNK_GROUP
When on of these flags are set, it indicates that the address is interpreted by the CCS provider as

$Revision: 0.8.22 % Page 168 April 15, 2003

Call Control Interface (CCl)

OpenSS7 Corporation

unspecified (CC_DEFAULT LISTENER), a channel (CC_CHANNEL), as a channel group
(CC_CHANNEL_GROUP), or as a trunk group (CC_TRUNK_GROUP).

Rules
Rules for address specification:

(1) The address contained in the primitive must be either a unspecified, a channel, a channel group or a trunk

group.

(2) If the CC_DEFAULT_LISTENER flag is set, the address should be left unspecified by the CCS user and

should be ignored by the CCS provider.
Rules for setup indicatesion:

(1) If the number of setup indications is non-zero, the stream is bound as a listening stream. Listening
streams will receive all calls that are incoming on the address bound:

« If the address bound is a channel (CC_CHANNEL flag set), all incoming calls on the channel will be
delivered to the stream listening on the channel. These streams will have a maximum number of

setup indications of one (1).

« If the address bound is a channel group (CC_CHANNEL_GROUP flag set), all incoming calls on the
channel group will be delivered to the stream listening on the channel group. These streams will have
a maximum number of setup indications no higher than the number of channels in the channel group.

« If the address bound is a trunk group (CC_TRUNK_GROUP flag set), all incoming calls on the trunk
group will be delivered to the stream listening on the trunk group. These streams will have a maxi-
mum number of setup indications no higher than the number of channels in the trunk group.

Rules for bind flags:

(1) For Q.931 conforming CCS providers, the CC_DEFAULT_LISTENER will receive incoming calls that
have no other listening stream. There can only be one stream bound with the CC_DEFAULT _LIS-

TENER flag set.

(2) Only one of CC_DEFAULT LISTENER,
CC_TRUNK_GROUP may be set.

6.1.2.3. CC_BIND_ACK
Parameters

Flags

Rules

6.1.2.4. CC_OPTMGMT_REQ
Parameters

Flags

Rules

6.1.3. Call Setup Primitives

6.1.3.1. Call Type and Flags
Call type and flags are used in the following primitives:

CC_SETUP_REQ and
CC_SETUP_IND.

$Revision: 0.8.2.2 $ Page 169

CC_CHANNEL, CC_CHANNEL_GROUP or

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Parameters
cc_call_type: Indicates the type of call to be set up. For Q.931 conforming CCS providers, the call
type can be one of the call types listed under "Call Type" below.
cc_call_flags: Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Flags" below.
Call Type

The following call types are defined for Q.931 conforming CCS providers:

CC_CALL_TYPE_SPEECH
The call type is speech. This call type corresponds to a Q.931 Information transfer capability of
Speech, and an Information transfer rate of 64kbit/s.

CC _CALL_TYPE_64KBS _UNRESTRICTED
The call type is 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 Infor-
mation transfer capability of Unrestricted, and an Information transfer rate of 64kbit/s.

CC_CALL_TYPE_3_1kHZ_AUDIO
The call type is 3.1 kHz audio. This call type corresponds to a Q.931 Information transfer capability of
Unrestricted, and an Information transfer rate of 64kbits/s.

CC_CALL_TYPE_128KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of 2x64 kbit/s.

CC_CALL_TYPE_384KBS_UNRESTRICTED
The call type is 384 kbit/s unrestricted digital information. This call type corresponds to a Q.931 Infor-
mation transfer capability of Unrestricted, and an Information transfer rate of 384 kbit/s.

CC_CALL_TYPE_1536KBS_UNRESTRICTED
The call type is 1536 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of 1536 kbit/s.

CC_CALL_TYPE_1920KBS_UNRESTRICTED
The call type is 1920 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of 1920 kbit/s.

CC_CALL_TYPE_2x64KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 2.

CC_CALL_TYPE_3x64KBS_UNRESTRICTED
The call type is 3 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 3.

CC_CALL_TYPE_4x64KBS_UNRESTRICTED
The call type is 4 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 4.

CC_CALL_TYPE_5x64KBS_UNRESTRICTED
The call type is 5 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and a multiplier of 5.

CC_CALL_TYPE_6x64KBS_UNRESTRICTED
The call type is 6 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base

$Revision: 0.8.22 % Page 170 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

rate of 64 kbit/s and amultiplier of 6.

CC_CALL_TYPE_7x64KBS UNRESTRICTED
The call typeis 7 x 64 kbit/s unrestricted digital information. This call type correspondsto a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and amultiplier of 7.

CC_CALL_TYPE_8x64KBS UNRESTRICTED
The call typeis 8 x 64 kbit/s unrestricted digital information. This call type correspondsto a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and amultiplier of 8.

CC_CALL_TYPE_9x64KBS UNRESTRICTED
The call typeis 9 x 64 kbit/s unrestricted digital information. This call type correspondsto a Q.931 In-
formation transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a base
rate of 64 kbit/s and amultiplier of 9.

CC_CALL_TYPE_10x64KBS_UNRESTRICTED
The call type is 10 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 10.

CC_CALL_TYPE_11x64KBS UNRESTRICTED
The call typeis 11 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/sand amultiplier of 11.

CC_CALL_TYPE_12x64KBS_UNRESTRICTED
The call type is 12 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 12.

CC_CALL_TYPE_13x64KBS UNRESTRICTED
The call type is 13 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 13.

CC_CALL_TYPE_14x64KBS_UNRESTRICTED
The call type is 14 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 14.

CC_CALL_TYPE_15x64KBS UNRESTRICTED
The call type is 15 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 15.

CC_CALL_TYPE_16x64KBS_UNRESTRICTED
The call type is 16 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 16.

CC_CALL_TYPE_17x64KBS UNRESTRICTED
The call typeis 17 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 17.

CC_CALL_TYPE_18x64KBS_UNRESTRICTED
The call type is 18 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 18.

$Revision: 0.8.22 % Page 171 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_CALL_TYPE_19x64KBS_UNRESTRICTED
The call type is 19 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 19.

CC_CALL_TYPE_20x64KBS UNRESTRICTED
The call type is 20 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 20.

CC_CALL_TYPE_21x64KBS_UNRESTRICTED
The call typeis 21 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 21.

CC_CALL_TYPE_22x64KBS UNRESTRICTED
The call type is 22 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 22.

CC_CALL_TYPE_23x64KBS_UNRESTRICTED
The call type is 23 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 23.

CC_CALL_TYPE_24x64KBS UNRESTRICTED
The call type is 24 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 24.

CC_CALL_TYPE_25x64KBS_UNRESTRICTED
The call type is 25 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 25.

CC_CALL_TYPE_26x64KBS UNRESTRICTED
The call type is 26 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 26.

CC_CALL_TYPE_27x64KBS_UNRESTRICTED
The call type is 27 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 27.

CC_CALL_TYPE_28x64KBS UNRESTRICTED
The call type is 28 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 28.

CC_CALL_TYPE_29x64KBS_UNRESTRICTED
The call type is 29 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and a multiplier of 29.

CC_CALL_TYPE_30x64KBS UNRESTRICTED
The call type is 30 x 64 kbit/s unrestricted digital information. This call type corresponds to a Q.931
Information transfer capability of Unrestricted, and an Information transfer rate of multi-rate with a
base rate of 64 kbit/s and amultiplier of 30.

$Revision: 0.8.22 % Page 172 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

Flags
The following call flags are defined for Q.931 conforming CCS providers:

CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS
When set, this flag indicates that the unrestricted digital information includes tones and announcements.

Rules

6.1.3.2. CC_SETUP_REQ

Parameters
cc_call_type: Specifies the type of call to be set up. For Q.931 conforming CCS providers, the call
type can be one of the call types listed under "Call Type and Flags" in this addendum.
cc_call_flags: Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Call Type and Flags" in this
addendum.
cc_cdpn_length: Specifies the length of the called party number. For Q.931 conforming CCS providers,
the format of the called party number is the format of the Called Party Number parame-
ter (without the parameter type or length octets) as specified in Q.931.
cc_cdpn_offset: Specifies the offset of the called party number from the beginning of the block.
Rules

Rules for call type:
(1) A CCS provider need not support all of the call types listed.
Rules for call flags:

(1) The CC_ITC_WITH_TONES AND_ANNOUNCEMENTS flag may only be set when the call type is
unrestricted digital information. When the call type is not unrestricted digital information, this flag
should be ignored by the CCS provider.

Rules for called party number:
Rules for generating a SETUP message:

(1) The mandatory (first) Bearer Capability information element in the SETUP message will be derived from
the call type and flags. The Bearer Capability information element will contain the Information transfer
capability, rate, base and multiplier indicated above.

» When the call type is CC_CALL _TYPE_128KBS UNRESTRICTED, the Bearer Capability informa-
tion element will be coded with an Information transfer capability of unrestricted (or unrestricted with
tones an announcements if the flag CC_ITC_ WITH_TONES_AND_ANNOUNCEMENTS i set) and
an Information transfer rate of 2 x 64 kbit/s uni-rate call. For a multi-rate call, the call type should be
coded as CC_CALL_TYPE_2x64KBS_UNRESTRICTED.

» When the call type is CC_CALL_TYPE_384KBS_UNRESTRICTED, the Bearer Capability informa-
tion element will be coded with an Information transfer capability of unrestricted (or unrestricted with
tones an announcements if the flag CC_ITC WITH_TONES_AND_ANNOUNCEMENTS i set) and
an Information transfer rate of 384 kbit/s uni-rate call. For a multi-rate call, the call type should be
coded as CC_CALL_TYPE_6x64KBS_UNRESTRICTED.

» When the call type is CC_CALL_TYPE 1536KBS_UNRESTRICTED, the Bearer Capability infor-
mation element will be coded with an Information transfer capability of unrestricted (or unrestricted
with tones an announcements if the flag CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS i set)
and an Information transfer rate of 1536 kbit/s uni-rate call. For a multi-rate call, the call type should
be coded as CC_CALL_TYPE_24x64KBS_UNRESTRICTED.

» When the call type is CC_CALL_TYPE 1920KBS UNRESTRICTED, the Bearer Capability infor-
mation element will be coded with an Information transfer capability of unrestricted (or unrestricted

$Revision: 0.8.2.2 $ Page 173 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

with tones an announcements if the flag CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS i set)
and an Information transfer rate of 1920 kbit/s uni-rate call. For a multi-rate call, the call type should
be coded as CC_CALL_TYPE_29x64KBS_UNRESTRICTED.

(1) The mandatory Channel Identification information element in the SETUP message will be derived from
the address to which the stream is bound.

« If the stream is bound to a channel group (the one or more interfaces), then a free channel will be se-
lected automatically by the CCS provider (if possible).
« |f the stream is bound to a channel, then the channel identifier of the bound channel will be used.

Rules for state transitions:

(1) If the optional information element contains a Sending Complete information element, then the CCS
provider will not accept any subsequent CC_INFORMATION_REQ primitives from the CCS user, nor
will the CCS provider issue any subsequent CC_MORE_INFO_IND primitives to the CCS user.

6.1.3.3. CC_SETUP_IND

Parameters
cc_call_type: Specifies the type of call to be set up. For Q.931 conforming CCS providers, the call
type can be one of the call types listed under "Call Type and Flags" in this addendum.
cc_call_flags: Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Call Type and Flags" in this
addendum.
cc_cdpn_length: Specifies the length of the called party number. For Q.931 conforming CCS providers,
the format of the called party number is the format of the Called Party Number parame-
ter (without the parameter type or length octets) as specified in Q.931.
cc_cdpn_offset: Specifies the offset of the called party number from the beginning of the block.
cc_addr_length: Specifies the length of the address which contains the channel identifier selected for the
call.
cc_addr_offset: Specifies the offset of the address from the beginning of the block.
Flags

Call flags can be any of the call flags supported by the CCS provider listed under CC_SETUP_REQ in this ad-
dendum.

Rules
Rules for call type:
(1) A CCS provider need not support all of the call types listed.
Rules for call flags:

(1) The CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS flag may only be set when the call type is
unrestricted digital information. When the call type is not unrestricted digital information, this flag
should be ignored by the CCS provider.

Rules for called party number:
Rules for obtaining parameters from a SETUP message:

(1) The mandatory (first) Bearer Capability information element in the SETUP message will be translated
into the call type and flags. The call type and flags correspond to the Bearer Capability information ele-
ment will contain the Information transfer capability, rate, base and multiplier indicated under "Call
Type" and "Flags".

$Revision: 0.8.2.2 $ Page 174 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

(2) The mandatory Channel Identification information element in the SETUP message will be provided in

the address parameter.
Rulesfor statetransitions:

(1) If the optional information element contains a Sending Complete information element, then the CCS
provider will not accept any subsequent CC_MORE_INFO_REQ primitives from the CCS user, nor will
the CCS provider issue any subsequent CC_INFORMATION_IND primitives to the CCS user.

6.1.3.4. CC_SETUP_RES

Parameters

Flags

Rules

6.1.3.5. CC_SETUP_CON

Parameters

Flags

Rules

6.1.3.6. CC_CALL_REATTEMPT_IND
Rules

6.1.3.7. CC_SETUP_COMPLETE_REQ
Parameters

Flags

Rules

6.1.3.8. CC_SETUP_COMPLETE_IND
Parameters

Flags

Rules

6.1.4. Continuity Check Primitives
6.1.4.1. CC_CONT_CHECK_REQ
Parameters

Flags

Rules

$Revision: 0.8.2.2$ Page 175

April 15, 2003

Call Control Interface (CClI)

6.1.4.2. CC_CONT_TEST_REQ
Parameters

Flags

Rules

6.1.4.3. CC_CONT_REPORT REQ
Parameters

Flags

Rules

6.1.5. Call Establishment Primitives
6.1.5.1. CC_MORE_INFO REQ
Parameters

Flags

Rules

6.1.5.2. CC_MORE_INFO_IND
Parameters

Flags

Rules

6.1.5.3. CC_INFORMATION_REQ
Parameters

Flags

Rules

6.1.5.4. CC_INFORMATION_IND
Parameters

Flags

Rules

6.1.5.5. CC_INFO_TIMEOUT_IND

Rules
Rulesfor issuing primitive:

$Revision: 0.8.2.2$ Page 176

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

(1) If the Q.931 conforming CCS provider is expecting additional digits (it has previously issued a
CC_MORE_INFO_REQ) and timer T302 expires, the CCS provider will issue this primitive to the CCS
user.

(2) Upon receipt of this primitive, it is the CCS user’s responsibility to determine whether the address digits
are sufficient and to issue a CC_SETUP_RES or CC_REJECT_REQ primitive.

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS user receives a CC_INFO_TIMEOUT _IND

6.1.5.6. CC_PROCEEDING_REQ
Parameters

Flags

Rules

6.1.5.7. CC_PROCEEDING_IND
Parameters

Flags

Rules

6.1.5.8. CC_ALERTING REQ
Parameters

Flags

Rules

6.1.5.9. CC_ALERTING_IND
Parameters

Flags

Rules

6.1.5.10. CC_PROGRESS REQ
Parameters

Flags

Rules

6.1.5.11. CC_PROGRESS IND

Parameters

$Revision: 0.8.22 % Page 177 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Flags

Rules

6.1.5.12. CC_IBI_REQ
Parameters

Flags

Rules

6.1.5.13. CC_IBI_IND
Parameters

Flags

Rules

6.1.6. Call Established Primitives
6.1.6.1. CC_SUSPEND REQ

Parameters
cc_flags: Indicates the options associated with the suspend. See "Flags" below.

Flags
Q.931 conforming CCS providers do not support suspend flags. This field should be coded zero (0) by the CCS
user and ignored by the CCS provider.

Rules
Rulesfor issuing primitive:

(1) Only the CCS user on the User side of the Q.931 interface can issue a CC_SUSPEND_REQ primitive. If
the CCS provider is in Network mode and it receives a CCS_SUSPEND_REQ, it should respond with a
CC_ERROR_ACK with error CCNOTSUPP.

6.1.6.2. CC_SUSPEND IND
cc_flags: Indicates the options associated with the suspend. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support suspend flags. This field will be coded zero (0) by the CCS
provider and may be ignored by the CCS provider.

6.1.6.3. CC_SUSPEND_RES
Parameters

Rules

$Revision: 0.8.22 % Page 178 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

6.1.6.4. CC_SUSPEND CON
Parameters
Rules

6.1.6.5. CC_SUSPEND REJECT REQ

Parameters
CC_cause: Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause
values can be any of the values listed in "Cause Values" in this addendum with the ex-
ception of CCS_CAUS_NONE.
Flags
Rules

6.1.6.6. CC_SUSPEND REJECT_IND

Parameters
CC_cause: Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause
values can be any of the values listed in "Cause Values" in this addendum with the ex-
ception of CCS_CAUS_NONE.
Flags
Rules

6.1.6.7. CC_RESUME_REQ

Parameters
cc_flags: Indicates the options associated with the resume. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support resume flags. This field should be coded zero (0) by the CCS
user and ignored by the CCS provider.

Rules
6.1.6.8. CC_RESUME_IND

Parameters
cc_flags: Indicates the options associated with the resume. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support resume flags. This field should be coded zero (0) by the CCS
user and ignored by the CCS provider.

Rules

$Revision: 0.8.22 % Page 179 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

6.1.6.9. CC_RESUME_RES
Parameters

Flags

Rules

6.1.6.10. CC_RESUME_CON
Parameters

Flags

Rules

6.1.6.11. CC_RESUME_REJECT REQ

Parameters
CC_cause: Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause
values can be any of the values listed in "Cause Values" in this addendum with the ex-
ception of CCS_CAUS_NONE.
Flags
Rules

6.1.6.12. CC_RESUME_REJECT_IND

CC_cause: Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause
values can be any of the values listed in "Cause Values" in this addendum with the ex-
ception of CCS_CAUS_NONE.

Parameters

Flags

Rules

6.1.7. Call Termination Primitives

6.1.7.1. Cause Values
Cause values are used in the following primitives:

CC_REJECT_REQ,
CC_REJECT_IND,
CC_DISCONNECT_REQ,
CC_DISCONNECT_IND,
CC_RELEASE_REQ, and
CC_RELEASE_IND.

Parameters

CC_cause: Indicates the case for the rejection, disconnection, or release of a call. For Q.931 con-
forming CCS providers, the cause values can be any of the cause values listed in Q.850
listed under "Cause Value" below.

$Revision: 0.8.22 % Page 180 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Cause Value

Cause values are essentially opaque and cause values will be transferred directly to the corresponding Q.931
message. The following cause values are defined for Q.931 conforming CCS providers:

CC_CAUS_UNALLOCATED_NUMBER
The called party number does not correspond to number allocated to a subscriber or terminal.

CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK
CC_CAUS_NO_ROUTE_TO_DESTINATION
CC_CAUS_SEND_SPECIAL_INFO_TONE
CC_CAUS_MISDIALLED_TRUNK_PREFIX
CC_CAUS_PREEMPTION
CC_CAUS_PREEMPTION_CCT_RESERVED
CC_CAUS_NORMAL_CALL_CLEARING
CC_CAUS_USER_BUSY
CC_CAUS_NO_USER_RESPONDING
CC_CAUS_NO_ANSWER
CC_CAUS_SUBSCRIBER_ABSENT
CC_CAUS_CALL_REJECTED
CC_CAUS_NUMBER_CHANGED
CC_CAUS_REDIRECT

CC_CAUS_OUT_OF ORDER
CC_CAUS_ADDRESS_INCOMPLETE
CC_CAUS_FACILITY _REJECTED
CC_CAUS_NORMAL_UNSPECIFIED
CC_CAUS_NO_CCT_AVAILABLE
CC_CAUS_NETWORK_OUT_OF ORDER
CC_CAUS_TEMPORARY_FAILURE
CC_CAUS_SWITCHING_EQUIP_CONGESTION
CC_CAUS_ACCESS_INFO_DISCARDED
CC_CAUS_REQUESTED_CCT_UNAVAILABLE
CC_CAUS_PRECEDENCE_CALL_BLOCKED
CC_CAUS_RESOURCE_UNAVAILABLE
CC_CAUS_NOT_SUBSCRIBED
CC_CAUS_OGC_BARRED _WITHIN_CUG
CC_CAUS_ICC_BARRED WITHIN_CUG
CC_CAUS_BC_NOT_AUTHORIZED
CC_CAUS_BC_NOT_AVAILABLE
CC_CAUS_INCONSISTENCY
CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE
CC_CAUS_BC_NOT_IMPLEMENTED
CC_CAUS_FACILITY_NOT_IMPLEMENTED

$Revision: 0.8.22 % Page 181 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_CAUS_RESTRICTED_BC_ONLY
CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED
CC_CAUS_USER_NOT_MEMBER_OF_CUG
CC_CAUS_INCOMPATIBLE_DESTINATION
CC_CAUS_NON_EXISTENT_CUG
CC_CAUS_INVALID_TRANSIT NTWK_SELECTION
CC_CAUS_INVALID_MESSAGE
CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED
CC_CAUS_PARAMETER_NOT_IMPLEMENTED
CC_CAUS_RECOVERY ON_TIMER_EXPIRY
CC_CAUS_PARAMETER_PASSED_ON
CC_CAUS_MESSAGE_DISCARDED
CC_CAUS_PROTOCOL_ERROR
CC_CAUS_INTERWORKING
CC_CAUS_UNALLOCATED_DEST_NUMBER
CC_CAUS_UNKNOWN_BUSINESS_GROUP
CC_CAUS_EXCHANGE_ROUTING_ERROR
CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26
CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND
CC_CAUS_PREEMPTION
CC_CAUS_PRECEDENCE_CALL_BLOCKED
CC_CAUS_CALL_TYPE_INCOMPATIBLE
CC_CAUS_GROUP_RESTRICTIONS

Rules
In addition to these cause values, the CCS provider might support additional variant-specific cause values.

6.1.7.2. CC_REJECT_REQ

Parameters
CC_cause: Specifies the cause value for the rejection. For Q.931 conforming CCS providers, the
cause value will be one of the cause values listed under "Cause Values" in this Adden-
dum.
Flags
Rules

6.1.7.3. CC_REJECT_IND

Parameters
CC_cause: Specifies the cause value for the rejection. For Q.931 conforming CCS providers, the
cause value will be one of the cause values listed under "Cause Values" in this Adden-
dum.

$Revision: 0.8.22 % Page 182 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation
Flags
Rules

6.1.7.4. CC_CALL_FAILURE_IND

Parameters
CC_reason: Specifies the reason for the failure indication. For Q.931 conforming CCS providers,
the reason will be one of the reasons listed under "Call Failure Reasons" below.
CC_cause: Specifies the cause value for the error indication. For Q.931 conforming CCS providers,
the cause value will be one of the cause values listed under "Cause Values" in this ad-
dendum.

Call Failure Reasons

ISUP_CALL_FAILURE_ERROR
Indicates that the data link failed and recovered during overlap sending or overlap receiving.

ISUP_CALL_FAILURE_STATUS
Indicates that the CCS provider received a STATUS message from the peer with a unrecoverable mis-
match in state.

ISUP_CALL_FAILURE_RESTART
Indicates that the CCS provider received or issued a RESTART message for the channel.

Flags
Rules

6.1.7.5. CC_DISCONNECT_REQ

Parameters
CC_cause: Specifies the cause value for the disconnect. For Q.931 conforming CCS providers, the
cause value will be one of the cause values listed under "Cause Values" in this adden-
dum.
Rules

6.1.7.6. CC_DISCONNECT_IND

Parameters
CcC_cause: Indicates the case values for the disconnect. For Q.931 conforming CCS providers, the
cause value wil be one of the cause values listed under "Cause Value" in this addendum.
Rules

6.1.7.7. CC_RELEASE_REQ

Parameters
CC_cause: Specifies the cause value for the release. For Q.931 conforming CCS providers, the
cause value will be one of the cause values listed under "Cause Values" in this adden-
dum.

$Revision: 0.8.22 % Page 183 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Rules
Rulesfor cause:

(1) If the request is not the first step in the clearing phase (i.e, the call is not in state CC_ WREQ_REL), then
the cause value must be specified. Otherwise, the cause value should be coded CC_CAUS_NONE by the
CCS user and ignored by the CCS provider.

6.1.7.8. CC_RELEASE_IND

Parameters
CC_cause: Specifies the cause value for the release. For Q.931 conforming CCS providers, the
cause value will be one of the cause values listed under "Cause Values" in this adden-
dum.
Rules

Rulesfor cause:
(1) If the request is not the first step in the clearing phase (i.e, the call is not in state CC_WIND_REL), then

the cause value will be indicated by the CCS provider. Otherwise, the cause value will be coded
CC_CAUS_NONE by the CCS provider and should be ignored by the CCS user.

6.1.7.9. CC_RELEASE RES

Parameters

Rules

6.1.7.10. CC_RELEASE_CON

Parameters

Rules

6.1.8. Management Primitives

6.1.8.1. CC_RESTART REQ

Parameters
cc_flags:
cc_addr_length: Specifies the length of the address which contains the interface identifier(s) and optional
channel identification for the interface(s) or channels to restart.
cc_addr_offset: Specifies the offset of the address from the beginning of the block.
Flags
Rules

6.1.8.2. CC_RESTART_CON

Parameters
cc_flags:

cc_addr_length: Specifies the length of the address which contains the interface identifier(s) and optional
channel identification for the interface(s) or channels to restart.

$Revision: 0.8.22 % Page 184 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

cc_addr_offset: Specifies the offset of the address from the beginning of the block.
Flags
Rules

6.2. Q.931 Header FileListing

$Revision: 0.8.22 % Page 185 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

7. Addendum for Q.764 Conformance

This addendum describes the formats and rules that are specific to ISUP Q.764. The addendum must be used
along with the generic CCI as defined in the main document when implementing a CCS provider that will be
configured with the Q.764 call processing layer.

7.1. Primitivesand Rulesfor Q.764 Conformance
The following are the rules that apply to the CCI primitives for Q.764 compatibility.

7.1.1. Common Primitive Parameters

7.1.1.1. Call Control Addresses

Format

The format of call control addresses is as follows:

Parameters
cc_addr_length:

cc_addr_offset:

Address For mat

Specifies or indicates the length of the call control address. If a call control address is
not included in the primitive, this parameter must be coded zero (0).

Specifies or indicates the offset of the address from the begining of the primitive. If a
call control address is not included with the primitive, this parameter must be coded zero

0).

The format of the call control addresses for Q.764 conforming CCS providers is as follows:

typedef struct isup_addr {

ul ong scope; /* the scope of the identifier */

ul ong id; /* the identifier within the scope */

ul ong ci c; /* circuit identification code within the scope */
} isup_addr_t;

#define |1 SUP_SCOPE_CT 1 /* circuit scope */
#define | SUP_SCOPE_CG 2 /* circuit group scope */
#define | SUP_SCOPE_TG 3 /* trunk group scope */
#define |1 SUP_SCOPE_SR 4 /* signalling relation scope */
#defi ne | SUP_SCOPE_SP 5 /* signalling point scope */
#define | SUP_SCOPE_DF 6 /* default scope */
Address Fields
scope: Specifies or indicates the scope of the call control address. See "Scope™ below.
id: Specifies or indicates the identifier within the scope.
cic: Specifies or indicates the Circuit Identification Code significant within the scope.
Scope

The scope of the address is one of the following:

ISUP_SCOPE_CT

$Revision: 0.8.22 %

Specifies or indicates that the scope of the call control address is a ISUP circuit. The
identifier within the scope is an identifier which uniquely identifies a circuit to the CCS
provider. Circuit scope addresses may also be used to specify or indicate circuit groups,
trunk groups, signalling relations and signalling points. When used in an indication or
confirmation primitive, the CCS provider includes the Circuit Identification Code asso-
ciated with the circuit in the address.

Page 186 April 15, 2003

Call Control Interface (CClI)

ISUP_SCOPE_CG

ISUP_SCOPE_TG

ISUP_SCOPE_SR

ISUP_SCOPE_SP

ISUP_SCOPE_DF

Rules
Rulesfor scope:

OpenSS7 Corpor ation

For multi-rate calls where multiple circuits are involved, the circuit scoped address spec-
ifies the lowest numerical Circuit Identification Code in the group of circuits.

Specifies or indicates that the scope of the call control address is a ISUP circuit group.
The identifier within the scope is an identifier which uniquely identifies a circuit group
to the CCS provider. Circuit group scope addresses may also be used to specify or indi-
cate signalling relations and signalling points. When used in an indication or confirma-
tion primitive, the CCS provider includes the Circuit Identification Code associated with
the circuit group (lowest numerical value CIC in the circuit group range).

Specifies or indicates that the scope of the call control address is a ISUP trunk group.
The identifier within the scope is an identifier which uniquely identifies a trunk group to
the CCS provider. Trunk group scope addresses may also be used to specify or indicate
circuits, signalling relations and signalling points. The Circuit Identification Code must
be used to specify a circuit within the trunk group.

Specifies or indicates that the scope of the call control address is a ISUP signalling rela-
tion. The identifier within the scope is an identifier which uniquely identifies a sig-
nalling relation to the CCS provider. Signalling relation scope addresses may also be
used to specify or indicate circuits and signalling points. The Circuit ldentification
Code must be used to sepcify a circuit (equipped or unequipped) within the signalling
relation.

Specifies or indicates that the scope of the call control address is a ISUP signalling
point. The identifier within the scope is an identifier which uniquely identifies a local
signalling point to the CCS provider. Signalling point scope addresses may only indi-
cate local signalling points. The Circuit Identification Code is unused and should be ig-
nored by the CCS user and will be coded zero (0) by the CCS provider.

Specifies or indicates that the scope of the call control address is the default scope. The
identifier within the scope and Circuit Identification Code are unused and should be ig-
nored by the CCS user and will be coded zero (0) by the CCS provider.

(1) Inprimitives in which the address parameter occurs, the scope field setting indicates the scope of the ad-

dress parameter.

(2) Only one call control address can be specified with a signle scope.

(3) Not all scopes are necessarily supported by all primitives. See the particular primitive in this addendum.

Rulesfor addresses:

(1) The address contained in the primitive contains the following:

* A scope.

 An identifier within the scope or zero (0).
« A circuit identification code within the scope or zero (0).

(2) If the scope of the address is ISUP_SCOPE_DF, then both the identifier and circuit identification code
fields should be coded zero (0) and will be ignored by the CCS user or provider.

(3) If the scope of the address is ISUP_SCOPE_SP, then the circuit identification code field should be coded
zero (0) and will be ignored by the CCS user or provider.

(4) Inall other scopes, the circuit identification code is optional and is coded zero (0) if unused.

7.1.1.2. Optional Parameters

$Revision: 0.8.22 %

Page 187 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Format
The format of the optional parameters for Q.764 conforming CCS providers is as follows:

Parameters
cc_opt_length: Specifies or indicates the length of the optional parameters associated with the primitive.
For Q.764 conforming CCS providers, the format of the optional parameters is the for-
mat of the Optional Parameters list (without the pointer or End of Optional Parameters
octets) as specified in Q.763.
cc_opt_offset: Specifies the offset of the optional parameters from the beginning of the block.
Rules

Rulesfor optional parameters:

(1) The optional parameters provided by the CCS user may be checked for syntax by the CCS provider. If
the CCS provider discovers a syntax error in the format of the optional parameters, the CCS provider
should respond with a CC_ERROR_ACK primitive with error CCBADOPT.

(2) For some primitives, specific optional parameters might be interpreted by the CCS provider and alter the
function of some primitives. See the specific primitive descriptions later in this addendum.

(3) Except for optional parameters interpreted by the CCS provider as specified later in this addendum, the
optional parameters are treated as opaque and the optional parameter list only is checked for syntax.
Opaque parameters will be passed to the ISUP message without examination by the CCS provider.

(4) To perform specific functions, additional optional parameters may be added to ISUP messages by the
CCS provider.

(5) To perform specific functions, optional parameters may be modified by the CCS provider before being
added to ISUP messages.

7.1.2. Local Management Primitives
7.1.2.1. CC_INFO_ACK
Parameters

Flags

Rules

7.1.2.2. CC_BIND_REQ

Parameters
cc_addr_length: Indicates the length of the address to bind.
cc_addr_offset: Indicates the offset of the address to bind from the beginning of the block.
cc_setup_ind: Indicates the maximum number of setup (or continuity check) indications that will be
outstanding for the listening stream.
cc_bind_flags: Indicates the options assocated with the bind. The bind flags can be as follows:

CC_DEFAULT_LISTENER
When set, this flag specifies that this stream is the "default listener stream."
This stream is used to pass setup indications (or continuity check requests) for
all incoming calls that contain protocol identifiers that are not bound to any
other listener, or when a listener stream with cc_setup_ind value of greater
than zero is not found. Also, the default listener will receive all incoming call

$Revision: 0.8.22 % Page 188 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

indications that contain no user data (i.e., test calls) and all maintenance indi-
cations (i.e., CC_MAINT_IND). Only one default listener stream is allowed
per occurrence of CCI. An attempt to bind a default listener stream when one
is already bound should result in an error (of type CCADDRBUSY).

CC_TOKEN_REQUEST
When set, this flag specifies to the CCS provider that the CCS user has re-
quested that a "token™ be assigned to the stream (to be used in the call re-
sponse message), and the token value be returned to the CCS user via the
CC_BIND_ACK primitive. The token assigned by the CCS provider can then
be used by the CCS user in a subsequent CC_SETUP_RES primitive to iden-
tify the stream on which the call is to be established.

CC_MANAGEMENT
When set, this flag specifies to the CCS provider that this stream is to be used
for circuit management indications for the specified addresses.

CC_TEST
When set, this flag specifies to the CCS provider that this stream is to be used
for continuity and test call indications for the specified addresses.

CC_MAINTENANCE
When set, this flag specifies to the CCS provider that this stream is to be used
for maintenance indications for the specified addresses.

Rules
Rules for address specification:

(1) The address contained in the primitive as indicated by cc_addr_length and cc_addr_offset parameters.
The address can be of any ISUP scope.

(2) If the CC_DEFAULT_LISTENER flag is set, the parameters cc_addr_length and cc_addr_offset should
be coded zero, and will be ignored by the CCS provider.

Rules for setup indications:

(1) If the number of setup indications is non-zero, the stream is bound as a listening stream. Listening
streams will receive all calls, test calls, and continuity tests that are incoming on the address bound.

« If the address bound is of scope ISUP_SCOPE_CT, only incoming calls on the bound circuit will be
delivered to the listening stream.

« If the address bound is of scope ISUP_SCOPE_CG, only incoming calls on the bound circuit group
will be delivered to the listening stream.

« If the address bound is of scope ISUP_SCOPE_TG, only incoming calls on the bound trunk group
will be delivered to the listening stream (this is the normal case).

« If the address bound is of scope ISUP_SCOPE_SR, only incoming calls on the bound signalling rela-
tion (from the associated remote point code) will be delivered to the listening stream.

« If the address bound is of scope ISUP_SCOPE_SP, only incoming calls on the bound local signalling
point will be delivered to the listening stream.

« If the address bound is of scope ISUP_SCOPE_DF, all incoming calls will be delivered to the listen-
ing stream.

 Streams bound at one scope takes precedence over a stream bound at another scope in the order: cir-
cuit, circuit group, trunk group, signalling relation, signalling point and default scope.

(2) Once a stream has successfully bound as a listening stream, it should be prepared to receive incoming
calls, test calls and continuity tests.

Rules for bind flags:

(1) For Q.764 conformance, the CC_DEFAULT_LISTENER will receive all incoming calls, test calls, conti-
nuity tests, circuit management indications and maintenance indications that have no other listening

$Revision: 0.8.2.2 $ Page 189 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

stream. There can only be one stream bound with the CC_DEFAULT_LISTENER flag set.
(2) Only one of CC_DEFAULT_LISTENER, CC_MANAGEMENT, CC_TEST and CC_MAINTENANCE

may be set.

(3) Streams bound with the CC_MANAGEMENT flag set will receive only circuit management indications

and will not receive any calls.

(4) Streams bound with the CC_TEST flag set will receive only continuity test and test call indications and

will not receive normal calls, circuit management or maintenance indications.

(5) Streams bound with the CC_MAINTENANCE flag set will receive only maintenance indications and

will not receive any circuit management indications or calls.

7.1.2.3. CC_BIND_ACK

Parameters
cc_addr_length: Indicates the length of the address to bind.
cc_addr_offset: Indicates the offset of the address to bind from the beginning of the block.
cc_setup_ind: Indicates the maximum number of setup (or continuity check) indications that will be
outstanding for the listening stream.
Flags

See CC_BIND_REQ in this Addendum.

Rules
See CC_BIND_REQ in this Addendum.

7.1.24. CC_OPTMGMT_REQ
Parameters

Flags

Rules

7.1.3. Call Setup Primitives
7.1.3.1. CC_SETUP_REQ

Parameters
cc_call_type: Specifies the type of call to be set up. Q.764 conforming CCS providers must support
the following call types:
CC_CALL_TYPE_SPEECH
The call type is speech. This call type corresponds to a Q.764 transmission
medium requirement of Speech.
CC_CALL_TYPE_64KBS_UNRESTRICTED
The call type is 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.764 transmission medium requirement of 64 kbit/s Unrestricted
Digital Information.
CC_CALL_TYPE_3 1kHZ_AUDIO
The call type is 3.1 kHz audio. This call type corresponds to a Q.764 trans-
mission medium requirement of 3.1 kHz Audio.
$Revision: 0.8.22 % Page 190 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_CALL_TYPE_64KBS_PREFERRED
The call type is 64 kbit/s preferred. This call type corresponds to a Q.764
transmission medium requirement of 64 kbit/s Preferred.

CC_CALL_TYPE_2x64KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.764 transmission medium requirement of 2 x 64 kbit/s Un-
restricted Digital Information.

CC_CALL_TYPE_384KBS_UNRESTRICTED
The call type is 384 kbit/s unrestricted digital information. This call type cor-
responds to a Q.764 transmission medium requirement of 384 kbit/s Unre-
stricted Digital Information.

CC_CALL_TYPE_1536KBS_UNRESTRICTED
The call type is 1536 kbit/s unrestricted digital information. This call type
corresponds to a Q.764 transmission medium requirement of 1536 kbit/s Un-
restricted Digital Information.

CC_CALL_TYPE_1920KBS_UNRESTRICTED
The call type is 1920 kbit/s unrestricted digital information. This call type
corresponds to a Q.764 transmission medium requirement of 1920 kbit/s Un-
restricted Digital Information.

cc_user_ref: Specifies the CCS user call reference to be associated with the call setup request. The
CCS provider will use this user call reference in any indications given before the
CC_SETUP_CON primitive is issued.

cc_call_flags: Specifies the options associated with the call. Q.764 conforming CCS providers must
support the following flags:

The following flags correspond to bits in the Nature of Connection Indicators parameter
of Q.763:

ISUP_NCI_ONE_SATELLITE_CCT

ISUP_NCI_TWO_SATELLITE_CCT
When one of these flags is set it indicates that either one or two satellite cir-
cuits are present in the connection. Otherwise, it indicates that no satellite cir-
cuits are present in the connection.

ISUP_NCI_CONT_CHECK_REQUIRED

ISUP_NCI_CONT_CHECK_PREVIOUS
When one of these flags is set it indicates that either a continuity check is re-
quired on the connection, or that a continuity check was performed on a previ-
ous connection. Otherwise, it indicates that a continuity check is not required
on the connection.

ISUP_NCI_OG_ECHO_CONTROL_DEVICE
When set it indicates that an outgoing half echo control device is included on
the connection. Otherwise, it indicates that no outgoing half echo control de-
vice is included on the connection.

The following flags correspond to bits in the Forward Call Indicators parameter of
Q.763:

ISUP_FCI_INTERNATIONAL_CALL
When this flag is set, the call is to be treated as an international call. Other-
wise, the call is to be treated as a national call.

ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAILABLE

$Revision: 0.8.22 % Page 191 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE
When one of these flags is set, either the pass along end-to-end method is
available or the SCCP end-to-end method is available. Otherwise, no end-to-
end method is available and only link-by-link method is available.

ISUP_FCI_INTERWORKING_ENCOUNTERED
When this flag is set, interworking has been encountered on the call. Other-
wise, no interworking has been encountered on the call.

ISUP_FCI_E2E_INFORMATION_AVAILABLE
When this flag is set, end-to-end information is now available. Otherwise, no
end-to-end information is available.

ISUP_FCI_ISDN_USER_PART_ALL_THE_WAY
When this flag is set, ISDN User Part has been used all the way on the call.
Otherwise, ISDN User Part has not been used all the way.

ISUP_FCI_ORIGINATING_ACCESS_ISDN
When this flag is set, the originating access is ISDN. Otherwise, the originat-
ing access is non-1SDN.

ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE
ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE

ISUP_FCI_SCCP_ALL_METHODS_AVAILABLE
When one of these flags is set, either the connectionless SCCP method is
available, the connection oriented SCCP method is available, or both methods
are available. Otherwise, no SCCP method is indicated as available.

cc_cdpn_length: Specifies the length of the called party number. For Q.764 conforming CCS providers,
the format of the called party number is the format of the Called Party Number parame-
ter (without the parameter type or length octets) as specified in Q.763.

cc_cdpn_offset: Specifies the offset of the called party number from the beginning of the block.

Rules
Rules for call reference:

(1) If the ISUP user wishes to setup multiple outgoing calls on the same stream, the ISUP user associates a
user call reference with each of the setup requests so that the indication, confirmation and acknowledg-
ment primitives can be associated with the specific call setup request.

(2) User call references are only necessary if multiple outgoing calls are to setup at the same time.

(3) User call references only need by valid until a setup confirmation, call reattempt indication, release indi-
cation or call failure indication has been received in response to the setup request. A setup confirmation
will contain a CCS provider call reference which can be used to distinguish the call from other calls to
the CCS provider.

Rules for call type:
(1) AIll Q.764 conforming CCS provider must support the following call types:

CC_CALL_TYPE_SPEECH,
CC _CALL_TYPE_64KBS_UNRESTRICTED,
CC_CALL_TYPE_3 1kHZ_AUDIO, and
CC CALL_TYPE_64KBS PREFERRED.
(2) Support for other call types is optional and implementation-specific.

Rules for flags:

$Revision: 0.8.2.2 $ Page 192 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

D)
(2)

®3)

(4)

()

Q.764 conforming CCS providers must support all of the flags listed above.
Only one of the following flags may be set:

ISUP_NCI_ONE_SATELLITE and

ISUP_NCI_TWO_SATELLITE.

Only one of the following flags may be set:

ISUP_NCI_CONT_CHECK_REQUIRED and
ISUP_NCI_CONT_CHECK_PREVIOUS.

Only one of the following flags may be set:
ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAILABLE and
ISUP_FCI_SCCP_E2E_ METHOD_AVAILABLE.

Only one of the following flags may be set, and only if ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE
is also set:

ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE,
ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE and
ISUP_FCI_SCCP_ALL_METHODS_AVAILABLE.

7.1.3.2. CC_SETUP_IND

Parameters
cc_call_ref: Indicates the CCS provider-assigned call reference associated with the call.
cc_call_type: Indicates the type of call to be set up. For Q.764 conforming CCS providers, the call
type can be one of the call types listed in this addendum under CC_SETUP_REQ.
cc_call_flags: Indicates the options associated with the call. Q.764 conforming CCS providers indi-
cate the flags listed in this addendum under CC_SETUP_REQ.
cc_addr_length: Indicates the length of the call control address (circuit(s)) upon which the call setup is
indicated.
cc_addr_offset: Indicates the offset of the call control address from the start of the block.
cc_cdpn_length: Indicates the length of the called party number. For Q.764 conforming CCS providers,
the format of the called party number is the format of the Called Party Number parame-
ter (without the parameter type or length octets) as specified in Q.763.
cc_cdpn_offset: Indicates the offset of the called party number from the beginning of the block.
cc_opt_length: Indicates the length of the optional parameters associated with the 1AM, excluding the
end of optional parameters tag.
cc_opt_offset: Indicates the offset of the options from the beginning of the block.
Rules
Rulesfor call reference:
(1) The ISUP provider will indicate a unique call reference to the CCS user which is used to associate re-
sponse and request primitives with the call setup indication.
(2) Provider call references will always be indicated.
(3) Provider call references are only valid until a call failure or release indication has been issued by the CCS
provider.
(4) Provider call references are only valid for streams upon which the CC_SETUP_IND is issued, or for

streams upon which the call was accepted by the CCS user with a CC_SETUP_RES primitive.

$Revision: 0.8.22 % Page 193 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

(5) Provider call references are unique across the provider.
Rules for call type:

(1) The rules for call type in section CC_SETUP_REQ in this addendum also apply to the CC_SETUP_IND.
All Q.764 conforming CCS providers must support the following call types:

CC_CALL_TYPE_SPEECH,
CC_CALL_TYPE_64KBS_UNRESTRICTED,
CC_CALL_TYPE_3_1kHZ_AUDIO, and
CC_CALL_TYPE_64KBS_PREFERRED.

(2) Support for additional call types is optional and implementation-specific.
Rules for setup flags:

(1) The rules for setup flags in section CC_SETUP_REQ in this addendum also apply to the
CC_SETUP_IND.

Rules for addresses:

(1) Call control addresses in the CC_SETUP_IND are of scope ISUP_SCOPE_CT and identify the circuit(s)
upon which the call setup is indicated.

(2) For multi-rate calls, the call control address indicates the base circuit (numerically lowest Circuit Identifi-
cation Code) of the multi-rate call.

7.1.3.3. CC_SETUP_RES

Parameters

cc_call_ref:
Specifies the call reference of the CC_SETUP_IND to which the CCS user is responding.

cc_token_value:
Specifies the token of a stream upon which to accept the call setup.

Rules
Rules for call reference:

(1) The call reference specified by the CCS User must be a call reference which was previously indicated by
the CCS provider in an outstanding CC_SETUP_IND. Otherwise the CCS provider will respond with a
CC_ERROR_ACK primitive with error CCBADCLR.

Rules for token value:

(1) If the token is the token value of the stream upon which the corresponding CC_SETUP_IND was re-
ceived, or zero (0), then the call setup will be accepted on the stream upon which the CC_SETUP_IND
was received.

(2) If the token is non-zero and different from the listening stream, the call setup will be accepted on the
specified stream.

7.1.3.4. CC_SETUP_CON

Parameters

cc_user_ref: Indicates the CCS user call reference that was specified in the CC_SETUP_REQ. This
call reference is used by the CCS user to associated the CC_SETUP_CON with an out-
standing CC_SETUP_REQ primitive.

cc_call_ref: Indicates the CCS provider call reference that is to be associated with the call. This call
reference is used by the CCS provider to identify the call and is to be used by the CCS
user in all subsequent primitives referencing the call.

$Revision: 0.8.2.2 $ Page 194 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

cc_addr_length: Indicates the length of the identifier of the circuit upon which the call setup is con-
firmed.
cc_addr_offset: Indicates the offset of the identifier from the start of the block.
Rules

Rulesfor call reference:

(1) The CCS user call reference will be the same as the call reference provided by the user in the
CC_SETUP_REQ primitive.

(2) The CCS provider call reference will follow the rules of the CC_SETUP_IND in this Addendum.
Rulesfor addresses:

(1) The call control address indicated in the CC_SETUP_CON is a ISUP_SCOPE_CT (circuit scoped) call
control address which identifies the circuit(s) upon which the outgoing call will be connected.

(2) For multi-rate calls, the call control address specifies the base circuit (lowest numerical Circuit Identifica-
tion Code) for the multi-rate call.

7.1.35. CC_CALL_REATTEMPT_IND

Parameters
cc_user_ref: Indicates the CCS user call reference for the call. This reference identifies the corre-
sponding CC_SETUP_REQ primitives to the CCS user for which the call reattempt
need be performed.
CC_reason: Indicates the reason for the reattempt. The reason can be one of the following values:
ISUP_REATTEMPT_DUAL_SEIZURE
Indicates that the circuit was seized by a controlling exchange during the ini-
tial setup of the call (i.e, before any backward message was received).
ISUP_REATTEMPT _RESET
Indicates that the circuit was reset during the initial setup of the call (i.e, be-
fore any backward message was received).
ISUP_REATTEMPT_BLOCKING
Indicates that the circuit was blocked during the initial setup of the call (i.e,
before any backward message was received).
ISUP_REATTEMPT T24 TIMEOUT
Indicates that COT failure occurred on the circuit (due to T24 timeout).
ISUP_REATTEMPT_UNEXPECTED
Indicates that an unexpected message was received for the call during the ini-
tial setup of the call (i.e, before any backward message was received).
ISUP_REATTEMPT_COT_FAILURE
Indicates that COT failed on the circuit (due to transmission of COT message
indicating failure).
ISUP_REATTEMPT_CIRCUIT_BUSY
Indicates that the specified circuit was busy.
Rules

Rulesfor call reference;

(1) The CCS user call reference is a call reference associated with an outstanding CC_SETUP_REQ primi-
tive to which the CCS provider is responding.

$Revision: 0.8.22 % Page 195 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Rulesfor reason:
(1) The Q.764 conforming CCS provider will provide one of the reasons listed above.

(2) The ISUP_REATTEMPT DUAL_SEIZURE reason will only be indicated if the CCS user represents a
non-controlling exchange for the associated trunk group.

(3) The ISUP_REATTEMPT_T24_TIMEOQOUT reason will only be indicated if the outgoing call includes a
continuity test and a positive CC_CONT_REPORT_REQ was not issued to the CCS provider by a test
stream within T24.

(4) The ISUP_REATTEMPT _COT_FAILURE reason will only be indicated if the outgoing call includes a
continuity test and a negative CC_CONT_REPORT_REQ was issued to the CCS provider by a test
stream within T24.

(5) The ISUP_REATTEMPT_CIRCUIT_BUSY reason will only be indicated if the stream issuing the
CC_SETUP_REQ primitive is bound to a circuit (ISUP_SCOPE_CT) and the circuit is busy with another
call.

7.1.3.6. CC_SETUP_COMPLETE_REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if a
CCS provider conforming to Q.764 receives a CC_SETUP_COMPLETE_REQ for a call reference in the
CCS_ANSWERED state (CCS_ICC_ANSWERED), the CCS provider will ignore the primitive.

7.1.3.7. CC_SETUP_COMPLETE_IND

Rules

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if a
CCS provider conforming to Q.764 issues a CC_SETUP_COMPLETE_IND for a call reference in the CCS_AN-
SWERED state, the CCS user may ignore the primitive.

7.1.4. Continuity Check Phase
7.1.4.1. CC_CONT_CHECK_REQ

Parameters
cc_addr_length: Specifies the length of the circuit test address (circuit) upon which the continuity check
is to be performed.
cc_addr_offset: Specifies the offset of the circuit test address from the start of the block.
Rules

Rulesfor addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be of scope ISUP_SCOPE_CT and must provide the identifier of the circuit
upon which the CCS user is requesting a continuity check.

(3) The specified circuit identifier must be equipped else the CCS provider should response with CC_ER-
ROR_ACK and an error of CCBADADDR.

7.1.4.2. CC_CONT_CHECK_IND

$Revision: 0.8.22 % Page 196 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Parameters
cc_call_ref: Indicates the CCS provider call reference.
cc_addr_length: Indicates the length of the identifier of the circuit upon which the continuity check is to
be performed.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules
Rulesfor call reference:
1)

Rulesfor addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be of scope ISUP_SCOPE_CT and must provide the identifier of the circuit
upon which the CCS user is requesting a continuity check.

(3) The specified circuit test address (circuit identifier) must be equipped else the CCS provider should re-
sponse with CC_ERROR_ACK and an error of CCBADADDR.

7.1.4.3. CC_CONT_TEST _REQ

This primitive is only supported when the Loop Back Acknowledgment is used as a national option under Q.764.
For compatibility with CCS providers not supporting the national option, if such a CCS provider receives a
CC_CONT_TEST_REQ while waiting for a CC_CONT_REPORT _IND, the CCS provider should silently dis-
card the primitive.

Parameters
cc_call_ref: Specifies the CCS provider call reference.
cc_addr_length: Indicates the length of the call control address (ISUP_SCOPE_CT circuit identifier)
upon which the continuity check is to be performed.
cc_addr_offset: Indicates the offset of the call control address from the start of the block.
Rules

Rulesfor addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be the identifier of the circuit upon which the CCS user is requesting a conti-
nuity check.

(3) The specified circuit identifier must be equipped else the CCS provider should response with CC_ER-
ROR_ACK and an error of CCBADADDR.

7.1.4.4. CC_CONT_TEST_IND

This primitive is only supported when the Loop Back Acknowledgment is used as a national option under Q.764.
For compatibility with CCS providers not supporting the national option, such a CCS provider will issue a
CC_CONT_TEST _IND in response to a CC_CONT_CHECK_REQ following the CC_OK_ACK.

Parameters
cc_call_ref: Specifies the CCS provider call reference.
cc_addr_length: Specifies the length of the identifier of the circuit upon which the continuity check is to

be performed.

$Revision: 0.8.22 % Page 197 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

cc_addr_offset: Specifies the offset of the address from the start of the block.

Rules
Rulesfor call reference;

(1) The CCS provider assigned call reference is used to associate an outstanding continuity test indication
(CC_CONT_CHECK_IND or call setup indication CC_SETUP_IND including a continuity test
(ISUP_NCI_CONT_CHECK_REQUIRED).

Rules for addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be the identifier of the circuit upon which the CCS user is requesting a conti-
nuity check.

(3) The specified circuit identifier must be equipped else the CCS provider should response with CC_ER-
ROR_ACK and an error of CCBADADDR.

7.1.45. CC_CONT_REPORT_REQ

Parameters
cc_user_ref: Specifies the CCS User assigned call reference.
cc_call_ref: Specifies the CCS Provider assigned call reference.
cc_result: Specifies the result of the continuity test, whether success or failure. For Q.764 con-
forming CCS provider, the result parameter can be one of the following values:
ISUP_COT_SUCCESS
Indicates that the continuity check test was successful.
ISUP_COT_FAILURE
Indicates that the continuity check test failed.
cc_addr_length: Specifies the length of the identifier of the circuit upon which the continuity check is to
be performed.
cc_addr_offset: Specifies the offset of the address from the start of the block.
Rules

Rulesfor addresses:

(1) The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS provider
should respond with CC_ERROR_ACK with an error of CCNOADDR.

(2) The address provided must be the identifier of the circuit upon which the CCS user is requesting a conti-
nuity check.

(3) The specified circuit identifier must be equipped else the CCS provider should response with CC_ER-
ROR_ACK and an error of CCBADADDR.

7.1.4.6. CC_CONT_REPORT_IND

Parameters
cc_call_ref: Indicates the CCS provider assigned call reference.
cc_result: Indicates the result of the continuity test, whether success or failure. For Q.764 con-

forming CCS provider, the result parameter can be one of the following values:

ISUP_COT_SUCCESS
Indicates that the continuity check test was successful.

$Revision: 0.8.22 % Page 198 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

ISUP_COT_FAILURE
Indicates that the continuity check test failed.

Rules
Rulesfor call reference;

(1)
7.1.5. Call Establishment Primitives
7.15.1. CC_MORE_INFO REQ

Rules
Rulesfor issuing primitive:

(1) This primitive is not directly supported by Q.764 conforming CCS providers. For compatibility with
Q.931 conforming CCS providers, if the Q.764 conforming CCS provider receives a
CC_MORE_INFO_REQ in state CCS_WRES_SIND, it should invoke any interworking procedures and
silently discard the primitive.

7.15.2. CC_MORE_INFO_IND

Rules
Rulesfor issuing primitive:

(1) This primitive may optionally be issued by a Q.764 conforming CCS provider in the overlap signalling
mode, if the appropriate timer has expired and the CCS provider has not received an indication that the
provided address is complete.

7.1.5.3. CC_INFORMATION_REQ

Parameters
cc_call_ref: Specifies the CCS provider assigned call reference for the call.
cc_subn_length: Specifies the length of the subsequent number. For Q.764 conforming CCS providers,
the format of the called party address is the format of the Subsequent Number parameter
(without the parameter type or length octets) as specified in Q.763.
cc_subn_offset: Specifies the offset of the subsequent number from the beginning of the block.
Rules

Rulesfor issuing primitive:

(1) This primitive will only be issued before any CC_PROCEEDING_IND, CC_ALERTING_IND,
CC_PROGRESS _IND, or CC_IBI_IND has occurred on the stream while in the CCS_WCON_SREQ
state. If not, the CCS provider should respond with a CC_ERROR_ACK primitive with error CCOUT-
STATE.

(2) This primitive must not be issued if the preceding CC_SETUP_REQ contained a called party address
which was complete (i.e, contains a ST code following the digits). If it is, the CCS provider should re-
spond with a CC_ERROR_ACK with error CCBADADDR.

(3) This primitive must not be issued if the trunk group or circuit to which the stream is bound is configured
for en bloc operation. If it is, the CCS provider should respond with a CC_ERROR_ACK with error CC-
NOTSUPP.

$Revision: 0.8.22 % Page 199 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

7.1.5.4. CC_INFORMATION_IND

Parameters
cc_call_ref: Indicates the CCS provider assigned call reference.
cc_subn_length: Indicates the length of the subsequent number. For Q.764 conforming CCS providers,
the format of the subsequent number is the format of the Subsequent Number parameter
(without the parameter type or length octets) as specified in Q.763.
cc_subn_offset: Indicates the offset of the subsequent number from the beginning of the block.
Rules

Rulesfor issuing primitive:

(1) This primitive will only be issued by the CCS provider before any CC_PROCEEDING_REQ,
CC_ALERTING_REQ, CC PROGRESS REQ, or CC_IBI REQ has been received in state
CCS_WCON_SREQ.

(2) This primitive will not be issued by the CCS provider if the preceding CC_SETUP_REQ contained a
complete called party address (i.e, contains an ST code following the digits), or if the trunk group or cir-
cuit is configured for en bloc operation.

7.1.5.5. CC_INFO_TIMEOUT_IND

Rules
Rulesfor issuing primitive:

(1) If the Q.764 conforming CCS provider encounters interworking on a call and is not expecting an address
complete message, and timer T11 expires, the CCS provider will issue this primitive to the CCS user.

(2) Upon receipt of this primitive, it is the CCS user’s responsibility to determine whether the address digits
are sufficient and to issue a CC_SETUP_RES or CC_REJECT_REQ primitive.

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS user receives a CC_INFO_TIMEOUT _IND

7.1.5.6. CC_PROCEEDING_REQ

Parameters

cc_flags: Specifies the options associated with the call. Indicates the flags associated with the
primitive. For Q.764 conforming CCS providers, call flags can be an of the following:
Q.764 conforming CCS provider must support the following flags:

The following flags correspond to bits in the Backward Call Indicators parameter of
Q.763:

ISUP_BCI_NO_CHARGE

ISUP_BCI_CHARGE
When one of these flags is set, it indicates that the call is not to be charged, or
the call is to be charged. Otherwise, it indicates that there is no indication
with regard to charging.

ISUP_BCI_SUBSCRIBER_FREE

ISUP_BCI_CONNECT_FREE
When one of these flags is set, it indicates that the terminating subscriber is
free, or that the connection is free. Otherwise, no indication is given.

ISUP_BCI_ORDINARY_SUBSCRIBER

$Revision: 0.8.22 % Page 200 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

ISUP_BCI_PAYPHONE
When one of these flags is set, it indicates that the call has terminated to an or-
dinary subscriber, or that the call has terminated to a pay phone.

ISUP_BCI_PASS_ALONG_E2E_METHOD_AVAILABLE

ISUP_BCI_SCCP_E2E_METHOD_AVAILABLE
When one of these flags is set, either the pass along end-to-end method is
available, or the SCCP end-to-end method is available. Otherwise, no end-to-
end method is available and only link-by-link method is available.

ISUP_BCI_INTERWORKING_ENCOUNTERED
When this flag is set, interworking has been encountered on the call. Other-
wise, to interworking has been encountered on the call.

ISUP_BCI_E2E_INFORMATION_AVAILABLE
When this flag is set, end-to-end information is now available. Otherwise, no
end-to-end information is available.

ISUP_BCI_ISDN_USER_PART_ALL_THE_WAY
When this flag is set, ISDN User Part has been used all the way on the call,
Otherwise, ISDN User Part has not be used all the way.

ISUP_BCI_HOLDING_REQUESTED
When this flag is set, holding is requested. Otherwise, holding is not re-
quested.

ISUP_BCI_TERMINATING_ACCESS_ISDN
When this flag is set, the terminating access is ISDN. Otherwise, the termi-
nating access is non-1SDN.

ISUP_BCI_IC_ECHO_CONTROL_DEVICE
When set, this flag indicates that an incoming half echo control device is in-
cluded on the connection. Otherwise, it indicates that no incoming half echo
control device is included in the connection.

ISUP_BCI_SCCP_CLNS_METHOD_AVAILABLE
ISUP_BCI_SCCP_CONS_METHOD_AVAILABLE

ISUP_BCI_SCCP_ALL_METHODS_AVAILABLE
When one of these flags is set, either the connectionless SCCP method is
available, the connection oriented SCCP method is available, or both methods
are available. Otherwise, no SCCP method is indicated as available.

Rules

Rulesfor issuing primitive:

(1) This primitive can only be issued by the CCS wuser before any CC_ALERTING_REQ,
CC_PROGRESS REQ or CC_IBI_REQ has been issued while in state CCS_ WRES_SIND.

7.1.5.7. CC_PROCEEDING_IND

Rules
Rulesfor issuing primitive:

(1) This primitive will only be issued by the CCS provider before any CC_ALERTING_IND,
CC_PROGRESS _IND or CC_IBI_IND has been issued while in state CCS_ WCON_SREQ.

$Revision: 0.8.22 % Page 201 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

7.15.8. CC_ALERTING_REQ

Rules
Rulesfor issuing primitive:

(1) This primitive can only be issued by the CCS user before any CC_PROGRESS REQ or CC_IBI_REQ
has been issued while in state CCS_WRES_SIND.

7.1.5.9. CC_ALERTING_IND

Rules
Rulesfor issuing primitive:

(1) This primitive will only be issued by the CCS provider before any CC_PROGRESS IND or
CC_IBI_IND has been issued while in state CCS_WCON_SREQ.

7.15.10. CC_PROGRESS REQ

Parameters
cc_event: Indicates the progress event. For Q.764 conforming CCS providers, this can be one of

the following:

ISUP_EVNT_ALERTING
Indicates that the called party is being alerted. This event is indicated only if a
CC_CALL_PROCEEDING_IND primitive has already been received.

ISUP_EVNT_ PROGRESS
Indicates that the call is progressing with the specified optional parameters.

ISUP_EVNT_IBI
This event is indicated only by the CC_IBI_IND primitive and will not appear
here.

ISUP_EVNT_CALL_FORWARDED ON_BUSY
This event indicates that the call has been forwarded on busy and the optional
parameters (if any) contain the attributes of the forwarding (e.g., redirecting
number, etc.).

ISUP_EVNT_CALL_FORWARDED_ON_NO_ANSWER
This event indicates that the call has been forwarded on no answer and the op-
tional parameters (if any) contain the attributes of the forwarding (e.g., redi-
recting number, etc.).

ISUP_EVNT_CALL FORWARDED UNCONDITIONAL
This event indicates that the call has been forwarded unconditionally and the
optional parameters (if any) contain the attributes of the forwarding (e.g., redi-
recting number, etc.).

cc_flags: Indicates the options flags.

ISUP_EVNT_PRESENTATION_RESTRICTED
When set, this flag indicates that the event indication is not to be presented to
the caller. Otherwise, the event may be presented to the caller.

Rules

Rulesfor issuing primitive:

(1) This primitive can only be issued by the CCS user before any CC_IBI_REQ has been issued while in
state CCS_WRES_SIND.

$Revision: 0.8.22 % Page 202 April 15, 2003

Call Control Interface (CCl) OpenSS7 Corporation

Rules for progress event:
(1) Q.764 conforming CCS providers must support the complete list of progress events listed above.

(2) When this primitive is issued with the event ISUP_EVNT_ALERTING, it must follow the rules for the
primitive CC_ALERTING_REQ.

(3) When this primitive is issued with the event ISUP_EVNT _IBI, it must follow the rules for the primitive
CC_IBI_REQ.

Rules for progress flags:

(1) The flag ISUP_EVNT_PRESENTATION_RESTRICTED cannot be set when the event is
ISUP_EVNT_ALERTING, ISUP_EVNT_PROGRESS or ISUP_EVNT _IBI.

7.15.11. CC_PROGRESS_IND

Parameters
cc_event: Indicates the progress event. The event can be any of the events listed in this addendum
under CC_PROGRESS_REQ.
cc_flags: Indicates the options flags.
ISUP_EVNT_PRESENTATION_RESTRICTED
When set, this flag indicates that the event indication is not to be presented to
the caller. Otherwise, the event may be presented to the caller.
Rules

Rules for issuing primitive:

(1) This primitive will only be issued by the CCS provider before any CC_IBI_IND has been issued while in
state CCS_WCON_SREQ.

Rules for progress event:
(1) Q.764 conforming CCS providers must support the complete list of progress events listed above.

(2) This primitive will not be issued by the CCS provider with event ISUP_EVNT_ALERTING or event
ISUP_EVNT _IBI: instead, a CC_ALERTING_IND or CC_IBI_IND event will be issued.

Rules for progress flags:

(1) The flag ISUP_EVNT PRESENTATION RESTRICTED cannot be set when the vent is
ISUP_EVNT_PROGRESS.

7.15.12. CC_IBI_REQ

Rules

7.15.13. CC_IBI_IND

Rules

7.1.6. Call Established Primitives
7.1.6.1. CC_SUSPEND REQ

Parameters
cc_flags: Specifies options associated with the suspend.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the suspend was network originated.
When this flag is not set, it indicates that the suspend was ISDN subscriber

$Revision: 0.8.2.2 $ Page 203 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation
initiated.

Rules
Rulesfor issuing primitive:

(1) For Q.764 conforming CCS providers, suspend can be requested by independently either via local
provider or the remote provider. A call can be:

* Not Suspended

* Locally Suspended

» Remotely Suspended

* Locally and Remotely Suspended

(1) Requests to locally suspend a call which is already locally suspended should be ignored by the CCS
provider.

7.1.6.2. CC_SUSPEND_IND

Parameters
cc_flags: Specifies options associated with the suspend.
CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the suspend was network originated.
When this flag is not set, it indicates that the suspend was ISDN subscriber
initiated.
Rules

Rulesfor issuing primitive:

(1) For Q.764 conforming CCS providers, suspend can be requested by independently either via local
provider or the remote provider. A call can be:

* Not Suspended

* Locally Suspended

» Remotely Suspended

* Locally and Remotely Suspended

(1) Indications of remote suspension of a call which is already remotely suspended will not be issued by the
CCS provider.

7.1.6.3. CC_SUSPEND_RES

Rules
Rulesfor issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_SUSPEND_RES in the CCS_WRES_SUSIND or CCS_SUSPENDED states, the
CCS provider should ignore the CC_SUSPEND_RES primitive and move directly to the CCS_SUSPENDED
state if it has not already done so.

7.1.6.4. CC_SUSPEND REJECT REQ

Rules
Rulesfor issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_SUSPEND_REJECT_REQ in the CCS_WRES_SUSIND or CCS_SUSPENDED
states, the CCS provider should reply with a CC_ERROR_ACK primitive with error CCNOTSUPP.

$Revision: 0.8.22 % Page 204 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

7.1.65. CC_RESUME_REQ

Parameters
cc_flags: Specifies options associated with the resume.
CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the resume was network originated.
When this flag is not set, it indicates that the resume was ISDN subscriber ini-
tiated.
Rules
7.1.6.6. CC_RESUME_IND
Parameters
cc_flags: Specifies options associated with the resume.
CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the resume was network originated.
When this flag is not set, it indicates that the resume was ISDN subscriber ini-
tiated.
Rules

7.1.6.7. CC_RESUME_RES

Rules
Rulesfor issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_RESUME_RES in the CCS_WRES_SUSIND or CCS_ANSWERED states, the
CCS provider should ignore the CC_RESUME_RES primitive and move directly to the CCS_RESUMEED state
if it has not already done so.

7.1.6.8. CC_RESUME_REJECT REQ

Rules
Rulesfor issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_RESUME_REJECT_REQ in the CCS_WRES_SUSIND or CCS_ANSWERED
states, the CCS provider should reply with a CC_ERROR_ACK primitive with error CCNOTSUPP.

7.1.7. Call Termination Primitives
7.1.7.1. CC_REJECT_REQ

Rules
Rulesfor issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC _REJECT REQ in the CCS WRES SIND (CCS_ICC WAIT_COT or
CCS_ICC_WAIT_ACM) states, the provider should perform an automatic release procedure and move to the
CCS_WAIT_RLC state.

$Revision: 0.8.22 % Page 205 April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

7.1.7.2. CC_CALL_FAILURE_IND

Parameters
CC_cause:

Rules

Indicates the cause of the failure. The cc_cause can have one of the following values:

ISUP_CALL_FAILURE_COT_FAILURE
Indicates that the continuity check on the circuit failed. This applies to incom-
ing calls only.

ISUP_CALL_FAILURE_RESET

ISUP_CALL_FAILURE_RECV_RLC
Indicates that the circuit was not completely released by the distant end. This
applies to incoming calls only.

ISUP_CALL_FAILURE_BLOCKING
Indicates that the circuit was blocked during call setup. This applies to incom-
ing calls only.

ISUP_CALL_FAILURE_T2_TIMEOUT
ISUP_CALL_FAILURE_T3_TIMEOUT

ISUP_CALL_FAILURE_T6_TIMEOUT
Indicates that the call was suspended beyond the allowable period. This ap-
plies to all established calls.

ISUP_CALL_FAILURE_T7_TIMEOUT
Indicates that there was no response to the call setup request. This applies to
outgoing calls only.

ISUP_CALL_FAILURE_T8 TIMEOUT

Indicates that the call failed waiting for a continuity check report from the dis-
tant end. This applies to incoming calls only.

ISUP_CALL_FAILURE_T9 TIMEOUT
Indicates that the call failed while waiting for the distant end to answer. This
applies to outgoing calls only.

ISUP_CALL_FAILURE_T35 TIMEOUT
Indicates that additional information (digits) were not received from the caller
within a sufficient period. This applies to incoming calls only.

ISUP_CALL_FAILURE_T38 _TIMEOUT
Indicates that the call was suspended beyond the allowable period. This ap-
plies to all established calls.

ISUP_CALL_FAILURE_CIRCUIT_BUSY

7.1.7.3. CC_DISCONNECT REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to Q.764, if the
CCS provider receives a CC_DISCONNECT_REQ, the provider should respond with CC_ERROR_ACK with

the error CCNOTSUPP.

7.1.7.4. CC_RELEASE_REQ

$Revision: 0.8.22 %

Page 206 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Parameters
CC_cause: Indicates the cause of the release. Cause can be one of the following values:

CC_CAUS UNALLOCATED_NUMBER
CC_CAUS NO ROUTE TO TRANSIT NETWORK
CC_CAUS NO ROUTE_TO DESTINATION
CC_CAUS SEND_SPECIAL_INFO TONE
CC_CAUS MISDIALLED_TRUNK_PREFIX
CC_CAUS PREEMPTION
CC_CAUS PREEMPTION_CCT_RESERVED
CC_CAUS NORMAL_CALL_CLEARING
CC_CAUS USER_BUSY
CC_CAUS NO USER RESPONDING
CC_CAUS NO ANSWER
CC_CAUS SUBSCRIBER _ABSENT
CC_CAUS CALL_REJECTED
CC_CAUS NUMBER CHANGED
CC_CAUS REDIRECT
CC_CAUS OUT_OF ORDER
CC_CAUS ADDRESS INCOMPLETE
CC_CAUS FACILITY_REJECTED
CC_CAUS NORMAL_UNSPECIFIED
CC_CAUS NO CCT_AVAILABLE
CC_CAUS NETWORK_OUT _OF ORDER
CC_CAUS TEMPORARY_FAILURE
CC_CAUS _SWITCHING_EQUIP_CONGESTION
CC_CAUS ACCESS INFO_DISCARDED
CC_CAUS REQUESTED_CCT_UNAVAILABLE
CC_CAUS PRECEDENCE_CALL_BLOCKED
CC_CAUS RESOURCE_UNAVAILABLE
CC_CAUS NOT_SUBSCRIBED
CC_CAUS OGC_BARRED WITHIN_CUG
CC_CAUS ICC_BARRED WITHIN_CUG
CC_CAUS BC _NOT_AUTHORIZED
CC_CAUS BC NOT _AVAILABLE
CC_CAUS INCONSISTENCY
CC_CAUS SERVICE_OPTION_NOT_AVAILABLE
CC_CAUS BC NOT_IMPLEMENTED
CC_CAUS FACILITY_NOT_IMPLEMENTED
CC_CAUS RESTRICTED BC ONLY
CC_CAUS SERIVCE_OPTION_NOT_IMPLEMENTED

$Revision: 0.8.22 % Page 207 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_CAUS_USER_NOT_MEMBER_OF_CUG
CC_CAUS_INCOMPATIBLE_DESTINATION
CC_CAUS_NON_EXISTENT_CUG
CC_CAUS_INVALID_TRANSIT NTWK_SELECTION
CC_CAUS_INVALID_MESSAGE
CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED
CC_CAUS_PARAMETER_NOT_IMPLEMENTED
CC_CAUS_RECOVERY_ON_TIMER_EXPIRY
CC_CAUS_PARAMETER_PASSED_ON
CC_CAUS_MESSAGE_DISCARDED
CC_CAUS_PROTOCOL_ERROR
CC_CAUS_INTERWORKING
CC_CAUS_UNALLOCATED DEST_NUMBER
CC_CAUS_UNKNOWN_BUSINESS_GROUP
CC_CAUS_EXCHANGE_ROUTING_ERROR
CC_CAUS_MISROUTED _CALL_TO_PORTED_NUMBER 26
CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND
CC_CAUS_PREEMPTION
CC_CAUS_PRECEDENCE_CALL_BLOCKED
CC_CAUS_CALL_TYPE_INCOMPATIBLE
CC_CAUS_GROUP_RESTRICTIONS

Rules

7.1.75. CC_RELEASE_IND

Parameters
cC_cause: Indicates the cause of the release. Cause can be one of the cause value listed in this ad-
dendum under CC_RELEASE_REQ.
Rules

7.1.8. Management Primitives
7.1.8.1. CC_RESTART_REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS provider conforming to Q.764, if the
CCS provider conforming to Q.764 receives a CC_RESTART_REQ, the provider should respond with CC_ER-
ROR_ACK with the error CCNOTSUPP.

7.1.82. CC_RESET REQ

Parameters
cc_flags: Indicates the options flags.

$Revision: 0.8.22 % Page 208 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group

identifier.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules
7.1.83. CC_RESET_IND
Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules
7.1.84. CC_ RESET _RES
Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.85. CC_RESET_CON

Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP

When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.

$Revision: 0.8.22 % Page 209 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.8.6. CC_BLOCKING REQ

Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
ISUP_MAINTENANCE_ORIENTED
ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.8.7. CC_BLOCKING_IND

Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
ISUP_MAINTENANCE_ORIENTED
ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.8.8. CC_BLOCKING_RES

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call

$Revision: 0.8.22 % Page 210 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

control address is to be interpreted by the CCS provider as a circuit group
identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.8.9. CC_BLOCKING_CON

Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
ISUP_MAINTENANCE_ORIENTED
ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.8.10. CC_UNBLOCKING_REQ

Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
ISUP_MAINTENANCE_ORIENTED
ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.

$Revision: 0.8.22 % Page 211 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

Rules

7.1.8.11. CC_UNBLOCKING_IND

Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
ISUP_MAINTENANCE_ORIENTED
ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.8.12. CC_UNBLOCKING_RES

Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
ISUP_MAINTENANCE_ORIENTED
ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.8.13. CC_UNBLOCKING_CON

Parameters
cc_flags: Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

$Revision: 0.8.22 % Page 212 April 15, 2003

Call Control Interface (CClI)

cc_addr_length:
cc_addr_offset:

Rules

OpenSS7 Corpor ation

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented or
hardware failure oriented blocking is to be performed. If both or neither of
these flags are set, the primitive will fail with error CCBADFLAG.

Indicates the length of the address which consists of a circuit identifier.
Indicates the offset of the address from the start of the block.

7.1.8.14. CC_QUERY_REQ

Parameters
cc_flags:

cc_addr_length:
cc_addr_offset:

Rules

Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

Indicates the length of the address which consists of a circuit identifier.
Indicates the offset of the address from the start of the block.

7.1.8.15. CC_QUERY_IND

Parameters
cc_flags:

cc_addr_length:
cc_addr_offset:

Rules

Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

Indicates the length of the address which consists of a circuit identifier.
Indicates the offset of the address from the start of the block.

7.1.8.16. CC_QUERY_RES

Parameters
cc_flags:

cc_addr_length:

$Revision: 0.8.22 %

Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.

Indicates the length of the address which consists of a circuit identifier.

Page 213 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.1.8.17. CC_QUERY_CON

Parameters
cc_flags: Indicates the options flags.
ISUP_GROUP
When set, this flag indicates that the operation is to be performed on a group
of call control addresses and that any circuit identifier in the specified call
control address is to be interpreted by the CCS provider as a circuit group
identifier.
cc_addr_length: Indicates the length of the address which consists of a circuit identifier.
cc_addr_offset: Indicates the offset of the address from the start of the block.
Rules

7.2. Q.764 Header FileListing

[RA KKKk kR kK Kk Kk kA K KKK KKK AR KA KA KKK KKK KA IR KKK KKK KKK K IR KKK KKK IR KKK KAk kK h ok *

@#) $ld: cci.me,v 0.8.2.2 2003/03/23 19:56:50 brian Exp $

Copyright (C) 2001-2002 OpenSS7 Corporation <http://ww.openss7.conp>
Copyright (C) 1997-2000 Brian F. G Bidul ock <bidul ock@all as. net >

Al Rights Reserved.

This programis free software; you can redistribute it and/or nodify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any |ater
version.

This programis distributed in the hope that it will be useful, but WTHOUT
ANY WARRANTY; without even the inplied warranty of MERCHANTABI LI TY or FI TNESS
FOR A PARTI CULAR PURPOSE. See the GNU General Public License for nore
details.

You shoul d have received a copy of the GNU General Public License along with
this program if not, wite to the Free Software Foundation, Inc., 675 Mass
Ave, Canbridge, MA 02139, USA

U. S. GOVERNMENT RESTRICTED RIGHTS. If you are licensing this Software on
behal f of the U S. Governnent ("Governnent"), the follow ng provisions apply
to you. |If the Software is supplied by the Departnment of Defense ("DoD'), it
is classified as "Commerci al Conputer Software" under paragraph 252.227-7014
of the DoD Suppl ement to the Federal Acquisition Regulations ("DFARS') (or any
successor regul ations) and the Governnment is acquiring only the license rights
granted herein (the license rights customarily provided to non-Governnent
users). |If the Software is supplied to any unit or agency of the Governnent
other than DoD, it is classified as "Restricted Conputer Software" and the
Governnment’s rights in the Software are defined in paragraph 52.227-19 of the
Federal Acquisition Regulations ("FAR') (or any success regulations) or, in
the cases of NASA, in paragraph 18.52.227-86 of the NASA Suppl enent to the FAR
(or any successor regul ations).

Commer ci al |icensing and support of this software is available from OpenSS7
Corporation at a fee. See http://ww. openss7.conl

Last Modified $Date: 2003/03/23 19:56:50 $ by $Author: brian $

$Revision: 0.8.22 % Page 214 April 15, 2003

Call Control Interface (CClI)

Kk KKK KKK Kk kK KKK KKK KK KKK KA KKK A KKK IR K KA KKK KKK K KKK A KKK IR KKK KKK KKK Ak ok * kx|

#ifndef _ SS7 ISUPI_H
#define __SS7_ISUPI_H

#i dent

/*

@#) $Nane: $($Revision:

* | SUP addresss

*/

typedef struct

ul ong scope;
ul ong id;
ul ong cic;

} isup_addr_t;

#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

* Defi

*/

enum

enum

enum

}s
/*

ne

{

{

{

| SUP_SCCPE_CT
| SUP_SCOPE_CG
| SUP_SCOPE_TG
| SUP_SCOPE_SR
| SUP_SCOPE_SP
| SUP_SCCPE_DF
| SUP_SCOPE_CI C

nitions for CC

| SUP_I NCOM NG_I NTERNATI ONAL_EXCHANGE = 0x00000001UL,

i sup_addr {

/*
/*
/*
/*
/*
/*
/*

NOoO O~ WNPRE

0.8.2.2 $) Copyright

/* the scope of the identifier */
/* the identifier within the scope */
identification code within the scope */

/* circuit

circuit scope */

circuit group scope */
trunk group scope */
signalling relation scope */
signalling point scope */

defaul t scope */

for unidentified cic addresses */

for Q 764 Conform ng CCS Providers.

| SUP_SUSPEND_NATI ONALLY_PERFORMED = 0x00000002UL,

CMB_IDLE = 0,
CMB_WCON_BLREQ
CMB_WRES_BLI ND,
CMB_WACK_BLRES,
CMB_WCON_UBREQ
CMB_WRES_UBI ND,
CMB_WACK_UBRES,
CMB_WCON_RESREQ
CMB_WRES_RESI ND,
CMB_WACK_RESRES,
CMB_WCON_QRYREQ
CMB_WRES_GRYI ND,
CMB_WACK_QRYRES,

CKS_IDLE = 0,
CKS_W ND_CONT,
CKS_WRES_CONT,
CKS_W ND_CTEST,
CKS_WREQ CTEST,
CKS_W ND_CCREP,
CKS_WREQ CCREP,
CKS_WCON_RELREQ
CKS_WRES_RELI ND,

* Circuit States:

*/
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

ne
ne
ne

ne
ne
ne
ne
ne
ne
ne

cTs I cC
CTS_ocC
cTS_cor
CTS_LPA
CTS_COR
CTS_MASK

CTS_DI RECTI ON(__val)
CTS_CONT_CHECK(__val)
CTS_MESSAGE(__val)

CTS_I DLE

CTS_VAI T_I AM
CTS_WAI T_CCR
CTS_VAI T_LPA
CTS_VAI T_SAM
CTS_VAI T_ACM
CTS_VAI T_ANM

$Revision: 0.8.22 %

0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x0000000f

(__val & (CTS_ICQ CTS_0G0))
(__val & (CTS_COT| CTS_LPA| CTS_COR))

(__val & CTS_MASK)

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006

Page 215

(c) 1997-2002 OpenSS7 Corporation.”

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI)

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

CTS_ANSVERED 0x00000007
CTS_SUSPENDED 0x00000008
CTS_WAIT_RLC 0x00000009
CTS_SEND _RLC 0x0000000a
CTS_| CC_WAI T_COT_CCR CTS_| CC |
CTS_OGC_WAI T_COT_CCR CTS_OcC |
CTS_| CC_WAI T_LPA_CCR CTS_I CC |
CTS_OGC_WAI T_LPA_CCR CTS_OcC |
CTS_| CC_WAI T_CCR CTS_I CC |
CTS_OGC_WAI T_CCR CTS_OcC |
CTS_| CC_WAI T_CCR_SAM CTS_I CC |
CTS_OGC_WAI T_COR_SAM CTS_OcC |
CTS_| CC_WAI T_COT_SAM CTS_I CC |
CTS_OGC_WAI T_COT_SAM CTS_OcC |
CTS_| CC_WAI T_LPA_SAM CTS_I CC |
CTS_OGC_WAI T_LPA_SAM CTS_OcC |
CTS_| CC_WAI T_SAM CTS_I CC |
CTS_OGC_WAI T_SAM CTS_OcC |
CTS_| CC_WAI T_COR_ACM CTS_I CC |
CTS_OGC_WAI T_COR_ACM CTS_OcC |
CTS_| CC_WAI T_COT_ACM CTS_I CC |
CTS_OGC_WAI T_COT_ACM CTS_OcC |
CTS_| CC_WAI T_LPA_ACM CTS_I CC |

CTS_OGC_WAI T_LPA_ACM
CTS_| CC_WAI T_ACM
CTS_OGC_WAI T_ACM
CTS_| CC_WAI T_ANM
CTS_OGC_WAI T_ANM
CTS_| CC_ANSVERED
CTS_OGC_ANSVERED
CTS_| CC_SUSPENDED
CTS_OGC_SUSPENDED
CTS_I CC_WAI T_RLC
CTS_OGC_WAIT_RLC
CTS_| CC_SEND_RLC
CTS_OGC_SEND_RLC

D e T e e e e e L T T e e N e T T e e N i

* Crcuit, Goup and MIP Fl ags

*/

CTS_COR | CTS WAIT_SAM)
CTS_COR | CTS WAIT_SAM)
CTS_COT | CTS WAIT_SAM)
CTS_COT | CTS WAIT_SAM)
CTS_LPA | CTS VWAIT_SAM)
CTS_LPA | CTS WAIT_SAM)
CTS_WAI T_SAM)

CTS_WAI T_SAM)

CTS_COR | CTS_WAIT_
CTS_COR | CTS_WAIT_
CTS_COT | CTS_WAIT_
CTS_COT | CTS_WAIT_
CTS_LPA | CTS_WAIT_

CTS_OGC | CTS_LPA | CTS WAIT_

CTS_ICC | CTS WAIT_ACM)
CTS_OGC | CTS VAIT_ACM)
CTS_ICC | CTS VAIT_ANM)
CTS_OGC | CTS VAIT_ANM)
CTS_ICC | CTS_ANSWERED)
CTS_OGC | CTS_ANSWERED)
CTS_ICC | CTS_SUSPENDED)
CTS_OGC | CTS_SUSPENDED)
CTS_ICC | CTS VWAIT_RLC)
CTS_OGC | CTS WAIT_RLC)
CTS_ICC | CTS SEND_RLC)
CTS_OGC | CTS SEND_RLC)

#def i ne CCTF_LOC_M BLOCKED 0x00000001UL
#def i ne CCTF_REM M BLOCKED 0x00000002UL
#def i ne CCTF_LOC_H_BLOCKED 0x00000004UL
#def i ne CCTF_REM H_BLOCKED 0x00000008UL
#def i ne CCTF_LOC_M BLOCK_PENDI NG 0x00000010UL
#def i ne CCTF_REM_M BLOCK_PENDI NG 0x00000020UL
#def i ne CCTF_LOC_H_BLOCK_PENDI NG 0x00000040UL
#def i ne CCTF_REM_H_BLOCK_PENDI NG 0x00000080UL
#define CCTF_LOC_M UNBLOCK_PENDI NG 0x00000100UL
#defi ne CCTF_REM M _UNBLOCK_PENDI NG 0x00000200UL
#define CCTF_LOC_H_UNBLOCK_PENDI NG 0x00000400UL
#define CCTF_REM H_UNBLOCK_PENDI NG 0x00000800UL
#def i ne CCTF_LOC_RESET_PENDI NG 0x00001000UL
#def i ne CCTF_REM RESET_PENDI NG 0x00002000UL
#def i ne CCTF_LOC_QUERY_PENDI NG 0x00004000UL
#def i ne CCTF_REM QUERY_PENDI NG 0x00008000UL
#def i ne CCTF_ORI G_SUSPENDED 0x00010000UL
#def i ne CCTF_TERM_SUSPENDED 0x00020000UL
#defi ne CCTF_UPT_PENDI NG 0x00040000UL
#def i ne CCTF_LOC_S_BLOCKED 0x00080000UL
#def i ne CCTF_LOC_G_BLOCK_PENDI NG 0x00100000UL
#def i ne CCTF_REM _G_BLOCK_PENDI NG 0x00200000UL
#def i ne CCTF_LOC_G_UNBLOCK_PENDI NG 0x00400000UL
#def i ne CCTF_REM_G_UNBLOCK_PENDI NG 0x00800000UL
#def i ne CCTF_COR_PENDI NG 0x01000000UL
#def i ne CCTF_COT_PENDI NG 0x02000000UL
#defi ne CCTF_LPA_PENDI NG 0x04000000UL
#def i ne CCTM _OUT_OF_SERVI CE (

#def i ne CCTM_CONT_CHECK (

/* Cause val ues for CC CALL_REATTEMPT_I ND */

/* Cause values -- Q 764 conformng */

#defi ne | SUP_REATTEMPT_DUAL_SI EZURE 1UL
#def i ne | SUP_REATTEMPT_RESET 2UL
#def i ne | SUP_REATTEMPT_BLOCKI NG 3UL
#define | SUP_REATTEMPT_T24_TI MEQUT 4UL
#def i ne | SUP_REATTEMPT_UNEXPECTED 5UL
#define | SUP_REATTEMPT_COT_FAI LURE 6UL
#defi ne | SUP_REATTEMPT_Cl RCUI T_BUSY 7UL

$Revision: 0.8.22 %

Page 216

CCTF_LOC_S_BLOCKED |

CCTF_COR_PENDI NG |

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI)

/* Call
/* Call

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne

/* Call
/* Call

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne

/* Call
/* Call

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne

/* Call
/* Call

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/* Fl
/* Fl
#def i
#def i

/* Fl
/* Fl
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

types for CC_SETUP_REQ and CC_SETUP_I ND
types -- Q 764 Conforming */

| SUP_CALL_TYPE_SPEECH

| SUP_CALL_TYPE_64KBS_UNRESTRI CTED

| SUP_CALL_TYPE_3_1kHZ_AUDI O

| SUP_CALL_TYPE_64KBS_PREFERRED

| SUP_CALL_TYPE_2x64KBS_UNRESTRI CTED
| SUP_CALL_TYPE_384KBS_UNRESTRI CTED

| SUP_CALL_TYPE_1536KBS_UNRESTRI CTED
| SUP_CALL_TYPE_1920KBS_UNRESTRI CTED
flags for CC_SETUP_REQ and CC_SETUP_I ND
flags -- Q 764 Conforming */

I SUP_NCI _ONE_SATELLI TE_CCT

I SUP_NCI _TWO SATELLI TE_CCT

| SUP_NCI _SATELLI TE_MASK

| SUP_NCI _CONT_CHECK_REQUI RED

| SUP_NCI _CONT_CHECK_PREVI OUS

| SUP_NCI _CONT_CHECK_MASK

| SUP_NCI _OG_ECHO_CONTROL_DEVI CE
flags for CC_SETUP_REQ and CC_SETUP_I ND
flags -- Q 764 Conforming */

| SUP_FCI _| NTERNATI ONAL_CALL

| SUP_FCI _PASS_ALONG _E2E_METHOD_AVAI L
| SUP_FCI _SCCP_E2E_METHOD_AVAI LABLE

I SUP_FCI _| NTERWORKI NG_ENCOUNTERED

| SUP_FCI _E2E_| NFORVATI ON_AVAI LABLE

I SUP_FCI _| SDN_USER _PART_ALL_THE_WAY
I SUP_FCI _I SDN_USER_PART_NOT_REQUI RED
| SUP_FCI _I SDN_USER_PART_REQUI RED

| SUP_FCI _ORI Gl NATI NG_ACCESS | SDN

| SUP_FCI _SCCP_CLNS_METHOD AVAI LABLE
| SUP_FClI _SCCP_CONS_METHOD AVAI LABLE
flags for CC_SETUP_REQ and CC_SETUP_I ND
flags -- Q 764 Conforming */

| SUP_CPC_NMASK

| SUP_CPC_UNKNOWN

| SUP_CPC_OPERATOR_FRENCH

| SUP_CPC_OPERATOR_ENGLI SH

| SUP_CPC_OPERATOR_GERVAN

| SUP_CPC_OPERATOR_RUSSI AN

| SUP_CPC_OPERATOR_SPANI SH

| SUP_CPC_OPERATOR_LANGUAGE_6

| SUP_CPC_OPERATOR_LANGUAGE_7

| SUP_CPC_OPERATOR_LANGUAGE_8

| SUP_CPC_OPERATOR_CODE_9

| SUP_CPC_SUBSCRI BER_CORDI NARY

| SUP_CPC_SUBSCRI BER_PRI ORI TY

| SUP_CPC VO CE_BAND DATA

| SUP_CPC TEST_CALL

| SUP_CPC_SPARE

| SUP_CPC_PAYPHONE

*/

0x00000000UL
0x00000002UL
0x00000003UL
0x00000006 UL
0x00000007UL
0x00000008UL
0x00000009UL
0x0000000aUL
*/

0x00000001UL
0x00000002UL
0x00000003UL
0x00000004 UL
0x00000008UL
0x0000000cUL
0x00000010UL
*/

0x00000100UL
0x00000200UL
0x00000400UL
0x00000800UL
0x00001000UL
0x00002000UL
0x00004000UL
0x00008000UL
0x00010000UL
0x00020000UL
0x00040000UL
*/

0xf f 000000UL
0x00000000UL
0x01000000UL
0x02000000UL
0x03000000UL
0x04000000UL
0x05000000UL
0x06000000UL
0x07000000UL
0x08000000UL
0x09000000UL
0x0a000000UL
0x0b000000UL
0x0c000000UL
0x0d000000UL
0x0e000000UL
0x0f 000000UL

ags for CC_CONT_REPORT_REQ and CC_CONT_REPORT_I ND */
ags -- Q 764 Conformng */

ne
ne

| SUP_COT_FAI LURE
| SUP_COT_SUCCESS

0x00000000UL
0x00000001UL

ags for CC_PROCEEDI NG CC ALERTING CC _PROGRESS, CC | BI
ags -- Q 764 Conformng */

ne

| SUP_BCI _NO_CHARGE

| SUP_BCl _CHARGE

| SUP_BCI _CHARGE_MASK

| SUP_BCI _SUBSCRI BER_FREE

| SUP_BCl _CONNECT_FREE

| SUP_BCl _CPS_MASK

| SUP_BCI _ORDI NARY_SUBSCRI BER

| SUP_BCI _PAYPHONE

| SUP_BCI _CPI _MASK

| SUP_BCl _PASS_ALONG E2E_NETHOD_AVAI L
| SUP_BCl _SCCP_E2E_NMETHOD_AVAI LABLE

| SUP_BCI _E2E_MASK

| SUP_BCI _I NTERWORKI NG_ENCOUNTERED

| SUP_BCI _E2E_| NFORMATI ON_AVAI LABLE

| SUP_BCI _I SDN_USER_PART_ALL_THE_WAY
| SUP_BCI _HOLDI NG_REQUESTED

| SUP_BCI _TERM NATI NG ACCESS_| SDN

I SUP_BCI _I C_ECHO CONTROL_DEVI CE

| SUP_BCl _SCCP_CLNS_METHOD_AVAI LABLE
| SUP_BCl _SCCP_CONS_METHOD_AVAI LABLE
| SUP_BCl _SCCP_METHOD_MASK

| SUP_OBCI _I NBAND_| NFORMATI ON_AVAI LABLE
| SUP_OBCI _CALL_DI VERSI ON_MAY_OCCUR

| SUP_OBCI _ADDI TI ONAL_I NFO_| N_SEG

$Revision: 0.8.22 %

0x00000001UL
0x00000002UL
0x00000003UL
0x00000004 UL
0x00000008UL
0x0000000cUL
0x00000010UL
0x00000020UL
0x00000030UL
0x00000040UL
0x00000080UL
0x000000cOUL
0x00000100UL
0x00000200UL
0x00000400UL
0x00000800UL
0x00001000UL
0x00002000UL
0x00004000UL
0x00008000UL
0x0000c000UL
0x00010000UL
0x00020000UL
0x00040000UL

Page 217

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

#define | SUP_OBCI _MLPP_USER 0x00080000UL

/* Events for CC_PROGRESS_REQ and CC_PROGRESS | ND */
/* Events -- Q 764 Conformng */

#define | SUP_EVNT_PRES_RESTRI CT 0x80
#def i ne | SUP_EVNT_ALERTI NG 0x01 /* alerting */
#def i ne | SUP_EVNT_PROGRESS 0x02 /* progress */
#define | SUP_EVNT_I BI 0x03 /* in-band info or approp pattern avail */
#def i ne | SUP_EVNT_CFB 0x04 /* call forwarded busy */
#def i ne | SUP_EVNT_CFNA 0x05 /* call forwarded no reply */
#def i ne | SUP_EVNT_CFU 0x06 /* call forwarded unconditional */
#def i ne | SUP_EVNT_MASK ox7f
/* Cause values CC _CALL_FAILURE_IND -- Q 764 Conforming */
#define | SUP_CALL_FAI LURE_COT_FAI LURE UL
#define | SUP_CALL_FAI LURE_RESET 2UL
#define | SUP_CALL_FAI LURE_RECV_RLC 3UL
#define | SUP_CALL_FAI LURE_BLOCKI NG 4UL
#define | SUP_CALL_FAI LURE_T2_TI MEQUT 5UL
#define | SUP_CALL_FAI LURE_T3_TI NEQUT 6UL
#define | SUP_CALL_FAI LURE_T6_TI NEQUT 7UL
#define | SUP_CALL_FAI LURE_T7_TI MEQUT 8UL
#define | SUP_CALL_FAI LURE_T8_TI NEQUT 9uL
#define | SUP_CALL_FAI LURE_T9_TI NEQUT 10UL
#define | SUP_CALL_FAI LURE_T35_TI MEQUT 1100
#define | SUP_CALL_FAI LURE_T38_TI MEQUT 12UL
#define | SUP_CALL_FAI LURE_Cl RCUI T_BUSY 13UL
/ *
* Q850 Cause Val ues
*/

/* Normal class */

#def i ne CC_CAUS_UNALLOCATED NUMBER 1 /* Unal | ocated (unassigned) nunber */

#def i ne CC_CAUS_NO ROUTE_TO TRANSI T_NETWORK 2 /* No route to specified transit network */

#def i ne CC_CAUS_NO ROUTE_TO DESTI NATI ON 3 /* No route to destination */

#defi ne CC_CAUS_SEND_SPECI AL_| NFO_TONE 4 /* Send special information tone */

#defi ne CC_CAUS_M SDI ALLED_TRUNK_PREFI X 5 /* Msdialled trunk prefix */

#def i ne CC_CAUS_PREEMPTI ON 8 /* Preenption */

#def i ne CC_CAUS_PREEMPTI ON_CCT_RESERVED 9 /* Preenption - circuit reserved for reuse */

#def i ne CC_CAUS_NORMAL_CALL_CLEARI NG 16 /* Normal call clearing */

#def i ne CC_CAUS_USER_BUSY 17 /* User busy */

#def i ne CC_CAUS_NO_USER_RESPONDI NG 18 /* No user responding */

#def i ne CC_CAUS_NO_ANSVER 19 /* No answer fromuser (user alerted)

#def i ne CC_CAUS_SUBSCRI BER_ABSENT 20 /* Subscriber absent */

#defi ne CC_CAUS_CALL_REJECTED 21 /* Call rejected */

#def i ne CC_CAUS_NUMBER_CHANGED 22 /* Nunmber changed */

#def i ne CC_CAUS_REDI RECT 23 /* Redirect to new destination */

#def i ne CC_CAUS_OUT_OF_ORDER 27 /* Desitination out of order */

#def i ne CC_CAUS_ADDRESS_| NCOVPLETE 28 /* Invalid number format (address inconplete)

#defi ne CC_CAUS_FACI LI TY_REJECTED 29 /* Facility rejected */

#def i ne OC_OAUS_NO?I\/AL_UNSPECI FI ED 31 /* Normal unspecified */

/* Resource Unavailable O ass */

#defi ne OC CAUS_NO_CCT_AVAI LABLE 34 /* No circuit/channel available */

#defi ne CC_CAUS_NETWORK_OUT_OF_ORDER 38 /* Network out of order */

#def i ne CC_CAUS_TEMPORARY_FAI LURE 41 /* Tenporary failure */

#def i ne CC_CAUS_SW TCHI NG_EQUI P_CONGESTI ON 42 /* Swi tching equi pment congestion */

#def i ne CC_CAUS_ACCESS_| NFO_DI SCARDED 43 /* Access information discarded */

#def i ne CC_CAUS_REQUESTED_CCT_UNAVAI LABLE 44 /* Requested circuit/channel not available */

#defi ne CC_CAUS_PRECEDENCE_CALL_BLOCKED 46 /* Precedence call blocked */

#define CC_ CAUS RESOURCE_UNAVAI LABLE 47 /* Resource unavail abl e, unspecified */

/* Service or Option Unavaial ble C ass */

#define CC_ CAUS NOT_SUBSCRI BED 50 /* Requested facility not subscribed */

#defi ne CC_CAUS_OGC_BARRED_W THI N_CUG 53 /* Qutgoing calls barred within CUG */

#defi ne CC_CAUS_| CC_BARRED W THI N_CUG 55 /* Incoming calls barred within CUG */

#def i ne CC_CAUS_BC_NOT_AUTHORI ZED 57 /* Bearer capability not authorized */

#def i ne CC_CAUS_BC_NOT_AVAI LABLE 58 /* Bearer capability not presently available */

#def i ne CC_CAUS_| NCONSI STENCY 62 /* I nconsistency in designated outgoing access
informati on and subscriber class */

#def i ne CC_CAUS_SERVI CE_OPTI ON_NOT_AVAI LABLE 63 /* Service or option not available, unspecified */

/* Service or Option Not Inplenented Cass */

#def i ne CC_CAUS_BC_NOT_| MPLEMENTED 65 /* Bearer capability not inplenented */

#def i ne CC_CAUS_FACI LI TY_NOT_| MPLEMENTED 69 /* Requested facility not inplenmented */

#defi ne CC_CAUS_RESTRI CTED_BC ONLY 70 /* Only restricted digital information bearer capability
is available */

#def i ne CC_CAUS_SERI VCE_OPTI ON_NOT_| MPLEMENTED 79 /* Service or option not inplenented, unspecified */

/* Invalid Message (e.g., Paraneter out of Range) C ass */

#def i ne CC_CAUS_USER_NOT_MEMBER_OF_CUG 87 /* User not nenber of CUG */

#def i ne CC_CAUS_| NCOVPATI BLE_DESTI NATI ON 88 /* Inconpatibl e destination */

#def i ne CC_CAUS_NON_EXI STENT_CUG 90 /* Non-existent CUG */

#defi ne CC_CAUS | NVALI D_TRANSI T_NTWK_SELECTION 91 /* Invalid transit network selection */

#defi ne CC_CAUS_| NVALI D_MESSAGE 95 /* Invalid nessage, unspecified */

/* Protocol Error (e.g., Unknwon Message) O ass */

#def i ne CC_CAUS_MESSAGE_TYPE_NOT_| MPLEMENTED 97 /* Message typ non-existent or not inplenented. */

$Revision: 0.8.22 %

Page 218

April 15, 2003

Call Control Interface (CClI)

OpenSS7 Corpor ation

#def i ne CC_CAUS_PARAMETER_NOT_| MPLEMENTED 99 /* Information el enent/Paraneter non-existent or not
i npl erented */
#def i ne CC_CAUS_RECOVERY_ON TI MER_EXPI RY 102 /* Recovery on timer expiry */
#def i ne CC_CAUS_PARAMETER_PASSED_ON 103 /* Parameter non-existent or not inplenmented - passed on */
#def i ne CC_CAUS_MESSAGE_DI SCARDED 110 /* Message with unrecogni zed paraneter discarded */
#def i ne CC_CAUS_PROTOCOL_ERROR 111 /* Protocol error, unspecified */
/* Interworking O ass */
#def i ne CC_CAUS_| NTERWORKI NG 127 /* I nterworking, unspecified */
/*
* ANSI Standard Causes
*/
/* Normal Class */
#def i ne CC_CAUS_UNALLOCATED DEST_NUMBER 23 /* Unal | ocat ed destination nunber */
#def i ne CC_CAUS_UNKNOWN_BUSI NESS_GROUP 24 /* Unknown busi ness group */
#def i ne CC_CAUS_EXCHANGE_ROUTI NG_ERRCOR 25 /* Exchange routing error */
#defi ne CC_CAUS_M SROUTED_CALL_TO PORTED NUMBER 26 /* Msrouted call to a ported nunmber */
#def i ne CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND 27 /* Nunmber portability Query on Rel ease (QR) nunber not
found. */
/* Resource Unavailable O ass */
#def i ne CC_CAUS_RESOURCE_PREEMPTI ON 45 /* Preenption. */
#def i ne CC_CAUS_PRECEDENCE_CALL_BLOCKED 46 /* Precedence call bl ocked. */
/* Service or Option Not Available Oass */
#defi ne CC_CAUS_CALL_TYPE_I NCOWPATI BLE 51 /* Call type inconpatible with service request */
#def i ne CC_CAUS_GROUP_RESTRI CTI ONS 54 /* Call blocked due to group restrictions */
/* Managenent flags -- Q 764 Conformng */
#def i ne | SUP_GROUP 0x00010000UL
#def i ne | SUP_MAI NTENANCE_ORI ENTED 0x00000000UL
#def i ne | SUP_HARDWARE_FAI LURE_ORI ENTED 0x00000001UL
#define | SUP_SRI' S_MASK 0x3
#define | SUP_SRI'S_NETWORK_I NI TI ATED Ox1
#define | SUP_SRI' S_USER | NI TI ATED 0x2
/* Mai ntenance indications -- Q 764 Conformng */
#def i ne | SUP_MAI NT_T5_TI MEQUT 3UL /* Q752 12.5 on occrence */
#def i ne | SUP_MAI NT_T13_TI MEQUT 4UL /* Q752 12.16 1st and delta */
#def i ne | SUP_MAI NT_T15_TI MEQUT 5UL /* Q752 12.17 1st and delta */
#define | SUP_MAI NT_T17_TI MEOUT 6UL /* Q752 12.1 1st and delta */
#def i ne | SUP_MAI NT_T19_TI MEQUT 7UL /* Q752 12.18 1st and delta */
#def i ne | SUP_MAI NT_T21_TI MEQUT 8uL /* Q752 12.19 1st and delta */
#def i ne | SUP_MAI NT_T23_TI MEQUT 9uL /* Q752 12.2 1st and delta */
#define | SUP_MAI NT_T25_TI MEOUT 10UL
#define | SUP_MAI NT_T26_TI MEOUT 1100
#define | SUP_MAI NT_T27_TI MEOUT 12UL
#define | SUP_MAI NT_T28_TI MEOUT 13UL
#define | SUP_MAI NT_T36_TI MEOUT 14UL
#def i ne | SUP_MAI NT_UNEXPECTED CGBA 15UL /* Q752 12.12 1st and delta */
#def i ne | SUP_MAI NT_UNEXPECTED CGUA 16UL /* Q752 12.13 1st and delta */
#def i ne | SUP_MAI NT_UNEXPECTED MESSAGE 17UL /* Q752 12.21 1st and delta */
#define | SUP_MAI NT_UNEQUI PPED Cl C 18UL
#define | SUP_MAI NT_SEGVENTATI ON_DI SCARDED 19UL
#define | SUP_MAI NT_USER_PART_UNEQUI PPED 20UL
#def i ne | SUP_MAI NT_USER_PART_UNAVAI LABLE 21UL /* Q752 10.1, 10.8 on occrence */
#def i ne | SUP_MAI NT_USER_PART_AVAI LABLE 22UL /* Q752 10.3, 10.9 on occrence */
#def i ne | SUP_MAI NT_USER_PART_MAN_MADE_BUSY 23UL /* Q 752 10.2 on occrence */ [* XXX */
#def i ne | SUP_MAI NT_USER_PART_CONGESTED 24UL /* Q752 10.5, 10.11 on occrence */
#def i ne | SUP_MAI NT_USER_PART_UNCONGESTED 25UL /* Q752 10.6, 10.12 on occrence */
#def i ne | SUP_MAI NT_M SSI NG_ACK_I N_CGBA 26UL /* Q752 12.8 1st and delta */
#def i ne | SUP_MAI NT_M SSI NG_ACK_I N_CGUA 27UL /* Q752 12.9 1st and delta */
#define | SUP_MAI NT_ABNORMAL_ACK_| N_CGBA 28UL /* Q752 12.10 1st and delta */
#define | SUP_MAI NT_ABNORMAL_ACK_| N_CGUA 29UL /* Q752 12.11 1st and delta */
#def i ne | SUP_MAI NT_UNEXPECTED BLA 30UL /* Q752 12.14 1st and delta */
#def i ne | SUP_MAI NT_UNEXPECTED_UBA 31UL /* Q752 12.15 1st and delta */
#def i ne | SUP_MAI NT_RELEASE_UNREC_| NFO 32UL /* Q752 12.22 1st and delta */ /* XXX */
#def i ne | SUP_MAI NT_RELEASE_FAI LURE 33UL /* Q752 12.23 1st and delta */ /* XXX */
#define | SUP_MAI NT_MESSAGE_FORMAT_ERRCR 34UL /* Q752 12.20 1st and delta */ /* XXX */
#endi f /* _SS7T_ISUPI_H__ */

$Revision: 0.8.22 %

Page 219

April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

8. Addendum for ETSI EN 300 356-1 V3.2.2 Confor mance

This addendum describes the formats and rules that are specific to ETSI EN 300 356-1 V3.2.2. The addendum
must be used along with the generic CClI as defined in the main document, and the Q.764 conformance defined in
Addendum 2, when implementing a CCS provider that will be configured with the EN 300 356-1 call processing
layer.

8.1. Primitivesand Rulesfor ETSI EN 300 356-1 V3.2.2 Conformance

The following are the additional rules that apply to the CCI primitives for ETSI EN 300 356-1 V3.2.2 compatibil-
ity.

8.1.1. Local Management Primitives
8.1.2. Call Setup Primitives

8.1.2.1. CC_SETUP REQ
Parameters

Flags

Rules

8.1.2.2. CC_SETUP_IND

Parameters
cc_call_type: Specifies the call type to be set up. In addition to Q.764 values, for EN 300 356-1
V3.2.2 conforming CCS providers, the call type can also be one of the values listed un-
der "Call Type" below.
Call Type

The following call types are defined for EN 300 356-1 V3.2.2 conforming CCS providers in addition to the
Q.931 values shown in Addendum 1.

CC_CALL_TYPE_3x64KBS_UNRESTRICTED
The call type is 3 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 3 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_4x64KBS_UNRESTRICTED
The call type is 4 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 4 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_5x64KBS_UNRESTRICTED
The call type is 5 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 5 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_6x64KBS_UNRESTRICTED
The call type is 6 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of 384 kbit/s unrestricted digital information. This
call type can be synonymous with CC_CALL_TYPE 384KBS_UNRESTRICTED.

CC_CALL_TYPE_7x64KBS_UNRESTRICTED
The call type is 7 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 7 x 64 kbit/s unrestricted digital

$Revision: 0.8.22 % Page 220 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

information".

CC_CALL_TYPE 8x64KBS UNRESTRICTED
The call type is 8 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 8 x 64 kbit/s unrestricted digital infor-
mation".

CC_CALL_TYPE_9x64KBS _UNRESTRICTED
The call type is 9 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 9 x 64 kbit/s unrestricted digital infor-
mation".

CC CALL _TYPE 10x64KBS UNRESTRICTED
The call typeis 10 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 10 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_11x64KBS_UNRESTRICTED
The call typeis 11 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 11 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_12x64KBS_UNRESTRICTED
The call typeis 12 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 12 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_13x64KBS_UNRESTRICTED
The call typeis 13 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 13 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_14x64KBS_UNRESTRICTED
The call typeis 14 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 14 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_15x64KBS_UNRESTRICTED
The call typeis 15 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 15 x 64 kbit/s unrestricted digital in-
formation".

CC _CALL _TYPE 16x64KBS UNRESTRICTED
The call typeis 16 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 16 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_17x64KBS_UNRESTRICTED
The call typeis 17 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 17 x 64 kbit/s unrestricted digital in-
formation".

CC _CALL _TYPE 18x64KBS UNRESTRICTED
The call typeis 18 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 28 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_19x64KBS_UNRESTRICTED
The call typeis 19 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 19 x 64 kbit/s unrestricted digital in-
formation".

$Revision: 0.8.22 % Page 221 April 15, 2003

Call Control Interface (CClI) OpenSS7 Corpor ation

CC_CALL_TYPE_20x64KBS_UNRESTRICTED
The call typeis 20 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 20 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_21x64KBS UNRESTRICTED
This call type corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved
for 21 x 64 kbit/s unrestricted digital information". The call type is 21 x 64 kbit/s unrestricted digital
information.

CC_CALL_TYPE_22x64KBS_UNRESTRICTED
The call typeis 22 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 22 x 64 kbit/s unrestricted digital in-
formation".

CC CALL _TYPE 23x64KBS UNRESTRICTED
The call typeis 23 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 23 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_24x64KBS_UNRESTRICTED
The call typeis 24 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "1536 kbit/s unrestricted digital information”. This
call type can be synonymous with CC_CALL_TYPE 1536KBS UNRESTRICTED.

CC _CALL _TYPE 25x64KBS UNRESTRICTED
The call typeis 25 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 25 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_26x64KBS_UNRESTRICTED
The call typeis 26 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 26 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_27x64KBS_UNRESTRICTED
The call typeis 27 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 27 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_28x64KBS_UNRESTRICTED
The call typeis 28 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "reserved for 28 x 64 kbit/s unrestricted digital in-
formation".

CC_CALL_TYPE_29x64KBS UNRESTRICTED
The call typeis 29 x 64 kbit/s unrestricted digital information. This call type corresponds to a EN 300
356-1 V3.2.2 transmission medium requirement of "1920 kbit/s unrestricted digital information”. This
call type can be synonymous with CC_CALL_TYPE_1920KBS UNRESTRICTED.

Rules
Rulesfor call type:

(1) Only multi-rate connection types for 384 kbit/s (6 x 64 kbit/s), 1536 kbit/s (24 x 64 kbit/s) and 1920
kbit/s (29 x 64 kbit/s) are supported. For EN 300 356-1 VV3.2.2 compliant CCS providers.

8.2. ETSI EN 300 356-1 V3.2.2 Header FileListing

$Revision: 0.8.22 % Page 222 April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

A. Appendix A. Mapping of CCI Primitivesto Q.931
The mapping of CCI primitives to Q.931 primitives is shown in Table2. For the most part, this mapping is a one
to one mapping of service primitives, with the exception of Setup Response and Setup Confirm.

In Q.931 the Setup Response and Setup Confirm primitives and issued only once the voice channel is connected.
In OpenSS7 CCI, the CC_SETUP_RES and CC_SETUP_CON primitives are used to accept the addressing and
assign a stream and correspond to the first backward message (i.e, Processing, Alerting or Progress Request or
Indication; and Setup Indication or Confirm).

Table2. Mapping of CCI primitives to Q.931 Primitives

CCI Primitive Q.931 Primitive

CC_INFO_REQ -
CC_INFO_ACK -
CC_BIND_REQ -
CC_BIND_ACK -
CC_UNBIND_REQ -
CC_ADDR_REQ -
CC_ADDR_ACK -

CC_OK_ACK -

CC_ERROR_ACK -

CC_SETUP_REQ Setup Request

CC_SETUP_IND Setup Indication

CC_MORE_INFO_REQ More Info Request

CC_MORE_INFO_IND More Info Indication

CC_INFORMATION_REQ Information Request

CC_INFORMATION_IND Information Indication

CC_INFO_TIMEOUT _IND Timeout Indication

CC_SETUP_RES Proceeding, Alerting, Progress Request; Setup Response
CC_SETUP_CON Proceeding, Alerting, Progress Indication; Setup Confirm

CC_SETUP_COMPLETE_REQ | Setup Complete Request
CC_SETUP_COMPLETE_IND | Setup Complete Indication

CC_PROCEEDING_REQ Proceeding Request
CC_PROCEEDING_IND Proceeding Indication
CC_ALERTING_REQ Alerting Request
CC_ALERTING_IND Alerting Indication
CC_PROGRESS REQ Progress Request
CC_PROGRESS_IND Progress Indication
CC_CONNECT_REQ Setup Response
CC_CONNECT_IND Setup Confirm
CC_SUSPEND_REQ Suspend Request, Notify Request
CC_SUSPEND_IND Suspend Indication, Notify Indication
CC_SUSPEND_RES Suspend Response
CC_SUSPEND_CON Suspend Confirm

CC_SUSPEND_ REJECT_REQ Suspend Reject Request
CC_SUSPEND _REJECT_IND Suspend Reject Indication

CC_RESUME_REQ Resume Request, Notify Request
CC_RESUME_IND Resume Indication, Notify Indication
CC_RESUME_RES Resume Response
CC_RESUME_CON Resume Confirm

CC_RESUME_REJECT REQ Resume Reject Request

$Revision: 0.8.22$ Page 223 April 15, 2003

Call Control Interface (CClI)

Appendices

OpenSS7 Corpor ation

CCI Primitive

Q.931 Primitive

CC_RESUME_REJECT_IND

Resume Reject Indication

CC_CALL_REATTEMPT_IND
CC_CALL_FAILURE_IND
CC_REJECT_REQ
CC_REJECT_IND
CC_DISCONNECT _REQ
CC_DISCONNECT _IND
CC_RELEASE_REQ
CC_RELEASE_IND
CC_RELEASE_RES
CC_RELEASE_CON

Error Indication, Status Indication, Restart Indication
Reject Request, Release Complete Request

Reject Indication, Release Complete Indication
Disconnect Request

Disconnect Indication

Release Request

Release Indication

Release Complete Request

Release Complete Indication

CC_RESTART_REQ
CC_RESTART_CON

Restart Request, Management Restart Request
Restart Confirm

$Revision: 0.8.22 %

Page 224

April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

B. Appendix B. Mapping of CCI Primitivesto Q.764
The mapping of CCI primitives to Q.764 primitives is shown in Table3. For the most part this is a one to one
mapping of service primitives, with the exception of Setup Response and Setup Confirm.

In Q.764 the Setup Response and Setup Confirm primitives and issued only once the voice channel is connected.
In OpenSS7 CCI, the CC_SETUP_RES and CC_SETUP_CON primitives are used to accept the addressing and
assign a stream and correspond to the first backward message (i.e, Processing, Alerting or Progress Request or
Indication; and Setup Indication or Confirm).

Table3. Mapping of CCI primitives to Q.764 Primitives

CCI Primitive Q.764 Primitive

CC_INFO_REQ -
CC_INFO_ACK -
CC_BIND_REQ -
CC_BIND_ACK -
CC_UNBIND_REQ -
CC_ADDR_REQ -
CC_ADDR_ACK -
CC_OK_ACK -
CC_ERROR_ACK -
CC_SETUP_REQ Setup Request
CC_SETUP_IND Setup Indication
CC_MORE_INFO_REQ -
CC_MORE_INFO_IND -

CC_INFORMATION_REQ
CC_INFORMATION_IND
CC_INFO_TIMEOUT _IND
CC_SETUP_RES
CC_SETUP_CON

Information Request

Information Indication

Proceeding, Alerting, Progress Request; Setup Response
Proceeding, Alerting, Progress Indication; Setup Confirm

CC_PROCEEDING_REQ
CC_PROCEEDING_IND
CC_ALERTING_REQ
CC_ALERTING_IND
CC_PROGRESS_REQ
CC_PROGRESS_IND
CC_CONNECT_REQ
CC_CONNECT_IND

Proceeding Request
Proceeding Indication
Alerting Request
Alerting Indication
Progress Request
Progress Indication
Setup Response
Setup Confirm

CC_SUSPEND_REQ
CC_SUSPEND_IND
CC_RESUME_REQ
CC_RESUME_IND

Suspend Request
Suspend Indication
Resume Request
Resume Indication

CC_CALL_REATTEMPT_IND
CC_CALL_FAILURE_IND
CC_REJECT_REQ
CC_REJECT_IND
CC_RELEASE_REQ
CC_RELEASE_IND
CC_RELEASE_RES
CC_RELEASE_CON

Reattempt Indication
Failure Indication
Release Request
Release Indication
Release Request
Release Indication
Release Response
Release Confirm

$Revision: 0.8.22 %

Page 225

April 15, 2003

Call Control Interface (CClI)

Appendices

OpenSS7 Corpor ation

CCI Primitive Q.764 Primitive
CC_RESET_REQ Reset Request
CC_RESET_IND Reset Indication

CC_RESET_RES
CC_RESET_CON
CC_BLOCKING_REQ
CC_BLOCKING_IND
CC_BLOCKING_RES
CC_BLOCKING_CON
CC_UNBLOCKING_REQ
CC_UNBLOCKING_IND
CC_UNBLOCKING_RES
CC_UNBLOCKING_CON

Reset Response

Reset Confirm
Blocking Request
Blocking Indication
Blocking Response
Blocking Confirm
Unblocking Request
Unblocking Indication
Unblocking Response
Unblocking Confirm

CC_QUERY_REQ
CC_QUERY_IND

CC_QUERY_RES
CC_QUERY_CON

$Revision: 0.8.22 %

Page 226

April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

C. Appendix C. State/Event Tables

$Revision: 0.8.22 % Page 227 April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

D. Appendix D. Precedence Tables

$Revision: 0.8.22 % Page 228 April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

E. Appendix E. CCl Header FileListing

[HA KAk kR kA Kk Kk kA K KKK KA KA KKK KKK KR KKK KA IR KKK KA KA KKK IR KKK KKK I KKK KAk ko h ok *

@#) 1d: cci.h,v 0.8.2.15 2003/02/23 10:18: 18 brian Exp

Copyright (C) 2001-2003 OpenSS7 Corporation <http://ww.openss7.conp>
Copyright (C) 1997-2000 Brian F. G Bidul ock <bidul ock@lall as. net >

Al Rights Reserved.

This programis free software; you can redistribute it and/or nodify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any |ater
version.

This programis distributed in the hope that it will be useful, but WTHOUT
ANY WARRANTY; without even the inplied warranty of MERCHANTABI LI TY or FI TNESS
FOR A PARTI CULAR PURPOSE. See the GNU General Public License for nore
details.

You shoul d have received a copy of the GNU General Public License along with
this program if not, wite to the Free Software Foundation, Inc., 675 Mass
Ave, Canbridge, MA 02139, USA

U. S. GOVERNMENT RESTRICTED RIGHTS. If you are licensing this Software on
behal f of the U S. Governnent ("Governnent"), the follow ng provisions apply
to you. |If the Software is supplied by the Departnment of Defense ("DoD'), it
is classified as "Commerci al Conputer Software" under paragraph 252.227-7014
of the DoD Suppl ement to the Federal Acquisition Regulations ("DFARS') (or any
successor regul ations) and the Governnment is acquiring only the license rights
granted herein (the license rights customarily provided to non-Governnent
users). |If the Software is supplied to any unit or agency of the Governnent
other than DoD, it is classified as "Restricted Conputer Software" and the
Governnment’s rights in the Software are defined in paragraph 52.227-19 of the
Federal Acquisition Regulations ("FAR') (or any success regulations) or, in
the cases of NASA, in paragraph 18.52.227-86 of the NASA Suppl enent to the FAR
(or any successor regul ations).

Commerci al |icensing and support of this software is available from OpenSS7
Corporation at a fee. See http://ww. openss7.conl

Last Mbdified Date: 2003/02/23 10:18:18 by Author: brian

Kk KKK KKK Kk kA K KKK KKK KK KK KKK KA KA KKK IR KKK KKK KKK K KA KA KKK IR A KKK KKKk kA kh kK k[

#i fndef __CCl _H

#define __CCl_H _

#def i ne CC_| NFO_REQ 0

#defi ne CC_OPTMGMI_REQ 1

#def i ne CC_BI ND_REQ 2

#define CC_UNBI ND_REQ 3

#defi ne CC_ADDR_REQ 4

#defi ne CC_SETUP_REQ 5

#def i ne CC_MORE_| NFO_REQ 6 /* 1SDN only */
#define CC_| NFORMATI ON_REQ 7

#def i ne CC_CONT_CHECK_REQ 8 /* 1SUP only */
#defi ne CC_CONT_TEST_REQ 9 /* 1SUP only */
#def i ne CC_CONT_REPORT_REQ 10 /* 1SUP only */
#defi ne CC_SETUP_RES 11

#defi ne CC_PROCEEDI NG_REQ 12

#define CC_ALERTI NG_REQ 13

#def i ne CC_PROGRESS_REQ 14

#define CC_| Bl _REQ 15 /* (same as CC_DI SCONNECT_REQ in | SDN) */
#define CC_DI SCONNECT_REQ 15

#def i ne CC_CONNECT_REQ 16

#defi ne CC_SETUP_COWPLETE_REQ 17 /* 1SDN only */
#def i ne CC_FORWKFER_REQ 18 /* 1SUP only */
#def i ne CC_SUSPEND_REQ 19

#def i ne CC_SUSPEND_RES 20 /* 1SDN only */
#defi ne CC_SUSPEND REJECT_REQ 21 /* 1SDN only */
#def i ne CC_RESUVE_REQ 22

#def i ne CC_RESUVE_RES 23 /* 1SDN only */

$Revision: 0.8.22 % Page 229 April 15, 2003

Call Control Interface (CClI)

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

/*

CC_RESUME_REJECT_REQ
CC_REJECT_REQ
CC_RELEASE_REQ
CC_RELEASE_RES
CC_NOTI FY_REQ
CC_RESTART_REQ
CC_RESET_REQ
CC_RESET_RES
CC_BLOCKI NG_REQ
CC_BLOCKI NG_RES
CC_UNBLOCKI NG_REQ
CC_UNBLOCKI NG_RES
CC_QUERY_REQ
CC_QUERY_RES
CC_STOP_REQ

CC_OK_ACK
CC_ERROR_ACK

CC_I NFO_ACK

CC_BI ND_ACK
CC_OPTMAMT_ACK
CC_ADDR_ACK
CC_CALL_REATTENPT_I ND
CC_SETUP_I ND
CC_MORE_I NFO_I ND
CC_I NFORVATI ON_I ND
CC_CONT_CHECK_I ND
CC_CONT_TEST_I ND
CC_CONT_REPORT_| ND
CC_SETUP_CON
CC_PROCEEDI NG _| ND
CC_ALERTI NG_| ND
CC_PROGRESS_| ND
CC_IBI_IND

CC_DI SCONNECT_| ND
CC_CONNECT_I ND
CC_SETUP_COVPLETE_| ND
CC_FORVWKFER_| ND
CC_SUSPEND_| ND
CC_SUSPEND_CON
CC_SUSPEND_REJECT_| ND
CC_RESUME_| ND
CC_RESUME_CON
CC_RESUME_REJECT_| ND
CC_REJECT_| ND
CC_CALL_FAI LURE_| ND
CC_RELEASE_| ND
CC_RELEASE_CON
CC_NOTI FY_I ND
CC_RESTART_CON
CC_STATUS_| ND
CC_ERROR_| ND

CC_DATALI NK_FAI LURE_I ND

CC_I NFO_TI MEQUT_| ND
CC_RESET_I ND
CC_RESET_CON
CC_BLOCKI NG_I ND
CC_BLOCKI NG_CON
CC_UNBLOCKI NG_| ND
CC_UNBLOCKI NG_CON
CC_QUERY_I ND
CC_QUERY_CON
CC_STOP_I ND

CC_MAI NT_I ND
CC_START_RESET_I ND

* Interface state

*/
enum {

CCS_UNBND,

CCS_I DLE,
CCS_W ND_SETUP,
CCS_WREQ SETUP,
CCS_WREQ MORE,
CCS_W ND_MORE,
CCS_WREQ | NFO,
CCS_W ND_I NFQ,
CCS_WACK_I NFQ,
CCS_WCON_SREQ
CCS_WRES_SI ND,
CCS_WREQ_CCREP,
CCS_W ND_CCREP,

$Revision: 0.8.22 %

/*

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*

/*

/*
/*

/*
/*

/*

| SDN
| SDN

| SUP
| SDN
| SDN
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP

| SUP
recv
| SDN
recv
| SUP
I SUP
| SUP

recv
recv
recv
recv

| SDN
| SUP

| SDN
| SDN

| SDN
| SDN
| SDN
| SUP

| SDN
| SDN
| SDN
| SDN
| SDN

| SUP
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP
| SUP

Appendices

only
only

only
only
only
only
only
only
only
only
only
only
only
only

only

only

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

AM */

*/

SAM */

only
only
only

ACM W
ACM W
ACM W

*/
*/
*/

OpenSS7 Corpor ation

no indication if proceeding not sent before */
subscriber free indication */

no indication and ATP paraneter and call proceeding sent */

ACM or CPG W inband info (sanme as CC_DI SCONNECT_IND in | SDN) */

only
only

only
only

only
only
only
only

only
only
only
only
only

only
only
only
only
only
only
only
only
only
only
only

*/
*/

*/
*/

*)
*)
*)
(ERROR_IND?) */

*)
*)
*)
(CALL_FAI LURE_I ND?) */
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Page 230

April 15, 2003

Call Control Interface (CClI)

CCS_WREQ PROCEED,
CCS_W ND_PROCEED,
CCS_WACK_PROCEED,
CCS_WREQ ALERTI NG,
CCS_W ND_ALERTI NG,
CCS_WACK_ALERTI NG,
CCS_WREQ PROGRESS,
CCS_W ND_PROGRESS,
CCS_WACK_PROGRESS,
CCS_VREQ | BI,
CCS_W ND_I BI,
CCS_WACK_| BI,
CCS_WREQ CONNECT,
CCS_W ND_CONNECT,
CCS_WACK_FORWKFER,
CCS_CONNECTED,
CCS_SUSPENDED,
CCS_WCON_RELREQ
CCS_WRES_RELI ND,
CCS_UNUSABLE,

s

typedef struct CC ok_ack {
ulong cc_primtive;
ul ong cc_correct_prim
ul ong cc_state;
ul ong cc_cal |l _ref;

} CC ok_ack_t;

typedef struct CC error_ack {
ulong cc_primtive;

ulong cc_error_primtive;

ul ong cc_error_type;
ul ong cc_uni x_error;
ul ong cc_state;
ul ong cc_cal |l _ref;

} CC error_ack_t;

enum {
CCSYSERR = 0,
CCOUTSTATE,
CCBADADDR,
CCBADDI GS
CCBADCPT,
CCNOADDR,
CCADDRBUSY,
CCBADCLR,
CCBADTOK
CCBADFLAG,
CCNOTSUPP,
CCBADPRI M
CCACCESS,

b

typedef struct CC.info_req {
ulong cc_primtive;
} CC.info_req_t;

typedef struct CC.info_ack {
ulong cc_primtive;
/* FIXME ... nore ... */
} CC.info_ack_t;

typedef struct CC bind_req {
ulong cc_primtive;
ul ong cc_addr _I| ength;
ul ong cc_addr _of f set;
ul ong cc_setup_ind;
ul ong cc_bind_fI ags;
} CC bind_req_t;

/* Flags associated with CC Bl ND_REQ */

#def i ne CC_DEFAULT_LI STENER
#def i ne CC_TOKEN_REQUEST
#def i ne CC_MANAGEMENT

#defi ne CC_TEST

#def i ne CC_MAI NTENANCE

typedef struct CC _bind_ack {
ulong cc_primtive;
ul ong cc_addr _I| ength;
ul ong cc_addr _of f set;
ul ong cc_setup_ind;

$Revision: 0.8.22 %

/*
/*
/*

/*
/*

/*
/*

/*

/*
/*

/*
/*
/*
/*

Appendices

al ways CC_OK_ACK */

primtive being acknow edged */
current state */

call reference */

al ways CC_ERROR_ACK */
primtive in error */

CCl error code */

UNI X system error code */
current state */

call reference */

al ways CC_| NFO_REQ */

al ways CC_I NFO_ACK */

al ways CC_BI ND_REQ */
I ength of address */
of fset of address */
req # of setup inds to be queued */
bi nd options flags */

0x000000001UL
0x000000002UL
0x000000004UL
0x000000008UL
0x000000010UL

al ways CC_BI ND_ACK */
I ength of address */
of fset of address */
setup indications */

Page 231

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI)

ul ong cc_t oken_val ue;

} CC bind_ack_t;

typedef struct CC unbind_req {

ulong cc_primtive;
} CC_unbind_req_t;

typedef struct CC addr_req {
ulong cc_primtive;
ul ong cc_cal |l _ref;

} CC addr_req_t;

typedef struct CC addr_ack {
ulong cc_primtive;

ul ong cc_bind_I ength;
ul ong cc_bind_of f set;

ul ong cc_cal |l _ref;

ul ong cc_conn_| ength;
ul ong cc_conn_of f set;

} CC addr_ack_t;

typedef struct CC optmgnt_req {

ulong cc_primtive;

ul ong cc_cal |l _ref;

ul ong cc_opt _| engt h;

ul ong cc_opt _of f set;

ul ong cc_opt _fl ags;
} CC optngnt _req_t;

typedef struct CC optmgnt_ack {

ulong cc_primtive;

ul ong cc_cal |l _ref;

ul ong cc_opt _| engt h;

ul ong cc_opt _of f set;

ul ong cc_opt _fl ags;
} CC optngnt _ack_t;

typedef struct CC setup_req {

ulong cc_primtive;
ul ong cc_user _ref;
ul ong cc_cal | _type;
ul ong cc_cal | _fl ags;

ul ong cc_cdpn_Il ength;
ul ong cc_cdpn_of f set;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

ul ong cc_addr_I| ength;
ul ong cc_addr _of f set;

} CC setup_req_t;

typedef struct CC call _reattenpt_ind {

ulong cc_primtive;
ul ong cc_user _ref;
ul ong cc_reason;

} CC.call_reattenpt_ind_t;

typedef struct CC setup_ind {

ulong cc_primtive;
ul ong cc_cal |l _ref;
ul ong cc_cal | _type;
ul ong cc_cal | _fl ags;

ul ong cc_cdpn_| ength;
ul ong cc_cdpn_of f set;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

ul ong cc_addr _I| ength;
ul ong cc_addr _of f set;

} CC setup_ind_t;

typedef struct CC setup_res {

ulong cc_primtive;
ul ong cc_cal |l _ref;

ul ong cc_t oken_val ue;

} CC setup_res_t;

typedef struct CC setup_con {

ulong cc_primtive;
ul ong cc_user_ref;
ul ong cc_cal |l _ref;

ul ong cc_addr_I| ength;
ul ong cc_addr _of f set;

} CC_setup_con_t;

$Revision: 0.8.22 %

/*

/*
/*

/*

/*
/*

/*

/*

/*
/*

/*
/*

/*
/*

/*
/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*

/*

/*

/*

/*
/*

Appendices

setup response token value */

al ways CC_UNBI ND_REQ */

al ways CC_ADDR _REQ */
call reference */

al ways CC_ADDR _ACK */

I ength of bound address */

of fset of bound address */
call reference */

I ength of connected address */
of fset of connected address */

al ways CC_OPTMGMI_REQ */
call reference */

I ength of option values */
of fset of option values */
option flags */

al ways CC_OPTMGMI_ACK */
call reference */

I ength of option values */
of fset of option values */
option flags */

al ways CC_SETUP_REQ */

user call reference */

call type */

call flags */

called party nunber |ength */
call ed party nunber offset */
optional paraneters |ength */
optional paraneters offset */
connect to address |length */
connect to address offset */

al ways CC_CALL_REATTEMPT_I ND */
user call reference */
reason for reattenpt */

al ways CC_SETUP_I ND */

call reference */

call type */

call flags */

called party nunber |ength */
call ed party nunber offset */
optional paraneters |length */
optional paraneters offset */
connecting address |ength */
connecting address offset */

al ways CC_SETUP_RES */
call reference */
call response token val ue *

-~

al ways CC_SETUP_CON */

user call reference */

call reference */

connecting address |ength */
connecting address offset */

Page 232

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

typedef struct CC cont_check_req {

ulong cc_primtive; /* al ways CC_CONT_CHECK_REQ */
ul ong cc_addr _I| ength; /* adress length */
ul ong cc_addr _of f set; /* adress offset */

} CC cont_check_req_t;

typedef struct CC cont_check_ind {

ulong cc_primtive; /* al ways CC_CONT_CHECK_ | ND */
ul ong cc_cal |l _ref; /* call reference */
ul ong cc_addr _I| ength; /* adress length */
ul ong cc_addr _of f set; /* adress offset */

} CC _cont_check_ind_t;

typedef struct CC cont_test_req {

ulong cc_primtive; /* al ways CC_CONT_TEST_REQ */
ul ong cc_cal |l _ref; /* call reference */
ul ong cc_t oken_val ue; /* token val ue */

} CC cont_test_req_t;

typedef struct CC cont_test_ind {

ulong cc_primtive; /* al ways CC_CONT_TEST_I ND */
ul ong cc_cal |l _ref; /* call reference */
ul ong cc_addr_I| ength; /* adress length */
ul ong cc_addr _of f set; /* adress offset */

} CC cont_test_ind_t;

typedef struct CC cont_report_req {

ulong cc_primtive; /* al ways CC_CONT_REPORT_REQ */
ul ong cc_user_ref; /* user call reference */

ul ong cc_cal |l _ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC cont_report_req_t;

typedef struct CC cont_report_ind {

ulong cc_primtive; /* al ways CC_CONT_REPORT_I ND */
ul ong cc_cal |l _ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC cont_report_ind_t;

typedef struct CC nore_info_req {

ulong cc_primtive; /* al ways CC_MORE_|I NFO REQ */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC nore_info_req_t;

typedef struct CC nore_info_ind {

ulong cc_primtive; /* al ways CC_MORE_I NFO_ I ND */
ul ong cc_user_ref; /* user call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC nore_info_ind_t;

typedef struct CC.information_req {

ulong cc_primtive; /* al ways CC_| NFORMATI ON_REQ */
ul ong cc_user_ref; /* call reference */

ul ong cc_subn_| ength; /* subsequent nunber |ength */
ul ong cc_subn_of f set; /* subsequent nunber offset */
ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC.information_req_t;

typedef struct CC_information_ind {

ulong cc_primtive; /* al ways CC_| NFORMATI ON_I ND */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_subn_| ength; /* subsequent nunber |ength */
ul ong cc_subn_of f set; /* subsequent nunber offset */
ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC.information_ind_t;

typedef struct CC info_timeout_ind {
ulong cc_primtive; /* al ways CC_I NFO_TI MEQUT_I ND */
ul ong cc_cal |l _ref; /* call reference */

} CC.info_tineout_ind_t;

typedef struct CC proceeding_req {

ulong cc_primtive; /* al ways CC_PROCEEDI NG _REQ */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* proceeding flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC proceeding_req_t;

$Revision: 0.8.22 % Page 233 April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

typedef struct CC proceeding_ind {

ulong cc_primtive; /* al ways CC_PROCEEDI NG_| ND */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* proceeding flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC proceeding_ind_t;

typedef struct CC alerting_req {

ulong cc_primtive; /* al ways CC_ALERTI NG REQ */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* alerting flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC alerting_req_t;

typedef struct CC alerting_ind {

ulong cc_primtive; /* al ways CC_ALERTI NG | ND */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* alerting flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC alerting_ind_t;

typedef struct CC progress_req {

ulong cc_primtive; /* al ways CC_PROGRESS REQ */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_event; /* progress event */

ul ong cc_fI ags; /* progress flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC progress_req_t;

typedef struct CC progress_ind {

ulong cc_primtive; /* al ways CC_PROGRESS | ND */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_event; /* progress event */

ul ong cc_fI ags; /* progress flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC progress_ind_t;

typedef struct CC.ibi_req {

ulong cc_primtive; /* always CC_I Bl _REQ */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* ibi flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC.ibi_req_t;

typedef struct CC.ibi_ind {

ulong cc_primtive; /* always CC_IBI_IND */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* ibi flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CCibi_ind_t;

typedef struct CC connect_req {

ulong cc_primtive; /* al ways CC_CONNECT_REQ */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* connect flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC_connect _req_t;

typedef struct CC connect_ind {

ulong cc_primtive; /* al ways CC_CONNECT_I ND */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* connect flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC_connect _ind_t;

typedef struct CC setup_conplete_req {

ulong cc_primtive; /* al ways CC_SETUP_COWPLETE_REQ */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */

ul ong cc_opt _of f set; /* optional paraneter offset */

} CC setup_conplete_req_t;

typedef struct CC setup_conplete_ind {
ulong cc_primtive; /* al ways CC_SETUP_COWPLETE_I ND */

$Revision: 0.8.22 % Page 234 April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

ul ong cc_cal |l _ref; /* call reference */
ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC_ setup_conplete_ind_t;

typedef struct CC forwxfer_req {

ulong cc_primtive; /* al ways CC_FORWKFER _REQ */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC forwxfer_req_t;

typedef struct CC forwxfer_ind {

ulong cc_primtive; /* al ways CC_FORWKFER_I ND */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC forwxfer_ind_t;

typedef struct CC suspend_req {

ulong cc_primtive; /* al ways CC_SUSPEND_REQ */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* suspend flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC_suspend_req_t;

typedef struct CC suspend_ind {

ulong cc_primtive; /* al ways CC_SUSPEND_I ND */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* suspend flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC_suspend_ind_t;

typedef struct CC suspend_res {

ulong cc_primtive; /* al ways CC_SUSPEND_RES */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC_ suspend_res_t;

typedef struct CC suspend_con {

ulong cc_primtive; /* al ways CC_SUSPEND_CON */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC_suspend_con_t;

typedef struct CC suspend_reject_req {

ulong cc_primtive; /* al ways CC_SUSPEND_REJECT_REQ */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_cause; /* cause val ue */

ul ong cc_opt _| engt h; /* optional paraneter |ength */

ul ong cc_opt _of f set; /* optional paraneter offset */

} CC suspend_reject_req_t;

typedef struct CC suspend_reject_ind {

ulong cc_primtive; /* al ways CC_SUSPEND_REJECT_I ND */
ul ong cc_cal |l _ref; /* call reference */

ul ong cc_cause; /* cause val ue */

ul ong cc_opt _| engt h; /* optional paraneter |ength */

ul ong cc_opt _of f set; /* optional paraneter offset */

} CC suspend_reject_ind_t;

typedef struct CC resune_req {

ulong cc_primtive; /* al ways CC_RESUME_REQ */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* suspend flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC resunme_req_t;

typedef struct CC resune_ind {

ulong cc_primtive; /* al ways CC_RESUME_I ND */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_fI ags; /* suspend flags */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC resunme_ind_t;

typedef struct CC resune_res {
ulong cc_primtive; /* al ways CC_RESUME_RES */

$Revision: 0.8.22 % Page 235 April 15, 2003

Call Control Interface (CClI)

ul ong cc_cal |l _ref;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CC resune_res_t;

typedef struct CC resune_con {

ulong cc_primtive;
ul ong cc_cal |l _ref;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CC_resunme_con_t;

typedef struct CC resune_reject_req {

ulong cc_primtive;
ul ong cc_cal |l _ref;
ul ong cc_cause;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CC resune_reject_req_t;

typedef struct CC resune_reject_ind {

ulong cc_primtive;
ul ong cc_cal |l _ref;
ul ong cc_cause;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CC resunme_reject_ind_t;

typedef struct CC reject_req {

ulong cc_primtive;
ul ong cc_cal |l _ref;
ul ong cc_cause;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CCreject_req_t;

typedef struct CC reject_ind {

ulong cc_primtive;
ul ong cc_user _ref;
ul ong cc_cause;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CCreject_ind_t;

typedef struct CC error_ind {

ulong cc_primtive;
ul ong cc_cal |l _ref;
} CCerror_ind_t;

typedef struct CC call_failure_ind {

ulong cc_primtive;
ul ong cc_cal |l _ref;
ul ong cc_reason;
ul ong cc_cause;

} CC.call_failure_ind_t;

typedef struct CC disconnect_req {

ulong cc_primtive;
ul ong cc_cal |l _ref;
ul ong cc_cause;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CC_di sconnect_req_t;

typedef struct CC disconnect_ind {

ulong cc_primtive;
ul ong cc_cal |l _ref;
ul ong cc_cause;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CC_di sconnect_ind_t;

typedef struct CC rel ease_req {

ulong cc_primtive;
ul ong cc_user _ref;
ul ong cc_cal |l _ref;
ul ong cc_cause;

ul ong cc_opt _| engt h;
ul ong cc_opt _of f set;

} CCrelease_req_t;

typedef struct CC release_ind {

ulong cc_primtive;

$Revision: 0.8.22 %

/*
/*

/*
/*

/*

/*
/*

/*
/*

/*
/*
/*

/*

/*

/*
/*

/*
/*

/*
/*
/*

/*
/*

/*
/*

/*
/*
/*

/*

/*

/*
/*

/*

/*

Appendices

call reference */
optional paraneter |ength */
optional paraneter offset */

al ways CC_RESUME_CON */

call reference */

optional paraneter |ength */
optional paraneter offset */

al ways CC_RESUME_REJECT_REQ */
call reference */

cause val ue */

optional paraneter |ength */
optional paraneter offset */

al ways CC_RESUME_REJECT_I ND */
call reference */

cause val ue */

optional paraneter |ength */
optional paraneter offset */

al ways CC_REJECT_REQ */

call reference */

cause val ue */

optional paraneter |ength */
optional paraneter offset */

al ways CC_REJECT_I ND */

user call reference */

cause val ue */

optional paraneter |ength */
optional paraneter offset */

al ways CC_ERROR_IND */
call reference */

al ways CC_CALL_FAI LURE_I ND */
call reference */

reason for failure */

cause to use in release */

al ways CC_DI SCONNECT_REQ */
call reference */

cause val ue */

optional paraneter |ength */
optional paraneter offset */

al ways CC_DI SCONNECT_I ND */
call reference */

cause val ue */

optional paraneter |ength */
optional paraneter offset */

al ways CC_RELEASE_REQ */
user call reference */

call reference */

cause val ue */

optional paraneter |ength */
optional paraneter offset */

al ways CC_RELEASE_I ND */

Page 236

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI) Appendices OpenSS7 Corpor ation

ul ong cc_user_ref; /* user call reference */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_cause; /* cause val ue */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CCrelease_ind_t;

typedef struct CC rel ease_res {

ulong cc_primtive; /* al ways CC_RELEASE_RES */

ul ong cc_user_ref; /* user call reference */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CCrelease_res_t;

typedef struct CC rel ease_con {

ulong cc_primtive; /* al ways CC_RELEASE_CON */

ul ong cc_user_ref; /* user call reference */

ul ong cc_cal |l _ref; /* call reference */

ul ong cc_opt _| engt h; /* optional paraneter |ength */
ul ong cc_opt _of f set; /* optional paraneter offset */

} CC rel ease_con_t;

typedef struct CC restart_req {

ulong cc_primtive; /* al ways CC_RESTART_REQ */
ul ong cc_fI ags; /* restart flags */

ul ong cc_addr _I| ength; /* adddress length */

ul ong cc_addr _of f set; /* adddress of fset */

} CCrestart_req_t;

typedef struct CC restart_ind {

ulong cc_primtive; /* al ways CC_RESTART_I ND */
ul ong cc_fI ags; /* restart flags */

ul ong cc_addr_I| ength; /* adddress length */

ul ong cc_addr _of f set; /* adddress of fset */

} CCrestart_ind_t;

typedef struct CC reset_req {

ulong cc_primtive; /* al ways CC_RESET_REQ */
ul ong cc_fI ags; /* reset flags */

ul ong cc_addr_I| ength; /* address |length */

ul ong cc_addr _of f set; /* address offset */

} CCreset_req_t;

typedef struct CC reset_ind {

ulong cc_primtive; /* al ways CC_RESET_IND */
ul ong cc_fI ags; /* reset flags */

ul ong cc_addr_I| ength; /* address |ength */

ul ong cc_addr _of f set; /* address offset */

} CCreset_ind_t;

typedef struct CC reset_res {

ulong cc_primtive; /* al ways CC_RESET_RES */
ul ong cc_fI ags; /* reset flags */

ul ong cc_addr_I| ength; /* address |length */

ul ong cc_addr _of f set; /* address offset */

} CCreset_res_t;

typedef struct CC reset_con {

ulong cc_primtive; /* al ways CC_RESET_CON */
ul ong cc_fI ags; /* reset flags */

ul ong cc_addr _I| ength; /* address |ength */

ul ong cc_addr _of f set; /* address offset */

} CC.reset_con_t;

typedef struct CC bl ocking_req {

ulong cc_primtive; /* al ways CC_BLOCKI NG REQ */
ul ong cc_fI ags; /* blocking flags */
ul ong cc_addr _I| ength; /* address |length */
ul ong cc_addr _of f set; /* address offset */

} CC bl ocking_req_t;

typedef struct CC bl ocking_ind {

ulong cc_primtive; /* al ways CC_BLOCKI NG | ND */
ul ong cc_fI ags; /* blocking flags */
ul ong cc_addr_I| ength; /* address |ength */
ul ong cc_addr _of f set; /* address offset */

} CC bl ocking_ind_t;

typedef struct CC bl ocking_res {

ulong cc_primtive; /* al ways CC_BLOCKI NG RES */
ul ong cc_fI ags; /* blocking flags */
ul ong cc_addr_I| ength; /* address |ength */

$Revision: 0.8.22 % Page 237 April 15, 2003

Call Control Interface (CClI)

ul ong cc_addr _of f set;
} CC blocking_res_t;

typedef struct CC bl ocking_con {

ulong cc_primtive;

ul ong cc_fI ags;

ul ong cc_addr _I| ength;

ul ong cc_addr _of f set;
} CC_bl ocking_con_t;

typedef struct CC_unbl ocking_req

ulong cc_primtive;

ul ong cc_fI ags;

ul ong cc_addr _I| ength;

ul ong cc_addr _of f set;
} CC_unbl ocking_req_t;

typedef struct CC_unbl ocking_ind

ulong cc_primtive;

ul ong cc_fI ags;

ul ong cc_addr_I| ength;

ul ong cc_addr _of f set;
} CC_unbl ocking_ind_t;

typedef struct CC_unbl ocking_res

ulong cc_primtive;

ul ong cc_fI ags;

ul ong cc_addr _I| ength;

ul ong cc_addr _of f set;
} CC_unbl ocking_res_t;

typedef struct CC_unbl ocki ng_con

ulong cc_primtive;

ul ong cc_fI ags;

ul ong cc_addr _I| ength;

ul ong cc_addr _of f set;
} CC_unbl ocki ng_con_t;

typedef struct CC query_req {
ulong cc_primtive;
ul ong cc_fI ags;
ul ong cc_addr _I| ength;
ul ong cc_addr _of f set;
} CC query_req_t;

typedef struct CC query_ind {
ulong cc_primtive;
ul ong cc_fI ags;
ul ong cc_addr_I| ength;
ul ong cc_addr _of f set;
} CC query_ind_t;

typedef struct CC query_res {
ulong cc_primtive;
ul ong cc_fI ags;
ul ong cc_addr_I| ength;
ul ong cc_addr _of f set;
} CC query_res_t;

typedef struct CC query_con {
ulong cc_primtive;
ul ong cc_fI ags;
ul ong cc_addr _I| ength;
ul ong cc_addr _of f set;
} CC_query_con_t;

typedef struct CC maint_ind {
ulong cc_primtive;
ul ong cc_reason;
ul ong cc_cal |l _ref;
ul ong cc_addr _I| ength;
ul ong cc_addr _of f set;
} CC_mmint_ind_t;

union CC primtives {
ulong cc_primtive;
CC ok_ack_t ok_ack;

CC error_ack_t error_ack;
CC.info_req_t info_req;
CC i nfo_ack_t info_ack;
CC bind_req_t bind_req;
CC_bi nd_ack_t bi nd_ack;
CC_unbind_req_t unbind_req;

$Revision: 0.8.22 %

/*

/*

/*
/*

/*
/*
/*

/*
/*

/*

/*

/*
/*

/*
/*
/*

/*
/*

/*

/*

/*
/*

/*
/*
/*

/*
/*

/*

/*

/*
/*

Appendices

address of fset */

al ways CC_BLOCKI NG _CON */
bl ocking flags */
address |l ength */
address of fset */

al ways CC_UNBLOCKI NG_REQ */
unbl ocki ng flags */

address |l ength */

address of fset */

-

al ways CC_UNBLOCKI NG_| ND *
unbl ocki ng flags */
address |l ength */

address of fset */

-

al ways CC_UNBLOCKI NG_RES *
bl ocking flags */
address |l ength */
address offset */

al ways CC_UNBLOCKI NG_CON */
unbl ocki ng flags */

address |l ength */

address of fset */

al ways CC_QUERY_REQ */
query flags */

address |l ength */
address offset */

al ways CC_QUERY_I ND */
query flags */

address |l ength */
address of fset */

al ways CC_QUERY_RES */
bl ocking flags */
address |l ength */
address of fset */

al ways CC_QUERY_CON */
query flags */

address |l ength */
address of fset */

al ways CC_MAI NT_I ND */
reason for indication */
call reference */

I ength of address */

I ength of address */

Page 238

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI)

}s

#endi f

CC addr_req_t addr_req;
CC_addr_ack_t addr_ack;

CC_opt mgmt _req_t
CC opt ngnt _ack_t

opt mgnt _r eq;
opt ngnt _ack;

CC setup_req_t setup_req;

CC cal | _reattenpt_ind_t call_reattenpt_ind;

CC setup_ind_t setup_ind;
CC_setup_res_t setup_res;
CC_setup_con_t setup_con;

CC cont_check_req_t cont_check_req;
CC _cont _check_i nd_t cont_check_i nd;

CC_cont _test_req_t cont_test_req;
CC cont_test_ind_t cont_test_ind;

CC_cont _report_req_t
CC cont _report_ind_t

CC nore_info_req_t nmore_info_req;
CC nore_info_ind_t nmore_info_ind;

CC_i nformation_req_t
CC_i nformation_i nd_t
CC proceeding_req_t proceeding_req;
CC proceeding_i nd_t proceedi ng_i nd;

CC alerting_req_t alerting_req;
CC alerting_ind_t alerting_ind;
CC_progress_req_t progress_red;
CC progress_ind_t progress_ind;

CC i bi_req_t ibi_
CC_ibi _ind_t ibi_i

CC_connect _req_t
CC _connect _ind_t

CC setup_conpl ete_req_t setup_conpl ete_req;
CC _setup_conpl ete_ind_t setup_conpl ete_ind;

reqg;
ind;

connect _r eq;
connect _i nd;

CC forwxfer_req_t forwfer_req;
CC forwxfer_ind_t forwxfer_ind;

CC _suspend_req_t
CC _suspend_i nd_t
CC suspend_res_t
CC _suspend_con_t

CC suspend_reject_req_t suspend_reject_req;
CC _suspend_reject _ind_t suspend_reject_ind;
resune_redq;
resune_i nd;
resune_res;
resume_con;
req_t resune_reject_req;
ind_t resume_reject_ind;
reject_req;
reject_ind;

CC_resune_req_t
CC resune_i nd_t
CC_resune_res_t
CC_resune_con_t

CC resune_rej ect _|
CC resune_rej ect _|

CC reject_req_t
CC reject_ind_t

suspend_r eq;
suspend_i nd;
suspend_res;
suspend_con;

CC error_ind_t error_ind;

CC call _failure_ind_t call_failure_ind;
CC_di sconnect _req_t di sconnect_req;
CC_di sconnect _i nd_t di sconnect _i nd;

CC rel ease_req_t
CC rel ease_ind_t
CC rel ease_res_t
CC rel ease_con_t
CC restart_req_t
CC restart_ind_t

rel ease_req;
rel ease_i nd;
rel ease_res;
rel ease_con;
restart_req;
restart_ind;

CC_reset _req_t reset_req;
CC reset_ind_t reset_ind;
CC_reset_res_t reset_res;
CC_reset _con_t reset_con;
CC bl ocki ng_reqg_t bl ocking_req;
CC bl ocki ng_i nd_t bl ocki ng_i nd;
CC bl ocki ng_res_t bl ocking_res;
CC bl ocki ng_con_t bl ocki ng_con;

CC_unbl ocki ng_req_t unbl ocki ng_req;
CC_unbl ocki ng_i nd_t unbl ocki ng_i nd;
CC_unbl ocki ng_res_t unbl ocki ng_res;
CC_unbl ocki ng_con_t unbl ocki ng_con;

CC_query_req_t query_reg;
CC query_ind_t query_ind;
CC_query_res_t query_res;
CC_query_con_t query_con;
CC _mmi nt _i nd_t maint_ind;

$Revision: 0.8.22 %

/* __CC_H _

cont _report_req;
cont _report_ind;

information_req;
information_ind;

Appendices

Page 239

OpenSS7 Corpor ation

April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

List of Illustrations

Figure 2-1 MOdel OF the CCl ...ttt e s te s e sresreane s 2
Figure 2-2 UNI Data MOocviieieeieceee et sttt b ettt e te s e seesreene s 4
Figure 2-3 NNI Data MOccviieiece ettt st s a ettt e teenaesaesreene s 6
Figure 3-1 Sequence of Primitives: Call Control Information Reporting Serviceccccevveveieinenens 8
Figure 3-2 Sequence of Primitives: Call Control User Address SErVICeccovvvvviivieeieieseeieseseenens 9
Figure 3-3 Sequence of Primitives: Call Control User Bind SErviceccccoevevviiiiiiieie v 9
Figure 3-4 Sequence of Primitives: Call Control User Unbind SErviceccooevviiiiieieie s 10
Figure 3-5 Sequence of Primitives: Call Control Receipt Acknowledgment Servicec.cccecevevenen. 10
Figure 3-6 Sequence of Primitives: Call Control Options Management SErviceccccccovvvvevieieieenns 10
Figure 3-7 Sequence of Primitives: Call Control Error Acknowledgment Servicecccoceveveveenens 11
Figure 3-8 Sequence of Primitives: Call Control UNI OVEIVIEWccceveiiiiiiiiieieese e 13
Figure 3-9 Sequence of Primitives: Call Control Call Setup Servicecccoceviiiiiiiiieie e 15
Figure 3-10 Sequence of Primitives: Call Control Token Request SErViCec.ccccovvvvveveieiieieieseenens 15
Figure 3-11 Sequence of Primitives: Call Reattempt — CCS Providerccccooevviiiiiencie e 16
Figure 3-12 Sequence of Primitives: Call Reattempt — Dual SEIZUrecccccvevviveiiiieie e 16
Figure 3-13 Sequence of Primitives: Call Control Successful Call Establishment Service 17
Figure 3-14 Sequence of Primitives: Call Control Network Suspend Service: Successful 18
Figure 3-15 Sequence of Primitives: Call Control Network Suspend Service: Unsuccessful 18
Figure 3-16 Sequence of Primitives: Call Control User Suspend SErviceccccvvvvveveveseeieieseennns 19
Figure 3-17 Sequence of Primitives: Call Control Resume Service: Successfulcccoovvveiiiiinnns 19
Figure 3-18 Sequence of Primitives: Call Control Resume Service: Unsuccessfulcccooveveiiinnens 20
Figure 3-19 Sequence of Primitives: Call Control User RESUME SEIVICEccccevveievieiiie e 20
Figure 3-20 Sequence of Primitives: Rejecting a Call SEtUPccevveviiieicii i 21
Figure 3-21 Sequence of Primitives: Call FAIlUre ..o 21
Figure 3-22 Sequence of Primitives: CCS User Invoked ReIaSEcceveveeviiiiiiiiecc e 22
Figure 3-23 Sequence of Primitives: Simultaneous CCS User Invoked Releasec.ccccocvvvevieieinnen, 23
Figure 3-24 Sequence of Primitives: CCS Provider Invoked Releaseccccooevvviiiievcieiieieie e 23
Figure 3-25 Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release 23
Figure 3-26 Sequence of Primitives: Call Control NNI OVEIVIEWc.cccviiiiiiiiiiiceece e 25
Figure 3-27 Sequence of Primitives: Call Control Call Setup Service: En Bloc Sendingcccc.c..... 26
Figure 3-28 Sequence of Primitives: Call Control Call Setup Service: Overlap Sendingc...ccc.c..... 27
Figure 3-29 Sequence of Primitives: Call Control Token Request SErViCeccccccovvvvvevieieiieieieseenens 27
Figure 3-30 Sequence of Primitives: Call Reattempt — CCS Providercccooevviiiiiieiiieiieese e 28
Figure 3-31 Sequence of Primitives: Call Reattempt — Dual SEIZUrecccccvevveveiiiieic e 28
Figure 3-32 Sequence of Primitives: Call Setup Continuity Test Service: Required: Successful 29
Figure 3-33 Sequence of Primitives: Call Setup Continuity Test Service: Previous: Successful 30
Figure 3-34 Sequence of Primitives: Continuity Test Service: Successfulcccocvvviieviiiiiicieie e, 30
Figure 3-35 Sequence of Primitives: Call Setup Continuity Test Service: Unsuccessfulc......... 32
Figure 3-36 Sequence of Primitives: Continuity Test Service: Unsuccessfulccocevivviiciiiiinenn, 32
Figure 3-37 Sequence of Primitives: Call Control Successful Call Establishment Service 34
Figure 3-38 Sequence of Primitives: Call Control Suspend and Resume Serviceccccocvevvevieieieennas 35
Figure 3-39 Sequence of Primitives: CCS User Rejection of a Call Setup Attemptcccooeveveienen. 35
Figure 3-40 Sequence of Primitives: Call FAIlUre ... 36

$Revision: 0.8.22 % Page | April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

Figure 3-41 Sequence of Primitives: CCS User Invoked REIEASEcceceeeiiiceeiece e 37
Figure 3-42 Sequence of Primitives: Simultaneous CCS User Invoked Releaseccccceevvieeienienen, 37
Figure 3-43 Sequence of Primitives: CCS Provider Invoked REIEESEccccoovveeeveiieiicce e 37
Figure 3-44 Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release 38
Figure 3-45 Sequence of Primitives; CCS USer INVOKED RESELcccuveereeeeeeereeeeeseseeeeeeseesesesnees 39
Figure 3-46 Sequence of Primitives: Simultaneous CCS User Invoked Reset®ccccoooveveerverennnne, 39
Figure 3-47 Sequence of Primitives: CCS Provider Invoked RESEL”ccooveeeeceeeeeeceeeeeeeeeeeee e 39
Figure 3-48 Sequence of Primitives: Simultaneous CCS user and CCS Provider Invoked Reset® 40
Figure 3-49 Sequence of Primitives: Successful BIOCKIiNG SErVICecccocvviverireiinineneeese e 41
Figure 3-50 Sequence of Primitives: Successful Unblocking Service ... 42
Figure 3-51 Sequence of Primitives: SUCCESSfUl QUENY SEIVICEcccoveererirenieeeesese s 43

$Revision: 0.8.22$ Pagell April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

List of Tables

Tablel CCl SErVICE PIIMITIVEScciiiiiiieieiee sttt ene b e e 7
Table2 Mapping of CCI primitivesto Q.931 Primitivescccccvoeeieii i 223
Table3 Mapping of CCI primitivesto Q.764 PrimitiveScccccoceeieiiieccese e 225

$Revision: 0.8.22 % Pagelll April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

Table of Contents

y N a1 (ot RSSO i
] - Lot OSSP TOSSOSIN ii
I (oo [V Tox (o] 4 ISR SR 1
1.1 Related DOCUMENTALIONoiviiiiiic ettt sttt st e re e b e s beste e e e seesteenaestesreanes 1
IO o -SSRSO 1
1.2 Definitions, Acronyms, and ABDreviations ..o 1
2 THe Call CONLIOL LAYET ...cviiviieeciicte ettt sttt e e b e st esbeetaesaesbesteenaesbesreane s 2
P YT 1= I) = O O S PRTOSSPRRPN 2
A OO BT o o= RS PRORS PSP 2
2.2 L UNI oottt et sttt e et et b et eae e b e e b e e et e s e Reehe et et e st eReebeebe et et eneebe e tens 2
2.2.1.1 AAUIESS FOIMALS ...vviviiiiieecieite sttt sttt st e te b et e s ae e e et e beebe e s e saesbeesaesaesbesteenaesresreaneas 3
2. 2.2 NN oottt ettt s e et e et e b et eRe b e b et et e st e Reeheete b et eReebeebe et et eneebeereeens 4
2.2.2.1 AAUIESS FOIMALS ...vviviiiiieciiite sttt sttt s b e e te b et e s aeese et e s besbe e e e saesbeesaesaeseesteesaesresreanes 4
2.2.3 LOCAI MANAGEMENTviiiiiiiiiicte ettt st e ettt e s b e e e et e besbe e b e st e s beeseesaesbesteesbesresreanes 6
3 CCl SErvices DEfINITIONcciciiiiiiiicie ettt sttt et e et e saesresteesaesbesreanes 7
3.1 Local Management Services Definition ..o e 8
3.1.1 Call Control Information REPOItING SEIVICEccoveiviiiiicieii sttt enes 8
3.1.2 CCS AUUIESS SEIVICE ..viiviiviiiiiteitieie ittt et e st te et et st e e e e st e s ae e e et e besbe e b e stesbeeseesaestesteenbesresreanes 8
3.1.3 CCS USEI BN SEIVICE ...ocviiiviitiiiieie ettt sttt st ettt et e st e s be et e saesbesteenaesresreanes 9
3.1.4 CCS USEI UNDING SEIVICE ...cuviiviiiecie ettt ettt sttt st s be et saesteste e s e sresreene s 9
3.1.5 Receipt ACKNOWIEAGMENT SEIVICEc.civiiieie ettt s sre st resreene s 10
3.1.6 Options ManagemMENT SEIVICEvcviiiiiiieieie sttt se et s et te e e e st e s beetaesaesresteeseesresreenes 10
3.1.7 Error ACKNOWIEAGMENT SEIVICE ...ecvviiviiiiiiecie ittt sttt sttt sttt st e steste s sresreene s 11
3.2 User-Network Interface Services DefiNitioN ... 12
3.2.1 Call SEIUP PRESE .. .ecveiiiiie ettt sttt sttt et e e e e st e s beeta e s aesreeteen e e srenreene s 13
3.2.1.1 User Primitives for Successful Call SEIUPcccoveiiiiiicicci e 14
3.2.1.2 Provider Primitives for Successful Call SELUPccveveiiiiiiieccce e 14
3.2.2 Call EStabliSNMENT PRASEocviiieiiieieceese ettt sttt sttt sre s te s resreane s 16
3.2.2.1 User Primitives for Successful Call Establishmentcccocoveiiiiieic i 16
3.2.2.2 Provider Primitives for Successful Call EstabliShmentcccccooviiiiiiiiciece e 16
3.2.2.3 Provider Primitives for Successful Call SEtUPcoveveiiiiiiiicccce e 17
3.2.3 Call EStabliSNEA PRASEc.ecviitiiieeie ettt sttt sr et be et aesteste e s e sbesreene s 17
3.2.3.1 SUSPENG SEIVICE ...vviviiiieii ittt ettt sttt e st e s te e et e s ae e re et e s beebe et e stesbeeteeseesbeeteenbesresreanes 17
3.2.3.2 RESUME SEIVICE ..ecvviiiitiieieie it ste et e te e e st e st e te et et e s beeteesb e besbeese et e beebe e b e saesbeessesaeseeateeneeseesreanes 19
3.2.4 Call TErminNation PRASEcc.iiiiieii ittt sttt e e b e st e et e e e sbesteenbesbesreane s 20
3.2.4.1 Call REJECE SEIVICE ...viviciieiiite ittt sttt st ettt e be e b e b e beeseesaesteeteenbesresreanes 20
3.2.4.2 Call FAIIUIE SEIVICE ...oviieieii ettt ettt e st e st e e taesaesbeeteenbesresreanes 21
3.2.4.3 Call REIBASE SEIVICE ...viiviiiiitiiteeie ettt te ettt et e be s ba et e sbesbeetaesaesbesteenbesbesreanes 21
3.2.5 Call MANAGEMENTeeiiiiie ettt s b e e et e beebe et e s besbeeseesaesbeeteenbesresreanes 23
3.2.5.1 User Primitives for Call Managementcccvoeiiii ittt ene s 23
3.2.5.2 Provider Primitives for Call Managementccccoveieiiiiiieeiec ettt enes 24
3.3 Network-Network Interface Services Definition ..o 25
3.3.1 Call SEIUP PRESEecvviieiie ettt sttt sttt e et e s b e s beeteesaesbeeteenbesresreene s 25

$Revision: 0.8.22 % Page IV April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

3.3.1.1 User Primitives for Successful Call SEIUPcecveiiiiiiccci e 26
3.3.1.2 Provider Primitives for Successful Call SEtUPcoveveiiiiiiiccc e 26
3.3.2 CONLINUILY TESE PRASE ...cviiviciicieite ettt sttt s be et be e e st e s beetaesaestesteenbesresreanes 28
3.3.2.1 Continuity TSt SUCCESSTULocuiiiiiiiecece e sre st besreene s 28
3.3.2.2 Continuity Test UNSUCCESSTUIoiviiiiieie ettt ene s 31
3.3.3 Call EStabliSNMENt PRESEcoeiiiiiiieieisiesie ettt 32
3.3.3.1 User Primitives for Successful Call EstabliShment ..o 33
3.3.3.2 Provider Primitives for Successful Call EstablisShmentccocooviiiiiiiiiiineeeee 33
3.3.4 Call EStabliSNed PRASEccveiiiiiiiieieieesese sttt bttt 34
3.3.4.1 User Primitives for EStablished Calls ... 34
3.3.4.2 Provider Primitives for Established CallS ... 34
3.3.5 Call TErmination PRESEccciiiiiiiiieieiiesie ettt bbbt 35
3.3.5.1 Call REJECE SEIVICE ...viviciiieiite ittt sttt st be st e e b e st e s beetaesaesbesteenbesresreanes 35
3.3.5.2 Call FAIIUIE SEIVICEoiviieieiieiisie ettt bbbttt nee e 35
3.3.5.3 Call REIEASE SEIVICEeeiiriiiieiiiiiiieiee ettt sttt bttt e et e 36
3.3.6 Circuit Management SEIVICESccvciiiiiieiieie st eie e ste et se et e s be s te e e e s tesbeeteesaesreeteesbesresreanes 38
3.3.0.1 RESEE SEIVICE ...ouvirieiiiiiiteiieiet ettt ettt ettt bbbt bt e bt b b et et e n et e e 38
3.3.6.2 BIOCKING SEIVICE ...oiviitiieiii ittt st ettt e a et e s beeta e sbestesteenaesbesreanes 40
3.3.6.3 UNDIOCKING SEIVICE ...cviiviiiiciecte ettt sttt sttt e r et e s be et e saesteste e s besresreane s 41
3.3.6.4 QUENY SBIVICE ..eviiviiiiiti ettt sttt sttt e et et e st e e te e s et e s aeese et e s beebe e b e stesbeeseesaesbeeteesbeseenreanes 42
4 CCIPIIMITIVES ..ottt sttt sttt b bbb s e bt bt e b et e st e b e be st e e e nenbeabe b neas 44
4.1 ManagemeNnt PrIMITIVESc.oiiiieieie ettt sttt s be e beesa e besbeeseebesbesnee e e sreareanes 44
4.1.1 Call Control Information REGUESTccviieiiiiie ettt sttt re e 44
4.1.2 Call Control Information ACKNOWIEAgMENTceoiiiiiiiiie e e 45
4.1.3 ProtoCOl AdAress REQUESTcviiiiciiie ittt st st ste et e besta e e e sreereenes 46
4.1.4 Protocol Address ACKNOWIEAGMENTccviiiiiiieeee e re e 47
4.1.5 Bind ProtoCOl AAreSS REQUESEc.vciueiiiiecieite ittt st st ste et esbesnaesnesreereenes 48
4.1.6 Bind Protocol Address ACKNOWIEAGMENTccooiieiiiiiiiee e 50
4.1.7 Unbind Protocol Address REQUESTcoviioiiiiiecec et sttt ra e 52
4.1.8 Call Processing Options Management REQUESEcc.ecvviieiieieieciiesesie et ens 53
4.1.9 Call Processing Options Management Acknowledgmentcccooceveeieeiini i 55
4.1.20 Error ACKNOWIEBAGMENTc.viiiie ettt te et et aeeresreeraenes 56
4.1.11 Successful Receipt ACKNOWIEAGMENTSooviiiiiiiiiiecee e 58
4.2 Primitive FOrmMat and RUIEScoiiiiieiiiiese sttt nne s 59
4.2.1 Call SELUP PRASEveivieiiiticieee ettt sttt s e st e st e s ae s beesb et e saeese et e teanee e e sreereenes 59
4.2.1.1 Call Control SEtUP REGUESEccueciieie ettt sttt ste et e b s reesnesreereenes 59
4.2.1.2 Call Control Setup INICALIONc.coiiiiicicie e re e 62
4.2.1.3 Call Control SEtUP RESPONSEvecvveiiiiiiieeieite sttt se st re e besre e et e besre et e sreereanes 64
4.2.1.4 Call Control Setup CONFIMM ..o e sre e reenes 65
4.2.1.5 Call Control Reattempt INICALIONccciviiiiiiieiece e e 66
4.2.2 CoNtiNUItY ChECK PRASEeoiiiieiie ettt sttt sttt s ae et e s besna e e e sreeraenes 67
4.2.2.1 Call Control Continuity Check REQUESTccveieiiieiiece et 67
4.2.2.2 Call Control Continuity Check INdiCationcccccooiiiiiiiiiece e 69
4.2.2.3 Call Control Continuity TESt REQUESTcveiviiieiieieite e sresre e 70
4.2.2.4 Call Control Continuity Test INdICAtIONcccccveviiiiiiiice e 72

$Revision: 0.8.22 % PageV April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

4.2.2.5 Call Control Continuity RepOrt REQUESTcccvciiiiieiiee et 73
4.2.2.6 Call Control Continuity Report INIiCAtioNcccccocviiiiieieiecese e e 75
4.2.3 Collecting INfOrmation PRASEc.coiiiiiiiicie ettt raene 76
4.2.3.1 Call Control More Information REQUESEcccvcieiiiiieiieie e st 76
4.2.3.2 Call Control More Information INAICAtIONccoiririeiiiiiieieee s 78
4.2.3.3 Call Control Information REQUESEcceeiiiiiiiiic ettt re e 78
4.2.3.4 Call Control Information INAICALIONccoeiieiiiiiiiesce e e 81
4.2.3.5 Call Control Information Timeout INAICALIONccccoreiiiiiiiiiccs s 82
4.2.4 Call EStabliShMENT PRASEc.oiiiiiiieieieisese sttt 83
4.2.4.1 Call Control Proceeding REGUESTcociiiiiiiiecee sttt st sre s re e 83
4.2.4.2 Call Control Proceeding INICAtIONccooiiiiiiiiiiecec et 85
4.2.4.3 Call Control AlErting REQUESEccviiiiiecreiie sttt st sre et e be e e e srenreenes 86
4.2.4.4 Call Control Alerting INAICALIONcccocviiiiiiiicc e ene 88
4.2.4.5 Call Control Progress REQUESTccuiiiiiiciiie ettt sttt sresreenes 89
4.2.4.6 Call Control Progress INAICALIONcccceoiiiiiiiiicieie e re e 91
4.2.4.7 Call Control In-Band Information REQUESEc.coviiuiiiiic i 92
4.2.4.8 Call Control In-Band Information INAICAtIONcccooeiiiiiiiiiieer e 94
4.2.4.9 Call Control CONNECE REQUESLc.veveiieiiecieite sttt te e re sttt sre e et e besnaesnesreereenes 95
4.2.4.10 Call Control Connect INICALIONcccoiiiiieieiiisie e e e 97
4.2.4.11 Call Control Setup ComMPpIete REQUESEccviiieieiecieceee e re e 98
4.2.4.12 Call Control Setup Complete INAICALIONcccoveiiiiiiieie e 100
4.2.5 Call EStabliSNEA PRASEcveiiiiiiiiieiieieese sttt ettt nae s 101
4.2.5.1 FOrward TranSTer REQUESTccvcieiiieie ettt st te et et sraenesreereenes 101
4.2.5.2 Forward Transfer INAICALIONccoviiiiiiiiiecc e e 102
4.2.5.3 Call Control SUSPENT REGUESTooveiieiieciccte ettt st sttt sreeraenes 103
4.2.5.4 Call Control Suspend INICALIONccccveiiiiiiiiiccc e ene 104
4.2.5.5 Call Control SUSPENT RESPONSEccviiviiiieiiiie it eie ettt sre et sre et e besrae e e sreereenes 105
4.2.5.6 Call Control Suspend Confirmationc.ccceiiviiiiiiiieieee e 106
4.2.5.7 Call Control Suspend REJECT REGQUESTcviiviiiiiieieiieieee sttt sre e re e 107
4.2.5.8 Call Control Suspend Reject Confirmationccccviiiiiiie i 109
4.2.5.9 Call Control RESUME REGUESTc.eciviiiiiiecieite ittt sttt st ste et e besnaenesreereenes 110
4.2.5.10 Call Control ReSUmMe INAICALIONcviiiiiiieieeieie e e 112
4.2.5.11 Call Control RESUME RESPONSEcviiviiiieiiiiieite ettt sttt s re et sre et e besnaesnesresreenes 113
4.2.5.12 Call Control Resume CONfIrMAatIONcccoiueiiiiiniieisise e s 115
4.2.5.13 Call Control Resume ReJECt REGUESTccviiiiiieiiiteiiee ettt 116
4.2.5.14 Call Control Resume Reject INdICALIONcccoveiiiiiiiiic e 118
4.2.6 Call TErmination PRESEccooiiiiiiieiiiie sttt sttt sttt sttt resnenne e 119
4.2.6.1 Call Control REJECT REGUESTc.vecvveii ettt sttt sttt st be e sresreereenes 119
4.2.6.2 Call Control ReJect INICALIONccuiiiiiiiiii it 121
4.2.6.3 Call Control Call Failure INAICAIONcooeieiiiiirieiescse e e 122
4.2.6.4 Call Control DiSCONNECT REGUESTccuiiiieiiiti ittt sttt st sresreenes 123
4.2.6.5 Call Control DiscONNECt INAICALIONciiiieieiiiiiiie e 125
4.2.6.6 Call Control REIEASE REGUESEc.ecviiieiieciccie sttt st sre et st sreeraenes 126
4.2.6.7 Call Control Release INQICALIONccoiiiriieieiiisie et 128
4.2.6.8 Call Control REIEASE RESPONSEciviiiiiieeiiiie ittt sre et re et sre et esbesraesnesresreenes 129

$Revision: 0.8.22 % Page VI April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

4.2.6.9 Call Control Release CONFIrMAtioNcccooiiieiiiiiniieiscse s s 130
4.3 Management Primitive FOrmats and RUIEScccvoiiiiiiiiec e 131
4.3.1 Interface Management PrIMIIVESccocviioiiiii ittt sttt re e 131
4.3.1.1 Interface Management ReStart REQUESTccoviiiiiieiiece et 131
4.3.1.2 Interface Management Restart Confirmationccccoceviiiiiicii i 132
4.3.2 Circuit Management PHMITIVESc.cccoiiiiiiiie ittt sttt sr e reens 133
4.3.2.1 Circuit Management RESEt REGUESTeciviiiiiiiieie sttt sre e re e 133
4.3.2.2 Circuit Management ReSet INAICALIONccccoviiiiiiiiiee e 135
4.3.2.3 Circuit Management RESEt RESPONSEcviiuiiiiieiieiieieesieste et st te et sre e sbe s be e sresreenes 136
4.3.2.4 Circuit Management Reset Confirmationc.cccociiiiiiic i 138
4.3.2.5 Circuit Management BIOCKING REQUESTcoiviiiiiieiiece et 139
4.3.2.6 Circuit Management Blocking INQICAtioNcccooiiiiiiii i 141
4.3.2.7 Circuit Management BIOCKING RESPONSEc.ocvviiiiiiiieiieie ettt 142
4.3.2.8 Circuit Management Blocking Confirmationcccccveiiieiecieie s 143
4.3.2.9 Circuit Management Unblocking REQUESTccveiiiiiiiiie e 144
4.3.2.10 Circuit Management Unblocking INicationccccoveiiieciieiie i 146
4.3.2.11 Circuit Management Unblocking RESPONSEccveiueiviiiiieiecie e ettt 147
4.3.2.12 Circuit Management Unblocking Confirmationcccccceviveievieii e 148
4.3.2.13 Circuit Management QUENY REGUESTc.ciuiiiiierieieceeie ettt re et sre et sresneens 149
4.3.2.14 Circuit Management Query INAiCatioNccoceiiiiiiiiie i 151
4.3.2.15 Circuit Management QUENY RESPONSEcceiuiiieiieiteiieiiesie e eeesteste s e esesresre e e sresressaessesresreenes 152
4.3.2.16 Circuit Management Query Confirmationc.cccecvveiiie i e 153
4.3.3 MaINENANCE PIIMITIVESoviiiiiiiiiiieieieese sttt re e nae s 154
4.3.3.1 MaiNtenance INAICALIONcoiiiiiiiciiese ettt eae s 154
4.3.4 Circuit Continuity TeSt PIIMITIVESccviiiiiciccie st sttt reens 155
4.3.4.1 Circuit Continuity CheCK REQUESLcccveiviiiiiieicce sttt re e 155
4.3.4.2 Circuit Continuity Check INAICAtIONccciiiiiieiicecec e e 157
4.3.4.3 Circuit Continuity TESt REQUESTccveiiiiciiie sttt st sre et sresreenes 158
4.3.4.4 Circuit Continuity Test INAICALIONcoccveiiiiiiiee e 160
4.3.4.5 Circuit Continuity REPOI REGUESEcceeiiiiiiicie ettt sresra e 161
4.3.4.6 Circuit Continuity Report INdICAtIONcccoiviiiiiiieiiecc e 163
4.3.5 Collecting INfOrmation PRASEc.coiiiiiiiiiie ittt ra e 164
5 DIiagnOStiCS REQUITEMENTSviiviiiiiteiieeie ittt re et s re et e be s be e b e sbesbeesaesaesbeeteesaesbesreaneas 165
5.1 Non-Fatal Error Handling FaCilityccccceiiiiiiieece e s 165
5.2 Fatal Error Handling FaCilityccoeiiiiiieie ettt ettt sreene s 165
6 Addendum for Q.931 CONTOMMANCEccviiiiiii ettt e e s be e beereeeneeenresnbeanbean 166
6.1 Primitives and Rules for Q.931 CONTOIMANCEccviiiiiieiiece e re e 166
6.1.1 CommON Primitive PArAMELETScciiiiieieiiiie ettt 166
6.1.1.1 Call CONLIOI AUUIESSESouvevietiiiiiieieieiese sttt sttt b bbbttt e et e e 166
6.1.1.2 Optional Information EIBMENTScccceiiiiiicece et ene s 167
6.1.2 Local Management PrIMITIVEScvoiiiiiieie ettt sa ettt sbeste s e sresreene s 168
6.1.2.1 CC_INFO _ACK .ottt ettt ettt bt s et b et b et e bt bt e st et e n et e e e 168
6.1.2.2 CC_BIND _REQ ..ottt sttt sttt b bbbttt e st et e e benn et 168
6.1.2.3 CC_BIND _ACK ..ttt ettt sttt b bbbttt et e et e e e 169
6.1.2.4 CC_OPTMGMT _REQ ..ottt ettt bbbttt 169

$Revision: 0.8.22 % Page V11 April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

6.1.3 Call SELUP PriMUTIVESccoiiiiieice ettt sttt sae e e be s reeae et e besnnennesrenrs 169
(S G B O L Y/ o g To I = SRS 169
6.1.3.2 CC_SETUP_REQ ...coeieiiieieiieieieieiste sttt sttt et sesesaeseseese e se e ssesessenessesessesesensenensns 173
6.1.3.3 CC_SETUP _IND ...oouiiieiiiieiisieeseeees ettt sttt et et e e e e s et e ne st enenaesenense e nsens 174
6.1.3.4 CC_SETUP _RES ..ottt sttt s ettt et e ne st e se st se e nse e nsens 175
6.1.3.5 CC_SETUP _CONooieiiiieiirieiiisieesteesteeseeseseeseseesesessesessesessesessesessssessssessssesessessssesessesessnsensasens 175
6.1.3.6 CC_CALL_REATTEMPT _IND ..oootitiiiieiiieiisieesee ettt sansenensns 175
6.1.3.7 CC_SETUP_COMPLETE_REQociitiieirieiisieienieesesiees et sae e sassenessns 175
6.1.3.8 CC_SETUP_COMPLETE_IND ...cooiiiieiieeiisieiesie ettt sansenessns 175
6.1.4 Continuity CheCK PriMILIVEScccieiieieie ettt st st e s b sneenesreens 175
6.1.4.1 CC_CONT_CHECK _REQcceitiiieteerieisietisieteseeesesseessesessesessesesessesessesessesessessssesessesessssensssens 175
6.1.4.2 CC_CONT_TEST _REQ ...cctiteieeieisieesieesiesesie e see e sessesessesessesessesesessesessesessesessessssesessesessnsensssens 176
6.1.4.3 CC_CONT_REPORT_REQccoiiiiteiiteisietisieesesesesseessesessesessesesessesessesessesessessssesessesessnsensssens 176
6.1.5 Call EstablisShment PrIMITIVESccvoieie ettt sreens 176
6.1.5.1 CC_MORE_INFO_REQ ...ceititieieieieisieisietesiee s e sessees st sesseseseesesessesessesessessssesessesessnsensssens 176
6.1.5.2 CC_MORE_INFO _IND ...cotiiiiieieisieesie ettt ettt a s sse e stenessesenansenessns 176
6.1.5.3 CC_INFORMATION_REQ ...c.oititeieieirieisietisieiesesesesseeseestesessesesessesessesessesessessssesessesessnsensnsens 176
6.1.5.4 CC_INFORMATION _INDctiiiiiieieisieisietisieieseeesesseesseessesessesesessesessesessesessessssesessesessnsensssens 176
6.1.5.5 CC_INFO_TIMEOUT IND ..cotiiieieieesieisietesieteses e ieses et see e sesse et sesse s e ssesessesessnsesensns 176
6.1.5.6 CC_PROCEEDING_REQcctiiiiiiteisieisieisietesee e sestees et see e e s e e sessesessessssesessesessnsenensens 177
6.1.5.7 CC_PROCEEDING _IND ...ccoctiiieieteisieisietisieie s sesiees s see e ses st sesse e ssessssesessesessnsenesens 177
6.1.5.8 CC_ALERTING _REQ ...occiiiiiiieieisieesieesieseste s e s sesesseses e s sseseseesesessesessesessesessesessesessnsensnsens 177
6.1.5.9 CC_ALERTING _IND ..cotiieiiietiieieisieesie ettt sae s see s se e se e ssesestesessesenensenensens 177
6.1.5.10 CC_PROGRESS REQccuitirieisieisieesiesisieseses e sesseessesessesessesessssessssessssesessessssesessesessssensssens 177
6.1.5.11 CC_PROGRESS INDcoiititiieieisieisieiesieseseeie s e sessee st seeseseesesessesessesessesessesessesessnsensnsens 177
6.1.5.12 CC_IBI_REQ ...cutiiiitieieieeiesieesie ettt sttt s e se s e e se e te et e e s senessenensesenensenensens 178
ST T O 1 = I 1N SR 178
6.1.6 Call EStabliShed PrimitiVEScoooeieieisieisieesieesee et 178
6.1.6.1 CC_SUSPEND_REQccoeititetiieieisieisieesiesestetesessesessesessesessesessesesessesessessssesessessssesessesessnsensssens 178
6.1.6.2 CC_SUSPEND _INDcotiiiiiiieiiieieisieiesie e sieseste s e st see st sesessesesessesesseessesessesessesessesessnsensnsens 178
6.1.6.3 CC_SUSPEND _REScotiiiieieisiei st ettt sse s et e se e se e ssesessesessesenensenensens 178
6.1.6.4 CC_SUSPEND _CONoouciiieiiieieisteesieeseeseseeseseesesessesessesessesessesessssessssessssesessessssesessesessnsensesens 179
6.1.6.5 CC_SUSPEND_REJECT _REQ ...cccoiiiiieirieiirieierieesestees st seesesesse e e sessesessesessesessesesensensssens 179
6.1.6.6 CC_SUSPEND_REJECT IND ..ocotiiiiieisieiisieteses ettt sassanessns 179
6.1.6.7 CC_RESUME_REQc.oiiiiieiiieieisiei sttt se st esse e se e stenessesesensenessns 179
6.1.6.8 CC_RESUME_INDocutiiiiiieiiieeieieiee sttt see s se et esse e s e ssesessesenensenensens 179
6.1.6.9 CC_RESUME_REScocoiiioieeieistee ettt ettt nte s s senensenensens 180
6.1.6.10 CC_RESUME_CONocociiiiiiieieisieesiee et s see e sessese st sesesseseseesesessesssesessessssesessesessnsensssens 180
6.1.6.11 CC_RESUME_REJECT _REQ ...cceeiirieirieiisieierisesesiees et e s ssesessesesessenessns 180
6.1.6.12 CC_RESUME_REJECT INDcctiiiiieisieiisieesie e sesiees et et se s sensenessns 180
6.1.7 Call Termination PrimitiVEScccccoieiieii ettt sttt beeneeae e ens 180
B.1.7.1 CAUSEVEIUESoocvieeeee ettt sttt sttt a e e e st e s teeae e ae s beeteens e tesaeeaeensesteeneennesrenrn 180
6.1.7.2 CC_REJECT _REQ ...ooociiieiiieieieeieiste st seese st te st sesesse s sesessesesaesesesseessasessesessesessesessnsenensens 182
6.1.7.3 CC_REJECT _IND ..outiieiiiieiirieiereseeste e ste st see s te st et sesesaeseseesesesse e ssesessesessesessesesensenesens 182
6.1.7.4 CC_CALL_FAILURE_IND ..ooiiitiieteesiei ettt nse e nansenessns 183

$Revision: 0.8.22 % Page V111 April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

6.1.7.5 CC_DISCONNECT REQcceiieuieiteiesieieeete ettt ettt a s sre e sse s esaebesaestensensenessesnenennns 183
6.1.7.6 CC_DISCONNECT IND ...ootiiiiiceciectesesteee ettt sttt a et r e ss s sesbesaeste s enaenesresaenenens 183
6.1.7.7 CC_RELEASE REQciiiitiieeeeet ettt ettt sttt a s ebe s te s e s esasbesaessensensenestessennennas 183
6.1.7.8 CC_RELEASE INDocuiitiitiieiceet ettt ettt sttt a et te s e s aeebesaessenseneenesresnenenens 184
6.1.7.9 CC RELEASE REScooi ittt ettt sttt a et s te s e e seebesaessenseneenestesrenenens 184
6.1.7.10 CC_RELEASE CON ...oootiiiiieiceeie ettt ettt sttt a bbb e s e s eaeebesaessensensenestesseneneas 184
6.1.8 Management PriMItIVEScccoiiieiieie sttt st ae st st e e besreene e sesbeennennesrenns 184
6.1.8.1 CC_RESTART _REQociiiiiiieieiee ettt ettt ettt a b ebe s be s e s eaesbesaessensensenestessannenens 184
6.1.8.2 CC_RESTART _CONociitiitiieieeet e s te ettt ettt e et s be st e s e e sesbesbessensessebessessensensenessessensenens 184
6.2 Q.93L HEader FilE LIStiNGceoviiiiieieicie ettt sttt s a et seneeaesresrenenens 185
7 Addendum for Q.764 CONFOIMEINCEccueeeveiiicee e ceeetectesteere et e eeeseeseesaeesbeesaeseseessessaeesaeesaeessenas 186
7.1 Primitives and Rules for Q.764 CONfOIMANCEccuveeeiieeiieceeceeeeeeeeseesresreeseesreesreesaeesseesaeesneeas 186
7.1.1 Common Primitive ParamELEY'Sccceciiiiiiiecieie ettt st st a et r e besneenesreens 186
7.1.1.1 Call CONLrOl AQArESSESocvecieieecieeieese ettt st e st s te e ae s besre e s e besaeeneetesresneennesrears 186
7.1.1.2 Optional Para@mELENScceeceieiieie ettt e e st ae e sre et e besaeeae e tesreenaenesreens 187
7.1.2 Local Management PrHIMITIVEScooveiiie ettt st srens 188
T 121 CC INFO ACK .ottt ettt ettt ettt e e be s b e st et e e ebeebeebe s enseseebesaessensensanesressennenens 188
7.1.22 CC BIND REQ ...oooiiieictiete ettt ettt et s be st et e e eaeebeebe s e s eseebesaessensensenesressennenens 188
7123 CC BIND ACK ..ottt ettt ettt sttt be st et e e e b e ebeebe s e s eseebesaessensensenesresaenneneas 190
7.1.24 CC_OPTMGMT _REQ ...oooiitiieicectee ettt ettt sttt ae b s te s e e aeebesaestenseneenestesaenenens 190
7.1.3 Call SEUP PriMUTIVESccoiiiiieieee ettt st st este et e besaeeae e sesbeennennesreans 190
7.1.3. 1 CC SETUP _REQ ...ooiiiciitiiteseeeee ettt ettt st e st et e e beebe s besse s eseebesaessensensenesressenneneas 190
7.1.3.2CC SETUP IND .ottt ettt sttt eebe et e be s e s eaeebesaestenseneenesressenneneas 193
7133 CC SETUP RES ..ottt sttt sttt b e et et e e e s eaeebeeaestenseneenestessennenens 194
7.1.3.4 CC_SETUP _CONoeiuiiiietiiteseieeee ettt sttt s be st et e e ebe et e e besse s eseebesaessenseneenesressenneneas 194
7.1.35CC _CALL _REATTEMPT IND ..coooiiieeeeeceee ettt ettt st sre e nenens 195
7.1.3.6 CC_SETUP_COMPLETE_REQc.ociiiiiieicieete ettt sttt s et sae s e nesresnannenens 196
7.1.3.7 CC_SETUP _COMPLETE_IND ...oooutitiiiiicieeete ettt sttt sae e enesresnenenens 196
7.1.4 ContinuUIty ChECK PhaSEccuiccieieieciece sttt sttt te st et s aeene e tesbesnnennesreans 196
7.1.4.1 CC_CONT_CHECK REQccceiieuiitiiteiieieieeete et ee et st st sae e se s s besaesessssesaessensessensssessesenens 196
7.1.4.2 CC_CONT_CHECK IND ..ooiiieicicitcte ettt ettt sttt r e ss et saeste s enaenesresaenennns 196
7.1.4.3 CC _CONT_TEST _REQ ...ooitiieeeececte ettt ettt sttt ere e sa s aeebesaeste s eneeaestesaenenens 197
7.1.4.4 CC_CONT_TEST _IND ..oooiitiieceee ettt sttt b e sa e ae et s ae s te s eneenesresaenenens 197
7.1.45 CC _CONT_REPORT _REQc.coiciitiiteiieieieete ettt sttt a st e s e e aesbesaeste s enaenesressenenens 198
7.1.4.6 CC_CONT_REPORT IND ...ccoiiicieitetesiesieeete ettt sttt a et et s aeste s e enesbesaenennas 198
7.1.5 Call EstablisShment PrIMITIVEScoviieieie ettt s sreens 199
7.1.5.1 CC_MORE_INFO REQciiiiiceeitee ettt ettt sttt a e ese s te st e s ssebesaessensensesestessenennns 199
7.1.5.2 CC_MORE_INFO IND ...ciotiieicictee ettt ettt sttt a ettt s s aeebesaeste s eneenestesnenenens 199
7.1.5.3 CC_INFORMATION _REQcocoiciitieieiieieieee ettt sttt a s ereste s e s esesbesaessenseneenessessenennns 199
7.1.5.4 CC_INFORMATION _IND ...oooiiieuieiietesiesieieee ettt ettt s e st s e s e s sesbesaesae s eneenesresaenennns 200
7.1.5.5 CC _INFO _TIMEOUT IND ...oooicicitetesieeeee ettt sttt ettt sae st s e enesbesaenennns 200
7.1.5.6 CC_PROCEEDING _REQcceiiiiiiietesieiee ettt sttt a ettt ss s aesbesaesse s e enesresnennenens 200
7.1.5.7 CC_PROCEEDING INDcoiiiiicieitete ettt ettt sttt a e ere e s e s seebesaesse s enaenesresnenenens 201
7.1.5.8 CC_ALERTING REQ ...coociitiieicict ettt ettt sttt a bt s be s e s aeebesaessensenaenesresaennennns 202
7.1.5.9 CC_ALERTING IND ...ociiiitiieicest ettt ettt sttt a et s e aeebeeaesse s eneenesresnenennns 202

$Revision: 0.8.22 % Page I X April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

7.1.5.10 CC_PROGRESS REQciiiieuiiiietesiesiese ettt stee et ste st saesessestesae s esesbessessensessesessessensenens 202
7.1.5.11 CC_PROGRESS INDc.ootiiiiiicieitete ettt sttt st st aese s besse s esasbesaessensensenssressenennns 203
71512 CC IBI_REQ ...ootiitiieiceeete ettt sttt sttt et st st e s e e ebeebeebe s enseseebesaessenseneanestessennenens 203
T L1513 CC IBI_IND ...oiitiiieeiceete ettt ettt et be b st e st e et e eb e be e e s eaeebesaestensensenesressenneneas 203
7.1.6 Call EStabliShed PrimItIVESccciveiiiiiecicsicecee ettt sttt ettt nesresaeneneas 203
7.1.6.1 CC_SUSPEND REQooiitiitiiieieeet e stest ettt sttt sttt aeseebe s bess e s eaesbesaessensensenestessennennas 203
7.1.6.2 CC_SUSPEND _IND ..ottt ettt sttt a s et ss e s eneebeeaesse s ensenesresaennennas 204
7.1.6.3CC SUSPEND RESoooiitieeeeet ettt ettt sttt b et ss e s aeebesaeste s eneenestessenenens 204
7.1.6.4 CC_SUSPEND REJECT REQ ..coootiiiiiieectiete ettt st st re e sa e se st sne st s e enesresnennenens 204
7.1.6.5CC_RESUME REQcoiitiitieiceet ettt sttt a et te s e e eaeebesaestenseneenesresnenennns 205
7.1.6.6 CC_RESUME INDcoooiiitiieeecee ettt st sttt a e e aeebesaestenseneenesresnennennas 205
7.1.6.7 CC_RESUME REScoo ottt st sttt st a e aeebesaeste s eneenesresaenenens 205
7.1.6.8 CC_RESUME REJECT REQccocoiiiiiiiciceete ettt st e et st ese st st n e enesbesnennenens 205
7.1.7 Call Termination PrimitiVESccccceieiieii ettt st s e st b sne e e sreens 205
7.1.7.1 CC REJECT _REQ ...ociiiotiitieieeeee ettt sttt et sttt aebe et e be s e s eaeebesaessenseneenesressenenens 205
7.1.7.2CC _CALL_FAILURE _IND ..ottt st sttt st sae e n e enesresnenennns 206
7.1.7.3 CC_DISCONNECT REQ ...coeiiiiicuieieeiesiesieseete ettt sttt a et e s e s sesbesaessensensensssessenennns 206
7.1.7.4CC RELEASE REQociitiitiieieeet ettt ettt sttt a s ebe s be s e s eaeebesaessenseneenesressennennns 206
7175 CC RELEASE IND ..ottt ettt sttt a e et ss e s aeebeeaestenseneenestesnennenens 208
7.1.8 Management PriMItIVESc.ccceiiieeiece ettt sttt st st sre e e e besaeeneesesbeeneennesrenns 208
7.1.8.1 CC_RESTART _REQooiitiititeieeee ettt ettt sttt aeae et e tess e s eseebesaessenseneenesresseneneas 208
7.1.82CC RESET REQ ...oooiiiciiii ettt ettt et sttt e b e et et e s e s eseebesaessenseneenesresseneneas 208
7.1.8.3CC RESET IND ..ottt ettt sttt e bt e e be s e s eaeebesaessensensenesressenneneas 209
7184 CC RESET RES ..ottt sttt sttt a e et et e s e s eaeebesaestensensenesresrenenens 209
7.1.85 CC RESET CONcociciiitiiieiieieee ettt ettt e b s be st e s e e eseebeebessenseseebesaessenseneenesressenenens 209
7.1.8.6 CC_BLOCKING REQcoitiiieiciitice ettt sttt a s ebe s tesse s esesbesaessensensenesressennenens 210
7.1.8.7 CC_BLOCKING IND ...coootiitiiieietiett ettt ettt sttt a s st te s ensesesbesaessensensenssressennennns 210
7.1.8.8CC BLOCKING RESoooi oottt ettt ettt a et st ss e s aeebesaeste s eneenesressenenens 210
7.1.8.9 CC_BLOCKING CON ...ocuiiiiiiiciieitete ettt sttt s te st s e sesresbessensesesbesaessensensasesressannenens 211
7.1.8.10 CC_UNBLOCKING REQocoiciiiieieiieieeeee ettt st a et re e s et sae st n e enesbesaennenens 211
7.1.8.11 CC_UNBLOCKING IND ...ccoeiciitieie ettt sttt a e ere st sae s s e enesresnennenens 212
7.1.8.12 CC_UNBLOCKING REScociiteteieectee ettt sttt st st s ae st enaene b s nennenens 212
7.1.8.13 CC_UNBLOCKING CONccociitiiieiieieieeteete et eeee e stestesaesaesssse e ssesesessessessesessesessessensenens 212
7.1.8.14 CC_QUERY _REQcoiiitiitiiieiee ettt sttt s be st et aebeebe s besse s eseebesaessenseneenestessennennas 213
7.1.8.15 CC_QUERY IND ..ottt ettt sttt b e et e st e s e s seebesaessensensenesresaenneneas 213
7.1.8.16 CC_QUERY _RES ...ttt ettt ettt sttt be e e s aesbeeaestenseneenesressenenens 213
7.1.8.17 CC_QUERY _CONooiiitiiieieieeet ettt ettt et sttt aebeebe et e s e s eaeebeeaessenseneenestesseneneas 214
7.2Q.764 Header FilE LIStiNGcociiiiieicieieee ettt sttt et s ae st s eneeaesresaenenens 214
8 Addendum for ETSI EN 300 356-1 V3.2.2 CONfOrMANCEccccvevierieeieie e ereeeeste st eee et sne e 220
8.1 Primitives and Rules for ETSI EN 300 356-1 V3.2.2 CONfOrMAaNCEcccoeevvevievreeieenreciecneesee e 220
8.1.1 Local Management PrHIMITIVEScooieiiii ettt n e srens 220
8.1.2 Call SELUP PriMUTIVESceeiiiieice ettt sttt st ae s teste e e e besaeensesesbeennennesrenrs 220
8.1. 2.1 CC SETUP REQ ...ooiiiceieie ittt ettt ettt st e st e s e s e ebesbessenseneebesaessensensenesressenenens 220
8.1.2.2 CC SETUP IND ..ottt ettt sttt a b e b et e s e e eaeebesaestenseneenestesseneneas 220
8.2 ETSI EN 300 356-1 V3.2.2 Header Fil@ LiStiNgceiveeeiiiciecieieeee ettt s 222

$Revision: 0.8.22 % Page X April 15, 2003

Call Control Interface (CClI) Contents OpenSS7 Corpor ation

A Appendix A. Mapping of CCI Primitivesto Q.931ccciiiieieiececeese et 223
B Appendix B. Mapping of CCl PrimitiveSto Q.764ccccceieiieie ittt see e sreeae e sne s 225
C Appendix C. StAte/EVENE TADIEScoiieeeee ettt s r e b e nesreens 227
D Appendix D. Precedence TADIESccoiiieeiece ettt st re e b nre s 228
E Appendix E. CCl Header FilE@ LiStNGccoeeeeeiieciesie sttt st st a e st benne s 229
(RS o = o] RSSO I
(IS 0 = = RS PRSRSS Il
L o L= o @01 = o1 SRR v

$Revision: 0.8.22 % Page XI April 15, 2003

