
Network Provider Interface Specification

UNIX International
OSI Work Group
Revision: 2.0.0 (August 17, 1992)

Published by:

UNIX International
Waterview Corporate Center

20 Waterview Boulevard
Parsippany, NJ 07054

for further information, contact:
Vice President of Marketing

Phone: +1 201-263-8400
Fax: +1 201-263-8401

International Offices:

UNIX International UNIX International UNIX International UNIX International
Asian/Pacific Office Australian Office European Office Pacific Basin Office
Shinei Bldg. 1F 22/74 - 76 Monarch St. 25, Avenue de Beaulieu Cintech II
Kameido Cremorne, NSW 2090 1160 Brussels 75 Science Park Drive
Koto-ku, Tokyo 136 Australia Belgium Singapore Science Park
Japan Singapore 0511

Singapore

Phone:(81) 3-3636-1122 Phone:(61) 2-953-7838 Phone:(32) 2-672-3700 Phone:(65) 776-0313
Fax: (81) 3-3636-1121 Fax: (61) 2 953-3542 Fax: (32) 2-672-4415 Fax: (65) 776-0421

Copyright 1992 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name UNIX

International not be used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission. UNIX International makes no representations about the suitability of this
documentation for any purpose. It is provided "as is" without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS DOCUMENTATION.

NOTICE:

This document is based on the UNIX System Laboratories Network Provider Interface (NPI) specification
which was used with permission by the UNIX International OSI Work Group (UI OSIWG). Participation in
the UI OSIWG is open to UNIX International members and other interested parties. For further
information contact UNIX International at the addresses above.

UNIX International is making this documentation available as a reference point for the industry. While
UNIX International believes that these interfaces are well defined in this release of the document, minor
changes may be made prior to products conforming to the interfaces being made available from UNIX

System Laboratories or UNIX International members.

Trademarks:

UNIX is a registered trademark of UNIX System Laboratories in the United States and other countries.

Revision: 2.0.0 August 17, 1992

OSI Work Group

1. Introduction

This document specifies a STREAMS-based kernel-level instantiation of the ISO/CCITT
network service definition. The Network Provider Interface (NPI) enables the user of a
network layer service to access and use any of a variety of conforming network layer
service providers without specific knowledge of the provider’s protocol. The service
interface is designed to support any connection-mode network protocol and
connectionless network protocol. This interface only specifies access to network layer
service providers, and does not address issues concerning network layer management,
protocol performance, and performance analysis tools.

The specification assumes that the reader is familiar with the OSI reference model
terminology, ISO/CCITT Network Layer Service, and STREAMS.

1.1 Related Documentation

— 1986 CCITT X.213 Recommendation [1]

— ISO 8348 [2]

— ISO 8348/AD1 [3]

— ISO 8473 [4]

— ISO 8208 [5]

— ISO 8878 [6]

— System V Interface Definition, Issue 2 - Volume 3 [7]

1.1.1 Role

This document specifies an interface that supports the service provided by the Network
Services Definition for Open Systems Interconnection for CCITT Applications as
described in CCITT Recommendation X.213 and ISO 8348 (for CONS) and ISO
8348/Addendum 1 (for CLNS). These specifications are targeted for use by developers
and testers of protocol modules that require network layer service.

Revision: 2.0.0 Page 1 August 17, 1992

Introduction

1.2 Definitions, Acronyms, and Abbreviations

Calling NS user
An NS user that initiates a Network Connection (NC).

Called NS User
An NS user with whom a calling NS user wishes to establish a network
connection (NC).

CLNP Connection-less Network Protocol

CLNS Connection-less Network Service

CONP Connection Oriented Network Protocol

CONS Connection Oriented Network Service

DLSAP Data Link Service Access Point

ISO International Organization for Standardization

NC Network Connection

Network User
Kernel level protocol or user level application that is accessing the
services of the network layer.

Network Provider
Network layer entity/entities that provide/s the services of the network
interface.

NPI Network Provider Interface

NS Network Service

NIDU Network Interface Data Unit

NSAP Network Service Access Point

NSDU Network Service Data Unit

OSI Open Systems Interconnection

QOS Quality of Service

STREAMS A communication services development facility first available with UNIX
System V Release 3

Revision: 2.0.0 Page 2 August 17, 1992

OSI Work Group

2. The Network Layer

The Network Layer provides the means to manage the operation of the network. It is
responsible for the routing and management of data exchange between network-user
entities.

2.1 Model of the NPI

The NPI defines the services provided by the network layer to the network-user at the
boundary between the network layer and the network layer user entity. The interface
consists of a set of primitives defined as STREAMS messages that provide access to the
network layer services, and are transferred between the NS user entity and the NS
provider. These primitives are of two types; ones that originate from the NS user, and
others that originate from the NS provider. The primitives that originate from the NS user
make requests to the NS provider, or respond to an event of the NS provider. The
primitives that originate from the NS provider are either confirmations of a request or are
indications to the NS user that the event has occurred. Figure 1 shows the model of the
NPI.

Network Provider Primitives

Primitives
Request/Response

Indication/Confirm

NPI

Model of the NPIFigure 1.

Network User

The NPI allows the NS provider to be configured with any network layer user (such as
the OSI Transport Layer) that also conforms to the NPI. A network layer user can also
be a user program that conforms to the NPI and accesses the NS provider via "putmsg"
and "getmsg" system calls.

2.2 NPI Services

The features of the NPI are defined in terms of the services provided by the NS provider,
and the individual primitives that may flow between the NS user and the NS provider.

The services supported by the NPI are based on two distinct modes of communication,
connection (CONS) and connectionless (CLNS). In addition, the NPI supports services
for local management.

Revision: 2.0.0 Page 3 August 17, 1992

Introduction

CONS

The main features of the connection mode communication are:

a. It is virtual circuit oriented;

b. It provides transfer of data via a pre-established path;

c. It provides reliable data transfer.

There are three phases to each instance of communication: Connection Establishment;
Data Transfer; and Connection Termination. Units of data arrive at their destination in
the same order as they departed their source and the data is protected against duplication
or loss of data units within some specified quality of service.

CLNS

The main features of the connectionless mode communication are:

a. It is datagram oriented;

b. It provides transfer of data in self contained units;

c. There is no logical relationship between these units of data;

d. It is unreliable.

Connectionless mode communication has no separate phases. Each unit of data is
transmitted from source to destination independently, appropriate addressing information
is included with each unit of data. As the units of data are transmitted independently
from source to destination, there are, in general, no guarantees of proper sequence and
completeness of the data stream.

Local Management

The NPI specifications also define a set of local management functions that apply to both
CONS and CLNS modes of communication. These services have local significance only.

Tables 1 and 2 summarizes the NPI service primitives by their state and service.

Revision: 2.0.0 Page 4 August 17, 1992

OSI Work Group

STATE SERVICE PRIMITIVES
Local Management Information Reporting N_INFO_REQ, N_INFO_ACK

N_ERROR_ACK
Bind N_BIND_REQ, N_BIND_ACK,

N_UNBIND_REQ, N_OK_ACK,
N_ERROR_ACK

Options Management N_OPTMGMT_REQ, N_OK_ACK,
N_ERROR_ACK

Connection Connection N_CONN_REQ, N_CONN_IND,
Establishment Establishment N_CONN_RES, N_CONN_CON,

N_TOKEN_REQ, N_TOKEN_ACK,
N_OK_ACK, N_ERROR_ACK

Connection Mode Data Transfer N_DATA_REQ, N_DATA_IND,
Data Transfer N_EXDATA_REQ, N_EXDATA_IND,

N_DATACK_REQ, N_DATACK_IND
Reset N_RESET_REQ, N_RESET_IND,

N_RESET_RES, N_RESET_CON
Connection Connection N_DISCON_REQ, N_DISCON_IND,
Release Release N_OK_ACK, N_ERROR_ACK

TABLE 1. Service Primitives for Connection Mode Data Transfer

STATE SERVICE PRIMITIVES
Local Management Information Reporting N_INFO_REQ, N_INFO_ACK

N_ERROR_ACK
Bind N_BIND_REQ, N_BIND_ACK,

N_UNBIND_REQ, N_OK_ACK,
N_ERROR_ACK

Options Management N_OPTMGMT_REQ, N_OK_ACK,
N_ERROR_ACK

Connectionless Mode Data Transfer N_UNITDATA_REQ, N_UNITDATA_IND
Data Transfer N_UDERROR_IND

TABLE 2. Service Primitives for Connectionless Mode Data Transfer

Revision: 2.0.0 Page 5 August 17, 1992

Revision: 2.0.0 Page 6 August 17, 1992

OSI Work Group

3. NPI Services Definition

This section describes the services of the NPI primitives. Time-sequence diagrams that
illustrate the sequence of primitives are included. (Conventions for the time-sequence
diagrams are defined in CCITT X.210 [8].) The format of the primitives will be defined
later in this document.

3.1 Local Management Services Definition

The services defined in this section are outside the scope of the international standards.
These services apply to both connection-mode as well as the connection-less modes of
communication. They are invoked for the initialization/de-initialization of a stream
connected to the NS provider. They are also used to manage options supported by the
NS provider and to report information on the supported parameter values.

3.1.1 Network Information Reporting Service

This service provides information on the options supported by the NS provider.

• N_INFO_REQ : This primitive requests that the NS provider return the values of
all the supported protocol parameters. This request may be invoked during any
phase.

• N_INFO_ACK : This primitive is in response to the N_INFO_REQ primitive and
returns the values of the supported protocol parameters to the NS user.

The sequence of primitives for network information management is shown in Figure 2.

Figure 2.

N_INFO_REQ

N_INFO_ACK

Sequence of Primitives: Network Information Reporting Service

3.1.2 NS User Bind Service

This service allows a network address to be associated with a stream. It allows the NS
user to negotiate the number of connect indications that can remain unacknowledged for

Revision: 2.0.0 Page 7 August 17, 1992

NPI Services Definition

that NS user (a connect indication is considered unacknowledged while it is awaiting a
corresponding connect response or disconnect request from the NS user). This service
also defines a mechanism that allows a stream (bound to a network address of the NS
user) to be reserved to handle incoming calls only. This stream is referred to as the
listener stream.

• N_BIND_REQ : This primitive requests that the NS user be bound to a particular
network address, and negotiate the number of allowable outstanding connect
indications for that address.

• N_BIND_ACK : This primitive is in response to the N_BIND_REQ primitive and
indicates to the user that the specified NS user has been bound to a network address.

The sequence of primitives for NS user bind service is shown in Figure 3.

Sequence of Primitives: NS User Bind Service

N_BIND_ACK

N_BIND_REQ

Figure 3.

3.1.3 NS User Unbind Service

This service allows the NS user to be unbound from a network address.

• N_UNBIND_REQ : This primitive requests that the NS user be unbound from the
network address that it had previously been bound to.

The sequence of primitives for NS user unbind service is shown in Figure 4.

Revision: 2.0.0 Page 8 August 17, 1992

OSI Work Group

......
....

N_OK_ACK

N_UNBIND_REQ

Figure 4. Sequence of Primitives: NS User Unbind & Receipt Acknowledgement

Services

3.1.4 Receipt Acknowledgement Service

• N_OK_ACK : This primitive indicates to the NS user that the previous NS user
originated primitive was received successfully by the NS provider.

An example showing the sequence of primitives for successful receipt acknowledgement
is depicted in Figure 4.

3.1.5 Options Management Service

This service allows the NS user to manage the QOS parameter values associated with the
NS provider.

• N_OPTMGMT_REQ : This primitive allows the NS user to select default values
for QOS parameters within the range supported by the NS provider, and to indicate
the default selection of receipt confirmation.

Figure 5 shows the sequence of primitives for network options management.

Revision: 2.0.0 Page 9 August 17, 1992

NPI Services Definition

......
....

N_OPTMGMT_REQ

Sequence of Primitives: Options Management Service

N_OK_ACK

Figure 5.

3.1.6 Error Acknowledgement Service

• N_ERROR_ACK : This primitive indicates to the NS user that a non-fatal error has
occurred in the last NS user originated request or response primitive (listed in Figure
6), on the stream.

Figure 6 shows the sequence of primitives for the error management primitive.

*
*REQ/RES Primitive

N_ERROR_ACK

Figure 6. Sequence of Primitives: Error Acknowledgement Service

N_DISCON_REQ
N_CONN_RES
N_CONN_REQ

N_OPTMGMT_REQ
N_UNBIND_REQ

N_BIND_REQ=

Revision: 2.0.0 Page 10 August 17, 1992

OSI Work Group

3.2 Connection-Mode Network Services Definition

This section describes the required network service primitives that define the CONS
interface.

The queue model for CONS is discussed in more detail in CCITT X.213 section 9.2.

The queue model represents the operation of a network connection in the abstract by a
pair of queues linking the two network addresses. There is one queue for each direction
of information flow. Each queue represents a flow control function in one direction of
transfer. The ability of a user to add objects to a queue will be determined by the
behavior of the user removing objects from that queue, and the state of the queue. The
pair of queues is considered to be available for each potential NC. Objects that are
entered or removed from the queue are either as a result of interactions at the two
network addresses, or as the result of NS provider initiatives.

• A queue is empty until a connect object has been entered and can be returned to this
state, with loss of its contents, by the NS provider.

• Objects may be entered into a queue as a result of the actions of the source NS user,
subject to control by the NS provider;

• Objects may also be entered into a queue by the NS provider.

• Objects are removed from the queue under the control of the receiving NS user.

• Objects are normally removed under the control of the NS user in the same order as
they were entered except:

— if the object is of a type defined to be able to advance ahead of the preceding
object (however, no object is defined to be able to advance ahead of another
object of the same type), or

— if the following object is defined to be destructive with respect to the preceding
object on the queue. If necessary, the last object on the queue will be deleted to
allow a destructive object to be entered - they will therefore always be added to
the queue. For example, "disconnect" objects are defined to be destructive with
respect to all other objects. "Reset" objects are defined to be destructive with
respect to all other objects except "connect", "disconnect", and other "reset"
objects.

Table 3 shows the ordering relationships among the queue model objects.

Revision: 2.0.0 Page 11 August 17, 1992

NPI Services Definition

Object X CONNECT NORMAL EXP. DATA RESET DISC
Object Y DATA NSDU ACK

CONNECT N/A - - - - DES

NORMAL DATA N/A - AA AA DES DES

EXP. NSDU N/A - - AA DES DES

DATA ACK N/A - AA - DES DES

RESET N/A - - - - DES

DISC N/A N/A N/A N/A N/A -

AA Indicates that Object X is defined to be able to advance ahead of preceding
Object Y.

DES Indicates that Object X is defined to be destructive with respect to the preceding
Object Y.

- Indicates that Object X is neither destructive with respect to Object Y, nor able to
advance ahead of Object Y.

N/A Indicates that Object X will not occur in a position succeeding Object Y in a valid
state of a queue.

TABLE 3. Ordering Relationships Between Queue Model Objects

3.2.1 Connection Establishment Phase

A pair of queues is associated with an NC between two network addresses when the NS
provider receives an N_CONNECT_REQ primitive at one of the network addresses
resulting in a connect object being entered into the queue. The queues will remain
associated with the NC until a N_DISCON_REQ primitive (resulting in a disconnect
object) is either entered or removed from a queue. Similarly, in the queue from the
called NS user, objects can be entered into the queue only after the connect object
associated with the N_CONN_RES has been entered into the queue. Alternatively, the
called NS user can enter a disconnect object into the queue instead of the connect object
to terminate the NC.

The NC establishment procedure will fail if the NS provider is unable to establish an NC,
or if the destination NS user is unable to accept the N_CONN_IND (see NC Release
primitive definition).

3.2.1.1 User Primitives for Successful Network Connection Establishment

• N_CONN_REQ : This primitive requests that the NS provider make a connection to
the specified destination.

• N_CONN_RES : This primitive requests that the NS provider accept a previous
connection indication.

3.2.1.2 Provider Primitives for Successful Network Connection Establishment

• N_CONN_IND : This primitive indicates to the NS user that a connect request has
been made by a user at the specified source address.

Revision: 2.0.0 Page 12 August 17, 1992

OSI Work Group

• N_CONN_CON : This primitive indicates to the NS user that a connect request has
been confirmed on the specified responding address.

The sequence of primitives in a successful NC establishment is defined by the time
sequence diagram as shown in Figure 7. The sequence of primitives for the NC response
token value determination is shown in Figure 8 (procedures for NC response token value
determination are discussed in sections 4.1.3 and 4.1.4.).

N_CONN_CON

Sequence of Primitives: Successful NC Establishment

..........

Figure 7.

N_CONN_RES

N_CONN_IND

N_CONN_REQ

N_OK_ACK

Figure 8.

N_BIND_ACK
(returns TOKEN_value)

(with TOKEN_REQUEST set)

N_BIND_REQ

Sequence of Primitives: NC Response Token Value Determination

Revision: 2.0.0 Page 13 August 17, 1992

NPI Services Definition

3.2.2 Data Transfer Phase

Flow control on the NC is done by management of the queue capacity, and by allowing
objects of certain types to be inserted to the queues, as shown in Table 4.

OBJECT X OCTETS OF NORMAL EXPEDITED DATA
OBJECT Y DATA/ DATA ACKNOWLEDGEMENT

Octets of Normal
Data Yes Yes No

Expedited Data No Yes No

Data
Acknowledgement No No No

Yes The addition of Object X may prevent further addition of Object Y.

No The addition of Object X may not prevent the addition of Object Y.

TABLE 4. Flow Control Relationships Between Queue Model Objects

3.2.2.1 User Primitives for Data Transfer

• N_DATA_REQ : This primitive requests that the NS provider transfer the specified
data.

• N_DATACK_REQ : This primitive requests that the NS provider acknowledge the
data that had previously been received with receipt confirmation requested.

• N_EXDATA_REQ : This primitive requests that the NS provider transfer the
specified expedited network service data unit.

3.2.2.2 Provider Primitives for Data Transfer

• N_DATA_IND : This primitive indicates to the NS user that this message contains
data.

• N_DATACK_IND : This primitive indicates to the NS user that the remote NS user
has acknowledged the data that had previously been sent with receipt confirmation
requested.

• N_EXDATA_IND : This primitive indicates to the NS user that this message unit
contains expedited data.

Figure 9 shows the sequence of primitives for successful normal data transfer. The
sequence of primitives may remain incomplete if a N_RESET or N_DISCON primitive
occurs.

Revision: 2.0.0 Page 14 August 17, 1992

OSI Work Group

Figure 9. Sequence of Primitives: Data Transfer

N_DATA_REQ

N_DATA_IND

The sequence of primitives in a successful confirmation of receipt is defined in the time
sequence diagram as shown in Figure 10.

Figure 10.

(with confirmation request set)

N_DATA_IND

(with confirmation request set)

N_DATA_REQ

Sequence of Primitives: Successful Confirmation of Receipt

N_DATACK_IND

N_DATACK_REQ

The sequence of primitives as shown above may remain incomplete if an N_RESET or
an N_DISCON primitive occurs (see Table 3). A NS user must not issue an
N_DATACK_REQ primitive if no N_DATA_IND with confirmation request set has been
received, or if all such N_DATA_IND have been previously acknowledged. Following a
reset procedure (N_RESET_REQ or N_RESET_IND), a NS user may not issue a
N_DATACK_REQ to acknowledge an outstanding N_DATA_IND received before the
reset procedure was signaled.

Note -- The withholding of confirmation of receipt by a NS user can have an effect on
the attainable throughput on the NC.

The sequence of primitives for expedited data transfer is shown in the time sequence
diagram in Figure 11. This sequence of primitives may remain incomplete if a

Revision: 2.0.0 Page 15 August 17, 1992

NPI Services Definition

N_RESET or N_DISCON primitive is issued.

Figure 11. Sequence of Primitives: Expedited Data Transfer

N_EXDATA_IND

N_EXDATA_REQ

3.2.3 Reset Operation Primitives

The reset service is used by the NS user to resynchronize the use of the NC, or by the NS
provider to report detected loss of unrecoverable data.

The reset procedure involves the following interactions:

A. a N_RESET_REQ from the NS user, followed by a N_RESET_CON from the NS
provider; or

B. a N_RESET_IND from the NS provider, followed by a N_RESET_RES from the
NS user.

The complete sequence of primitives depends upon the origin/s of the reset action. The
reset service may be:

1. invoked by one NS user, leading to interaction (A) with that NS user and
interaction (B) with the peer NS user;

2. invoked by both NS users, leading to interaction (A) with both NS users;

3. invoked by the NS provider, leading to interaction (B) with both NS users;

4. invoked by one NS user and the NS provider, leading to interaction (A) with the
originating NS user and (B) with the peer NS user.

The N_RESET_REQ acts as a synchronization mark in the flow of N_DATA,
N_EXDATA, and N_DATACK primitives transmitted by the issuing NS user; the
N_RESET_IND acts as a synchronization mark in the flow of N_DATA, N_EXDATA,
and N_DATACK primitives received by the receiving NS user. Similarly,
N_RESET_RES acts as a synchronization mark in the flow of N_DATA, N_EXDATA,
and N_DATACK primitives transmitted by the responding NS user, while the
N_RESET_CON acts as a synchronization mark in the flow of N_DATA, N_EXDATA,
Revision: 2.0.0 Page 16 August 17, 1992

OSI Work Group

and N_DATACK primitives received by the NS user that originally issued the reset. The
resynchronizing properties of the reset service are the following:

i. All N_DATA, N_EXDATA, and N_DATACK primitives issued before issuing the
N_RESET_REQ/N_RESET_RES that have not been delivered to the other NS
user before the N_RESET_IND/N_RESET_CON are issued by the NS provider,
should be discarded by the NS provider.

ii. Any N_DATA, N_EXDATA, and N_DATACK primitives issued after the
synchronization mark will not be delivered to the other NS user before the
synchronization mark is received.

3.2.3.1 User Primitives for Reset Operations

• N_RESET_REQ : This primitive requests that the NS provider reset the network
connection.

• N_RESET_RES : This primitive indicates to the NS provider that the NS user has
accepted a reset indication.

3.2.3.2 Provider Primitives for Reset Operations

• N_RESET_IND : This primitive indicates to the NS user that the network
connection has been reset.

• N_RESET_CON : This primitive indicates to the NS user that the reset request has
been confirmed.

The sequence of primitives as shown in Figures 12, 13, 14, and 15 may remain
incomplete if a N_DISCON primitive occurs.

..........

Figure 12.

N_RESET_CON

Sequence of Primitives: NS User Invoked Reset

N_RESET_RES

N_RESET_IND

N_RESET_REQ

N_OK_ACK

Revision: 2.0.0 Page 17 August 17, 1992

NPI Services Definition

Figure 13.

N_RESET_REQN_RESET_REQ

Sequence of Primitives: Simultaneous NS User Invoked Reset

N_RESET_CON N_RESET_CON

N_OK_ACK
....

N_OK_ACK
..........

Figure 14. Sequence of Primitives: NS Provider Invoked Reset

N_RESET_IND N_RESET_IND

N_RESET_RES N_RESET_RES

Revision: 2.0.0 Page 18 August 17, 1992

OSI Work Group

N_OK_ACKN_RESET_CON

N_RESET_REQ

N_RESET_RES

N_RESET_IND

Invoked Reset
Sequence of Primitives: Simultaneous NS User & NS ProviderFigure 15.

..........

3.2.4 Connection Termination Phase

The NC release procedure is initialized by the insertion of a disconnect object
(associated with a N_DISCON_REQ) into the queue. As shown in Table 3, the
disconnect procedure is destructive with respect to other objects in the queue, and
eventually results in the emptying of queues and termination of the NC connection.

The sequence of primitives depends on the origin of the release action. The sequence
may be:

1. invoked by one NS user, with a request from that NS user leading to an indication
to the other;

2. invoked by both NS users, with a request from each of the NS users;

3. invoked by the NS provider, with an indication to each of the NS users;

4. invoked independently by one NS user and the NS provider, with a request from
the originating NS user and an indication to the other.

3.2.4.1 User Primitives for Connection Termination

• N_DISCON_REQ : This primitive requests that the NS provider deny an
outstanding request for a connection or disconnect an existing connection.

3.2.4.2 Provider Primitives for Connection Termination

• N_DISCON_IND : This primitive indicates to the NS user that either a request for
connection has been denied or an existing connection has been terminated.

The sequence of primitives are shown in the time sequence diagrams in Figures 16, 17,
18, and 19.

Revision: 2.0.0 Page 19 August 17, 1992

NPI Services Definition

Figure 16.

.......... N_DISCON_IND

N_DISCON_REQ

Sequence of Primitives: NS User Invoked Release

N_OK_ACK

Figure 17.

...............
....

N_DISCON_REQ N_DISCON_REQ

Sequence of Primitives: Simultaneous NS User Invoked Release

N_OK_ACKN_OK_ACK

Revision: 2.0.0 Page 20 August 17, 1992

OSI Work Group

Figure 18. Sequence of Primitives: NS Provider Invoked Release

N_DISCON_IND N_DISCON_IND

Figure 19.

.......... N_DISCON_IND

N_DISCON_REQ

Invoked Release
Sequence of Primitives: Simultaneous NS User & NS Provider

N_OK_ACK

A NS user may reject an NC establishment attempt by issuing a N_DISCON_REQ. The
originator parameter in the N_DISCON primitives will indicate NS user invoked release.
The sequence of events is shown in Figure 20.

Revision: 2.0.0 Page 21 August 17, 1992

NPI Services Definition

N_OK_ACK

N_CONN_IND

N_DISCON_REQ

N_DISCON_IND

N_CONN_REQ

Sequence of Primitives: NS User Rejection of an NC

Establishment Attempt

.........

Figure 20.

If the NS provider is unable to establish an NC, it indicates this to the requester by an
N_DISCON_IND. The originator in this primitive indicates an NS provider invoked
release. This is shown in Figure 21.

Figure 21.

N_CONN_REQ

Sequence of Primitives: NS Provider Rejection of an NC
Establishment Attempt

N_DISCON_IND

3.3 Connectionless Network Services Definition

The CLNS allows for the transfer of the NS user data in one or both directions
simultaneously without establishing a network connection. A set of primitives are

Revision: 2.0.0 Page 22 August 17, 1992

OSI Work Group

defined that carry user data and control information between the NS user and NS
provider entities. The primitives are modeled as requests initiated by the NS user and
indications initiated by the NS provider. Indications may be initiated by the NS provider
independently from requests by the NS user.

The connectionless network service consists of one phase.

3.3.1 User Request Primitives

• N_UNITDATA_REQ : This primitive requests that the NS provider send the data
unit to the specified destination.

3.3.2 Provider Response Primitives

• N_UNITDATA_IND : This primitive indicates to the NS user that a data unit has
been received from the specified source address.

Figure 22 shows the sequence of primitives for the connectionless mode of data transfer.

Figure 22. Sequence of Primitives: Connectionless Data Transfer

N_UNITDATA_REQ

N_UNITDATA_IND

• N_UDERROR_IND : This primitive indicates to the NS user that the data unit with
the specified destination address and QOS parameters produced an error. This
primitive is specific to CLNS.

Figure 23 shows the sequence of primitives for the CLNS error management primitive.

Revision: 2.0.0 Page 23 August 17, 1992

NPI Services Definition

Figure 23.

N_UDERROR_IND

N_UNITDATA_REQ

Sequence of Primitives: CLNS Error Indication Service

Revision: 2.0.0 Page 24 August 17, 1992

OSI Work Group

4. NPI Primitives

This section describes the format and parameters of the NPI primitives (Appendix A
shows the mapping of the NPI primitives to the primitives defined in ISO 8348 and
CCITT X.213). In addition, it discusses the states the primitive is valid in, the resulting
state, and the acknowledgement that the primitive expects. (The state/event tables for
these primitives are shown in Appendix B. The precedence tables for the NPI primitives
are shown in Appendix C.) Rules for OSI conformance are described in Addendum 1 to
this document.

Tables 5, 6, and 7 provide a summary of the NS primitives and their parameters.

SERVICE PRIMITIVE PARAMETERS

NC N_CONN_REQ (Called Address, Receipt
Establishment Confirmation Selection,

Expedited Data Selection,
QOS Parameter Set, NS User-Data)

N_CONN_IND (Called Address, Calling Address,
Receipt Confirmation Selection,
Expedited Data Selection,
QOS Parameter Set, NS User-Data)

N_CONN_RES (Responding Address, Receipt
Confirmation Selection, Expedited
Data Selection, QOS Parameter Set,
NS User-Data)

N_CONN_CON (Responding Address, Receipt
Confirmation Selection, Expedited
Data Selection, QOS Parameter Set,
NS User-Data)

TABLE 5. NC Establishment Network Service Primitives

Revision: 2.0.0 Page 25 August 17, 1992

NPI Primitives

SERVICE PRIMITIVE PARAMETERS

Normal Data Transfer N_DATA_REQ (NS User-Data, Confirmation Request)

N_DATA_IND (NS User-Data, Confirmation Request)
N_UNITDATA_REQ (Called Address, NS User-Data)
N_UNITDATA_IND (Called Address, Calling Address, NS User-Data)

Receipt Confirmation N_DATACK_REQ --

N_DATACK_IND --

Expedited Data Transfer N_EXDATA_REQ (NS User-Data)

N_EXDATA_IND (NS User-Data)

Reset N_RESET_REQ (Reason)

N_RESET_IND (Originator, Reason)

N_RESET_RES --

N_RESET_CON --

Note: -- No parameters specified with primitive

TABLE 6. Data Transfer Network Service Primitives

SERVICE PRIMITIVE PARAMETERS

NC Release N_DISCON_REQ (Reason, NS User-Data, Responding Address)

N_DISCON_IND (Originator, Reason, NS User-Data,
Responding Address)

TABLE 7. NC Release Network Service Primitives

Revision: 2.0.0 Page 26 August 17, 1992

OSI Work Group

4.1 Management Primitives

These primitives apply both to CONS as well as CLNS.

4.1.1 Network Information Request

N_INFO_REQ

This primitive requests the NS provider to return the values of all supported protocol
parameters (see under N_INFO_ACK), and also the current state of the NS provider (as
defined in Appendix B). This primitive does not affect the state of the network provider
and does not appear in the state tables.

Format

The format of the message is one M_PCPROTO message block and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_INFO_REQ */

} N_info_req_t;

Parameters

PRIM_type: Indicates the primitive type.

Valid States

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Acknowledgements

This primitive requires the NS provider to generate one of the following
acknowledgements upon receipt of the primitive:

— Successful: Acknowledgement of the primitive via the N_INFO_ACK primitive.

— Non-fatal_errors: There are no errors associated with the issuance of this primitive.

Revision: 2.0.0 Page 27 August 17, 1992

NPI Primitives

4.1.2 Network Information Acknowledgement

N_INFO_ACK

This primitive indicates to the NS user any relevant protocol-dependent parameters.1 It
should be initiated in response to the N_INFO_REQ primitive described above.

Format

The format of this message is one M_PCPROTO message block and its structure is as
follows:

1. In the future, this primitive will be modified such that it will allow the NPI to accept either sub-
network point of attachment addresses or network addresses.

Revision: 2.0.0 Page 28 August 17, 1992

OSI Work Group

typedef struct {
ulong PRIM_type; /*always N_INFO_ACK */
ulong NSDU_size; /*maximum NSDU size */
ulong ENSDU_size; /*maximum ENSDU size */
ulong CDATA_size; /*connect data size */
ulong DDATA_size; /*discon data size */
ulong ADDR_size; /*address size */
ulong ADDR_length; /*address length*/
ulong ADDR_offset; /*address offset*/
ulong QOS_length; /*length of default QOS values*/
ulong QOS_offset; /*offset of default QOS values from the beginning of block*/
ulong QOS_range_length; /*length of range of QOS values*/
ulong QOS_range_offset; /*offset of range of QOS values from the beginning of block*/
ulong OPTIONS_flags; /*bit masking for options supported*/
ulong NIDU_size; /*network interface data unit size*/
long SERV_type; /*service type*/
ulong CURRENT_state; /*current state */
ulong PROVIDER_type; /* type of provider */
ulong NODU_size; /* optimal NSDU size */
ulong PROTOID_length; /*length of bound protocol ids */
ulong PROTOID_offset; /* offset of bound protocol ids */
ulong NPI_version; /* version number of NPI that’s supported */

} N_info_ack_t;

/* Flags to indicate support of NS provider options */

#define REC_CONF_OPT 0x00000001L
#define EX_DATA_OPT 0x00000002L
#define DEFAULT_RC_SEL 0x00000004L

/* Service types supported by the NS provider */

#define N_CONS1
#define N_CLNS 2

/* Valid provider types */
#define N_SNICFP 1
#define N_SUBNET 2

Parameters

The above fields have the following meaning:

Revision: 2.0.0 Page 29 August 17, 1992

NPI Primitives

PRIM_type: Indicates the primitive type.

NSDU_size: Specifies the maximum size (in octets) of a Network Service
Data Unit (NSDU) supported by the NS provider.

ENSDU_size: Specifies the maximum size (in octets) of an Expedited Network
Service Data Unit (ENSDU) supported by the NS provider.

CDATA_size: Specifies the maximum number of octets of data that may be
associated with connection establishment primitives.

DDATA_size: Specifies the maximum number of octets of data that may be
associated with the disconnect primitives.

ADDR_size: Specifies the maximum size (in decimal digits) of a network
address.

ADDR_length: Specifies the length in bytes of the network address bound on
the STREAM on which the N_INFO_REQ was issued (a
network address is bound to a STREAM via a N_BIND_REQ).

ADDR_offset: Specifies the offset of the bound network address from the
beginning of the M_PCPROTO message block (this field should
be ignored if the ADDR_length field is zero).

QOS_length: in an addendum to this document. In the connection-mode
environment, when this primitive is invoked before the NC is
established on the stream, the values returned specify the the
default values supported by the NS provider. When this
primitive is invoked after a NC has been established on the
stream, the values returned indicate the negotiated values for the
QOS parameters. In the connection-less environment, these
values represent the default or the selected QOS parameter
values.

In case a QOS parameter is not supported by the NS Provider, a
value of QOS_UNKNOWN will be returned. In the case where
no QOS parameters are supported by the NS provider, this field
will be zero.

QOS_offset: Indicates the offset of the QOS parameters from the beginning
of the M_PCPROTO message block.

QOS_range_length: Indicates the length in bytes, of the available range of QOS
parameters values supported by the NS provider. These ranges
are used by the NS user to select QOS parameter values that are
valid with the NS provider. QOS parameter values are selected,
or the default values altered via the N_OPTMGMT_REQ
primitive. In the connection-mode environment, the values for
end-to-end QOS parameters may be specified with the

Revision: 2.0.0 Page 30 August 17, 1992

OSI Work Group

N_CONN primitives for negotiation.

If the NS provider does not support a certain QOS parameter, its
value will be set to QOS_UNKNOWN. In the case where no
QOS parameters are supported by the NS provider, the length of
this field will be zero.

QOS_range_offset: Indicates the offset of the range of QOS parameter values from
the beginning of the M_PCPROTO message block.

OPTIONS_flags: Defines flags that indicate whether the options described below
are supported by the NS provider. The possible options are
receipt confirmation, expedited data and default selection for
use of receipt confirmation.

NIDU_size: This indicates the amount of user data that may be present in a
N_DATA primitive. The NIDU_size should not be larger than
the NSDU_size specification.

SERV_type: Specifies the service type supported by the NS provider. The
possible values can be N_CONS, N_CLNS, (or both as
indicated by using N_CONS|N_CLNS).

CURRENT_state: This indicates the current state of the NS provider.

PROVIDER_type: This indicates the type of NS provider. The possible values can
be N_SNICFP or N_SUBNET. The value N_SNICFP indicates
that the provider is the Subnetwork Independent Convergence
Function/Protocol sub-layer of the network layer. The value
N_SUBNET indicates that the provider is a subnetwork.

NODU_size: This specifies the optimal NSDU size (in octets) of an NSDU
given the current routing information.

PROTOID_length: This specifies the length of the protocol ids that were bound
using the N_BIND_REQ.

PROTOID_offset: This specifies the offset of the protocol ids that were bound
using the N_BIND_REQ.

NPI_version: This indicates the current version of NPI that is supported.

Flags

REC_CONF_OPT: When set, it indicates that the NS provider supports receipt
confirmation.

This flag is used only in the connection-mode environment.

EX_DATA_OPT: When set, it indicates that the NS provider supports
expedited data transfer.

Revision: 2.0.0 Page 31 August 17, 1992

NPI Primitives

This flag is used only in the connection-mode environment.

DEFAULT_RC_SEL: When set, it indicates that the default selection is for the
use of receipt confirmation for every N_DATA_REQ
primitive (This parameter is applicable only when use of
receipt confirmation is successfully negotiated via the
N_CONN primitives).

This flag is used only in the connection-mode environment.

N_CONS: When set, it indicates that the NS provider supports
connection-mode network services.

N_CLNS: When set, it indicates that the NS provider supports
connection-less network services.

Valid States

This primitive is valid in any state in response to a N_INFO_REQ primitive.

New State

The state remains the same.

Revision: 2.0.0 Page 32 August 17, 1992

OSI Work Group

4.1.3 Bind Protocol Address Request

N_BIND_REQ

This primitive requests that the NS provider bind a NS user entity to a network address
and negotiate the number of connect indications allowed to be outstanding by the NS
provider for the specified NS user entity being bound.

Format

The format of the message is one M_PROTO message block and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_BIND_REQ */
ulong ADDR_length; /*length of address */
ulong ADDR_offset; /*offset of address */
ulong CONIND_number; /*req # of conn-indications to be queued */
ulong BIND_flags; /*flags associated with N_BIND_REQ*/
ulong PROTOID_length; /*length of the protocol id*/
ulong PROTOID_offset; /* offset of protocol id */

} N_bind_req_t;

/* Flags associated with N_BIND_REQ */

#define DEFAULT_LISTENER 0x00000001L

#define TOKEN_REQUEST 0x00000002L

#define DEFAULT_DEST 0x00000004L

Parameters

PRIM_type: Is the primitive type.

ADDR_length: Is the length in bytes of the network address to be bound to the
stream.

ADDR_offset: Is the offset from the beginning of the M_PROTO block where
the network address begins.

CONIND_number: Is the requested number of connect indications allowed to be
outstanding by the NS provider for the specified protocol
address. (If the number of outstanding connect indications
equals CONIND_number, the NS provider need not discard
further incoming connect indications, but may choose to queue
them internally until the number of outstanding connect
indications drops below the CONIND_number.) Only one
stream per network address is allowed to have a
CONIND_number value greater than zero. This indicates to the

Revision: 2.0.0 Page 33 August 17, 1992

NPI Primitives

network provider that this stream is the listener stream for the
NS user. This stream will be used by the NS provider for
connect indications for that network address.

If a stream is bound as a listener stream, it will not be able to
initiate connect requests. If the NS user attempts to send an
N_CONN_REQ primitive down this stream, an
N_ERROR_ACK message will be sent to the NS user by the NS
provider with an error value fo NACCESS.

This field should be ignored in CLNS.

PROTOID_length: Is the length in bytes of the protocol ids to be bound to the
stream.

PROTOID_offset: Is the offset from the beginning of the M_PROTO block where
the protocol id begins.

Flags

DEFAULT_LISTENER: When set, this flag indicates that this stream is the "default
listener stream". This stream is used to pass connect
indications for all incoming calls that contain protocol
identifiers that are not bound to any other listener, or when
a listener stream with CONIND_number value of greater
than zero is not found. Also, the default listener will
receive all incoming call indications that contain no user
data.

Only one default listener stream is allowed per occurrence
of NPI. An attempt to bind a default listener stream when
one is already bound should result in an error (of type
NBOUND).

The DEFAULT_LISTENER flag is ignored in CLNS.

TOKEN_REQUEST: When set, this flag indicates to the NS provider that the NS
user has requested that a "token" be assigned to the stream
(to be used in the NC response message), and the token
value be returned to the NS user via the N_BIND_ACK
primitive.

The token assigned by the NS provider can then be used by
the NS user in a subsequent N_CONN_RES primitive to
identify the stream on which the NC is to be established.

The TOKEN_REQUEST flag is ignored in CLNS.

DEFAULT_DEST: When set, this flag indicates that this stream is the "default
destination stream." This stream will receive all packets
destined for the NSAP specified in the bind request. If no

Revision: 2.0.0 Page 34 August 17, 1992

OSI Work Group

NSAP is indicated in the bind request, then this stream
should receive all packets destined to an NSAP which is
bound to no other stream.

Only one default destination stream per NSAP is allowed
per occurance of NPI. An attempt to bind a default
destination stream to an NSAP when one is already bound
should result in an error of type NBOUND.

The DEFAULT_DEST flag is ignored in the CONS.

Valid States

This primitive is valid in state NS_UNBND (see Appendix B).

New State

The new state is NE_WACK_BREQ.

Acknowledgements

The NS provider will generate one of the following acknowledgements upon receipt of
the N_BIND_REQ primitive:

— Successful : Correct acknowledgement of the primitive is indicated via the
N_BIND_ACK primitive.

— Non-fatal errors : These errors will be indicated via the N_ERROR_ACK
primitive. The applicable non-fatal errors are as follows:

NBADADDR: The network address was in an incorrect format or the
address contained illegal information. It is not intended to
indicate protocol errors.

NBOUND: The NS user attempted to bind a second stream to a network
address with the CONIND_number set to a non-zero value,
or attempted to bind a second stream with the
DEFAULT_LISTENER flag value set to non-zero.

NNOADDR: The NS provider could not allocate an address.

NACCESS: The user did not have proper permissions for the use of the
requested address.

NOUTSTATE: The primitive was issued from an invalid state.

NSYSERR: A system error has occurred and the UNIX system error is
indicated in the primitive.

NNOPROTOID: Protocol identifier could not be allocated.

Revision: 2.0.0 Page 35 August 17, 1992

NPI Primitives

4.1.4 Bind Protocol Address Acknowledgement

N_BIND_ACK

This primitive indicates to the NS user that the specified network user entity has been
bound to the requested network address and that the specified number of connect
indications are allowed to be queued by the NS provider for the specified network
address.

Format

The format of the message is one M_PCPROTO message block, and its structure is the
following:

typedef struct {
ulong PRIM_type; /*always N_BIND_ACK */
ulong ADDR_length; /*address length */
ulong ADDR_offset; /*offset of address */
ulong CONIND_number; /*connection indications */
ulong TOKEN_value; /*NC response token value*/
ulong PROTOID_length; /*length of protocol id */
ulong PROTOID_offset; /*offset from beg. of block */

} N_bind_ack_t;

Parameters

PRIM_type: Indicates the primitive type.

ADDR_length: Is the length of the network address that was bound.

ADDR_offset: Is the offset from the beginning of the M_PCPROTO block
where the network address begins.

CONIND_number: Is the accepted number of connect indications allowed to be
outstanding by the NS provider for the specified network
address. If its value is zero, this stream cannot accept
N_CONN_IND messages. If its value is greater than zero, then
the NS user can accept N_CONN_IND messages up to the value
specified in this parameter before having to respond with a
N_CONN_RES or a N_DISCON_REQ message.

This field should be ignored for CLNS.

TOKEN_value: Conveys the value of the "token" assigned to this stream that can
be used by the NS user in a N_CONN_RES primitive to accept
a NC on this stream. It is a non-zero value, and is unique to all
streams bound to the NS provider.

This field should be ignored for CLNS.

PROTOID_length: Conveys the length of the protocol ids that were bound.

Revision: 2.0.0 Page 36 August 17, 1992

OSI Work Group

PROTOID_offset: Conveys the offset of the protocol ids that were bound.

The proper alignment of the address in the M_PCPROTO message block is not
guaranteed.

Bind Rules :

The following rules apply to the binding of the specified network address to the stream:

— If the ADDR_length field in the N_BIND_REQ primitive is zero, then the NS
provider is to assign a network address to the user.

— The NS provider is to bind the network address as specified in the N_BIND_REQ
primitive. If the NS provider cannot bind the specified address, it may assign another
network address to the user. It is the network user’s responsibility to check the
network address returned in the N_BIND_ACK primitive to see if it is the same as
the one requested.

The following rules apply to negotiating CONIND_number argument:

— The CONIND_number in the N_BIND_ACK primitive must be less than or equal to
the corresponding requested number as indicated in the N_BIND_REQ primitive.

— Only one stream that is bound to the indicated network address may have a
negotiated accepted number of maximum connect requests greater than zero. If a
N_BIND_REQ primitive specifies a value greater than zero, but another stream has
already bound itself to the given network address with a value greater than zero, the
NS provider should assign another protocol address to the user.

— If a stream with CONIND_number greater than zero is used to accept a connection,
the stream will be found busy during the duration of that connection and no other
streams may be bound to that network address with a CONIND_number greater than
zero. This will prevent more than one stream bound to the identical network address
from accepting connect indications.

— A stream requesting a CONIND_number of zero should always be legal. This
indicates to the NS provider that the stream is to be used to request connections only.

— A stream with a negotiated CONIND_number greater than zero may generate
connect requests or accept connect indications.

If the above rules result in an error condition, then the NS provider must issue an
N_ERROR_ACK primitive to the NS user specifying the error as defined in the
description of the N_BIND_REQ primitive.

Valid States

This primitive is in response to a N_BIND_REQ primitive and is valid in the state
NS_WACK_BREQ.

New State

Revision: 2.0.0 Page 37 August 17, 1992

NPI Primitives

The new state is NS_IDLE.

Revision: 2.0.0 Page 38 August 17, 1992

OSI Work Group

4.1.5 Unbind Protocol Address Request

N_UNBIND_REQ

This primitive requests that the NS provider unbind the NS user entity that was
previously bound to the network address.

Format

The format of the message is one M_PROTO block, and its structure is as follows:

typedef struct {
ulong PRIM_type; /*always N_UNBIND_REQ */

} N_unbind_req_t;

Parameters

PRIM_type: Indicates the primitive type.

Valid States

This primitive is valid in the NS_IDLE state.

New State

The new state is NS_WACK_UREQ.

Acknowledgements

This primitive requires the NS provider to generate the following acknowledgements
upon receipt of the primitive:

— Successful : Correct acknowledgement of the primitive is indicated via the
N_OK_ACK primitive.

— Unsuccessful (Non-fatal errors) : These errors will be indicated via the
N_ERROR_ACK primitive. The applicable non-fatal errors are as follows:

NOUTSTATE: The primitive was issued from an invalid state.

NSYSERR: A system error has occurred and the UNIX system error is
indicated in the primitive.

Revision: 2.0.0 Page 39 August 17, 1992

NPI Primitives

4.1.6 Network Options Management Request

N_OPTMGMT_REQ

This primitive allows the NS user to manage the QOS parameter values associated with
the stream.

Format

The format of the message is one M_PROTO message block, and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_OPTMGMT_REQ*/
ulong QOS_length; /*length of QOS values */
ulong QOS_offset; /*offset of QOS values */
ulong OPTMGMT_flags; /*default receipt conf. selection*/

} N_optmgmt_req_t;

PRIM_type: Indicates the primitive type.

QOS_length: Indicates the length of the default values of the QOS parameters
as selected by the NS user. In the connection-mode environment
these values will be used in subsequent N_CONN_REQ
primitives on the stream that do not specify values for these
QOS parameters. In the connection-less environment, these
values represent the selected QOS values that would apply to
each unitdata transmission. If the NS user cannot determine the
value of a QOS parameter, its value should be set to
QOS_UNKNOWN. If the NS user does not specify any QOS
parameter values, the length of this field should be set to zero.

QOS_offset: Indicates the offset of the QOS parameters from the beginning
of the M_PROTO message block.

Flags

DEFAULT_RC_SEL: When set, it indicates to the NS provider that the NS user’s
default selection is for the use of receipt confirmation with
every N_DATA_REQ message (applicable only when its
use is successfully negotiated via the N_CONN primitives).
This default indication is used only when the M_PROTO
message block is not present in the N_DATA_REQ
primitive.

This flag should be ignored in the connection-less
environment.

Valid States

Revision: 2.0.0 Page 40 August 17, 1992

OSI Work Group

This primitive is valid in the NS_IDLE state.

New State

The new state is NS_WACK_OPTREQ.

Acknowledgements

The N_OPTMGMT_REQ primitive requires the NS provider to generate one of the
following acknowledgements upon receipt of the primitive:

— Successful : Acknowledgement is via the N_OK_ACK primitive. At successful
completion, the resulting state is NS_IDLE.

— Non-fatal errors : These errors are indicated in the N_ERROR_ACK primitive.
The resulting state remains unchanged. The applicable non-fatal errors are defined as
follows:

NOUTSTATE: The primitive was issued from an invalid state.

NBADQOSPARAM: The QOS parameter values specified are outside the range
supported by the NS provider.

NBADQOSTYPE: The QOS structure type is not supported by the NS provider.

NSYSERR: A system error has occurred and the UNIX system error is
indicated in the primitive.

Revision: 2.0.0 Page 41 August 17, 1992

NPI Primitives

4.1.7 Error Acknowledgement

N_ERROR_ACK

This primitive indicates to the NS user that a non-fatal error has occurred in the last
network-user-originated primitive. This may only be initiated as an acknowledgement for
those primitives that require one. It also indicates to the user that no action was taken on
the primitive that caused the error.

Format

The format of the message is one M_PCPROTO message block, and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_ERROR_ACK */
ulong ERROR_prim; /*primitive in error */
ulong NPI_error; /*NPI error code */
ulong UNIX_error; /*UNIX system error code */

} N_error_ack_t;

Parameters

PRIM_type: Identifies the primitive type

ERROR_prim: Identifies the primitive type that caused the error.

NPI_error: Contains the Network Provider Interface error code.

UNIX_error: Contains the UNIX system error code. This may only be non-
zero if the NPI_error is equal to NSYSERR.

Valid Error Codes

The following error codes are allowed to be returned:

NBADADDR: The network address as specified in the primitive was in an
incorrect format, or the address contained illegal information.

NBADOPT: The options values as specified in the primitive were in an
incorrect format, or they contained illegal information.

NBADQOSPARAM: The QOS values specified are outside the range supported by the
NS provider. illegal.

NBADQOSTYPE: The QOS structure type is not supported by the NS provider.

NBADTOKEN: Token used is not associated with an open stream.

NNOADDR: The NS provider could not allocate an address.

NACCESS: The user did not have proper permissions.

NOUTSTATE: The primitive was issued from an invalid state.

Revision: 2.0.0 Page 42 August 17, 1992

OSI Work Group

NBADSEQ: The sequence number specified in the primitive was incorrect or
illegal.

NBADFLAG: The flags specified in the primitive were incorrect or illegal.

NBADDATA: The amount of user data specified was outside the range
supported by the NS provider.

NSYSERR: A system error has occurred and the UNIX system error is
indicated in the primitive.

NNOTSUPPORT: Specified primitive type is not known to the NS provider.

Valid States

This primitive is valid in all states that have a pending acknowledgement or confirmation.

New State

The new state is the same as the one from which the acknowledged request or response
was issued.

Revision: 2.0.0 Page 43 August 17, 1992

NPI Primitives

4.1.8 Successful Receipt Acknowledgement

N_OK_ACK

This primitive indicates to the NS user that the previous network- user-originated
primitive was received successfully by the network provider. It does not indicate to the
NS user any network protocol action taken due to the issuance of the last primitive. The
N_OK_ACK primitive may only be initiated as an acknowledgement for those user-
originated primitives that have no other means of confirmation.

Format

The format of the message is one M_PCPROTO message block, and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_OK_ACK */
ulong CORRECT_prim; /*primitive being acknowledged */

} N_ok_ack_t;

Parameters

— PRIM_type : Identifies the primitive.

— CORRECT_prim: Identifies the successfully received primitive type.

Valid States

This primitive is issued in states NS_WACK_UREQ, NS_WACK_OPTREQ,
NS_WACK_RRES, NS_WACK_CRES, NS_WACK_DREQ6, NS_WACK_DREQ7,
NS_WACK_DREQ9, NS_WACK_DREQ10, and NS_WACK_DREQ11, in response to
N_UNBIND_REQ, N_RESET_RES, N_CONN_RES, and N_DISCON_REQ primitives.

New State

The resulting state depends on the current state (see Appendix B, Tables B-7 and B-8.)

Revision: 2.0.0 Page 44 August 17, 1992

OSI Work Group

4.2 CONS: Primitive Format and Rules

This section describes the format of the CONS primitives and the rules associated with
these primitives. The default values of the QOS parameters associated with a NC may be
selected via the N_OPTMGMT_REQ primitive.

4.2.1 Connection Establishment Phase

The following network service primitives pertain to the establishment of an NC, provided
the NS users exist, and are known to the NS provider.

4.2.1.1 Network Connection Request

N_CONN_REQ

This primitive requests that the NS provider make a network connection to the specified
destination.

Format

The format of the message is one M_PROTO message block followed by one or more
M_DATA blocks for the NS user data transfer. The specification of the NS user data is
optional. The NS user can send any integral number of octets of data within the range
supported by the NS provider (see N_INFO_ACK). If the user does not specify QOS
parameter values, the default values (specified via N_OPTMGMT_REQ) are used by the
NS provider.

The structure of the M_PROTO message block is as follows:

typedef struct {
ulong PRIM_type; /*always N_CONN_REQ */
ulong DEST_length; /*destination address length*/
ulong DEST_offset; /*destination address offset*/
ulong CONN_flags; /*bit masking for options flags */
ulong QOS_length; /*QOS parameters’ length*/
ulong QOS_offset; /*QOS parameters’ offset*/

} N_conn_req_t;

/* Flags to indicate if options are requested */

#define REC_CONF_OPT 0x00000001L
#define EX_DATA_OPT 0x00000002L

Parameters

PRIM_type: Indicates the primitive type.

DEST_length: Indicates the length of the destination address parameter that
conveys an address identifying the NS user to which the NC is
to be established. This field will accommodate variable length
addresses within a range supported by the NS provider.

Revision: 2.0.0 Page 45 August 17, 1992

NPI Primitives

DEST_offset: Is the offset of the destination address from the beginning of the
M_PROTO message block.

QOS_length: Indicates the length of the QOS parameters values that apply to
the NC being requested. If the NS user cannot determine the
value of a QOS parameter, its value should be set to
QOS_UNKNOWN. If the NS user does not specify any QOS
parameter values, the length of this field should be set to zero.

QOS_offset: Indicates the offset of the QOS parameters from the beginning
of the M_PROTO message block.

Flags

REC_CONF_OPT: The receipt confirmation selection parameter
indicates the use/availability of the receipt
confirmation service on the NC. The receipt
confirmation service must be supported by the NS
provider to be used on the NC.

EX_DATA_OPT: Indicates the use of the expedited data transfer
service on the NC. The expedited data transfer
service must be provided by the NS provider for it
to be used on the NC.

Valid States

This primitive is valid in state NS_IDLE.

New State

The new state is NS_WCON_CREQ.

Acknowledgements

The following acknowledgements are valid for this primitive:

— Successful NC Establishment: This is indicated via the N_CONN_CON primitive.
This results in the data transfer state.

— Unsuccessful NC Establishment: This is indicated via the N_DISCON_IND
primitive. For example, a connection may be rejected because either the called NS
user cannot be reached, or the NS provider and/or the called NS user did not agree
with the specified QOS. This results in the idle state.

— Non-fatal errors: These are indicated via the N_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

NACCESS: The user did not have proper permissions for the use of the
requested address or options.

NBADQOSPARAM: The QOS parameter values specified are outside the range
supported by the NS provider.

Revision: 2.0.0 Page 46 August 17, 1992

OSI Work Group

NBADQOSTYPE: The QOS structure type is not supported by the NS provider.

NBADADDR: The network address was in an incorrect format or contained
illegal information. It is not intended to indicate NC errors,
such as an unreachable destination. These errors types are
indicated via the N_DISCON_IND primitive.

NBADOPT: The options were in an incorrect format, or they contained
illegal information.

NOUTSTATE: The primitive was issued from an invalid state.

NBADDATA: The amount of user data specified was outside the range
supported by the NS provider.

NSYSERR: A system error has occurred and the UNIX system error is
indicated in the primitive.

Revision: 2.0.0 Page 47 August 17, 1992

NPI Primitives

4.2.1.2 Network Connection Indication

N_CONN_IND

This primitive indicates to the destination NS user that a network connect request has
been made by the user at the specified source address.

Format

The format of this message is one M_PROTO message block followed by one or more
M_DATA blocks for NS user data. The specification of NS user data is optional. The NS
user can send any integral number of octets of data within the range supported by the NS
provider. The NS user data will only be present if the corresponding N_CONN_REQ had
NS user data parameter specified, and their data will be identical.

The structure of the M_PROTO message block is as follows:

typedef struct {
ulong PRIM_type; /*always N_CONN_IND */
ulong DEST_length; /*destination address length*/
ulong DEST_offset; /*destination address offset*/
ulong SRC_length; /*source address length*/
ulong SRC_offset; /*source address offset*/
ulong SEQ_number; /*sequence number*/
ulong CONN_flags; /*bit masking for options flags*/
ulong QOS_length; /*QOS parameters’ length*/
ulong QOS_offset; /*QOS parameters’ offset*/

} N_conn_ind_t;

Parameters

PRIM_type: Indicates the primitive type.

DEST_length: Indicates the length of the destination address parameter that
conveys an address identifying the NS user to which the NC is
to be established.

DEST_offset: Is the offset of the destination address from the beginning of the
M_PROTO message block.

SRC_length: The source address parameter conveys the network address of
the NS user from which the NC has been requested. The
semantics of the value in the N_CONN_IND primitive is
identical to the value associated with the stream on which the
N_CONN_REQ was issued.

SRC_offset: Is the offset of the destination address from the beginning of the
M_PROTO message block.

SEQ_number: Identifies the sequence number that can be used by the NS user
to associate this message with the N_CONN_RES or

Revision: 2.0.0 Page 48 August 17, 1992

OSI Work Group

N_DISCON_REQ primitive that is to follow. This value must be
unique among the outstanding N_CONN_IND messages.

The use of this field allows the NS user to issue the
N_CONN_RES or the N_DISCON_REQ messages in any
order.

QOS_length: Indicates the length of the QOS parameters values that are
negotiated during NC establishment. If the destination NS user
does not agree to the range of QOS values specified by the
source NS user in the N_CONN_REQ primitive, it will reject
the NC establishment by invoking a N_DISCON_REQ primitive
(the originator parameter in the N_DISCON_REQ primitive
will indicate NS user initiated release). If the NS user does not
support or cannot determine the value of a QOS parameter, its
value will be set to QOS_UNKNOWN. If the NS user does not
specify any QOS parameter values, the length of this field
should be set to zero.

QOS_offset: Indicates the offset of the QOS parameters from the beginning
of the M_PROTO message block.

Flags

REC_CONF_OPT: The receipt confirmation selection parameter
indicates the use/availability of the receipt
confirmation service on the NC. The receipt
confirmation service must be provided in the
network service to be used on the NC.

EX_DATA_OPT: The expedited data selection parameter indicates
the use/ availability of the expedited data transfer
service on the NC. The expedited data transfer
service must be provided by the NS provider for it
to be used on the NC.

Valid States

This primitive is valid in the states NS_IDLE and NS_WRES_CIND.

New State

In both cases the resulting state is NS_WRES_CIND (the number of connect indications
waiting for user response is incremented by one).

Revision: 2.0.0 Page 49 August 17, 1992

NPI Primitives

4.2.1.3 Network Connection Response

N_CONN_RES

This primitive allows the destination NS user to request that the network provider accept
a previous connect request.

Format

The format of this message is one M_PROTO message block followed by one or more
M_DATA blocks (for NS user data). The specification of the NS user data is optional.
The NS user can send any integral number of octets of data within the range supported by
the NS provider.

The structure of the M_PROTO block is as follows:

typedef struct {
ulong PRIM_type; /*always N_CONN_RES */
ulong TOKEN_value; /*NC response token value*/
ulong RES_length; /*responding address length*/
ulong RES_offset; /*responding address offset*/
ulong SEQ_number; /*sequence number*/
ulong CONN_flags; /*bit masking for options flags*/
ulong QOS_length; /*QOS parameters’ length*/
ulong QOS_offset; /*QOS parameters’ offset*/

} N_conn_res_t;

Parameters

PRIM_type: Indicates the primitive type.

TOKEN_value: Is used to identify the stream that the NS user wants to establish
the NC on. (Its value is determined by the NS user by issuing a
N_BIND_REQ primitive with the TOKEN_REQUEST flag set.
The token value is returned in the N_BIND_ACK). The value
of this field should be non-zero when the NS user wants to
establish the NC on a stream other than the stream on which the
N_CONN_IND arrived. If the NS user wants to establish a NC
on the same stream that the N_CONN_IND arrived on, then the
value of this field should be zero.

RES_length: Indicates the length of the responding address parameter that
conveys the network address of the NS user to which the NC has
been established. Under certain circumstances, such as call
redirection, generic addressing, etc., the value of this parameter
may be different from the destination address parameter
specification in the corresponding N_CONN_REQ.

RES_offset: Indicates the offset of the responding address from the beginning
of the M_PROTO message block.

Revision: 2.0.0 Page 50 August 17, 1992

OSI Work Group

SEQ_number: Indicates the sequence number of the N_CONN_RES message.
It is used by the NS provider to associate the N_CONN_RES
message with an outstanding N_CONN_IND message. An
invalid sequence number should result in error with the message
type NBADSEQ.

QOS_length: Indicates the length of the QOS parameters values that are
negotiated during NC establishment. If the NS user does not
agree to the QOS values, it will reject the NC establishment by
invoking a N_DISCON_REQ primitive (the originator
parameter in the N_DISCON_REQ primitive will indicate NS
user invoked release). If the NS user cannot determine the
value of a QOS parameter, its value should be set to
QOS_UNKNOWN. If the NS user does not specify any QOS
parameter values, the length of this field should be set to zero.

QOS_offset: Indicates the offset of the QOS parameters from the beginning
of the M_PROTO message block.

Flags

REC_CONF_OPT: The receipt confirmation selection parameter
indicates the use/availability of the receipt
confirmation service on the NC. The receipt
confirmation service must be provided in the
network service to be used on the NC.

EX_DATA_OPT: The expedited data selection parameter indicates
the use/ availability of the expedited data transfer
service on the NC. The expedited data transfer
service must be provided by the NS provider for it
to be used on the NC.

Valid States

This primitive is valid in state NS_WRES_CIND.

New State

The new state is NS_WACK_CRES.

Acknowledgements

The NS provider should generate one of the following acknowledgements upon receipt
of this primitive:

— Successful: Successful completion is indicated via the N_OK_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the N_ERROR_ACK
primitive. The applicable non-fatal errors are defined as follows:

Revision: 2.0.0 Page 51 August 17, 1992

NPI Primitives

NBADOPT: The options were in an incorrect format, or they contained
illegal information.

NBADQOSPARAM: The QOS parameter values specified are outside the range
supported by the NS provider.

NBADQOSTYPE: The QOS structure type is not supported by the NS provider.

NBADTOKEN: The token specified is not associated with an open stream.

NACCESS: The user did not have proper permissions for the use of the
options of the options or response id.

NOUTSTATE: The primitive was issued from an invalid state.

NBADDATA: The amount of user data specified was outside the range
supported by the NS provider.

NBADSEQ: The sequence number specified in the primitive was
incorrect or illegal.

NSYSERR: A system error has occurred and the UNIX system error is
indicated in the primitive.

Revision: 2.0.0 Page 52 August 17, 1992

OSI Work Group

4.2.1.4 Network Connection Confirm

N_CONN_CON

This primitive indicates to the source NS user that the network connect request has been
confirmed on the specified responding address.

Format

The format of this message is one M_PROTO message block followed by one or more
M_DATA blocks (for NS user data). The specification of the NS user data is optional.
The NS user can send any integral number of octets of NS user data within a range
supported by the NS provider (see N_INFO_ACK). The NS user data will only be
present if the corresponding N_CONN_RES had NS user data specified with it, and their
data will always be identical.

The structure of the M_PROTO block is as follows:

typedef struct {
ulong PRIM_type; /*always N_CONN_CON*/
ulong RES_length; /*responding address length*/
ulong RES_offset; /*responding address offset*/
ulong CONN_flags; /*bit masking for options flags*/
ulong QOS_length; /*QOS parameters’ length*/
ulong QOS_offset; /*QOS parameters’ offset*/

} N_conn_con_t;

Parameters

PRIM_type: Indicates the primitive type.

RES_length: Indicates the length of the responding address parameter that
conveys the network address of the NS user entity to which the
NC has been established. The semantics of the values in the
N_CONN_CON is identical to the values in N_CONN_RES.
Under certain circumstances, such as call redirection, generic
addressing, etc., the value of this parameter may be different
from the destination address parameter specification in the
corresponding N_CONN_REQ.

RES_offset: Indicates the offset of the responding address from the beginning
of the M_PROTO message block.

QOS_length: Indicates the length of the QOS parameters values selected by
the responding NS user. If the NS provider does not support or
cannot determine the selected value of a QOS parameter, its
value will be set to QOS_UNKNOWN. If the NS provider does
not specify any QOS parameter values, the length of this field
should be set to zero.

Revision: 2.0.0 Page 53 August 17, 1992

NPI Primitives

QOS_offset: Indicates the offset of the QOS parameters from the beginning
of the M_PROTO message block.

Flags

REC_CONF_OPT: The receipt confirmation selection parameter
indicates the use/availability of the receipt
confirmation service on the NC. The receipt
confirmation service must be provided in the
network service to be used on the NC.

EX_DATA_OPT: The expedited data selection parameter indicates
the use/ availability of the expedited data transfer
service on the NC. The expedited data transfer
service must be provided by the NS provider for it
to be used on the NC.

Valid States

This primitive is valid in state NS_WCON_CREQ.

New State

The new state is NS_DATA_XFER.

Revision: 2.0.0 Page 54 August 17, 1992

OSI Work Group

4.2.2 Normal Data Transfer Phase

The data transfer service primitives provide for an exchange of NS user data known as
NSDUs, in either direction or in both directions simultaneously on a NC. The network
service preserves both the sequence and the boundaries of the NSDUs (when the NS
provider supports NSDUs).

4.2.2.1 Normal Data Transfer Request

N_DATA_REQ

This user-originated primitive indicates to the NS provider that this message contains NS
user data. It allows the transfer of NS_user_data between NS users, without modification
by the NS provider.

The NS user must send any integral number of octets of data greater than zero. In a case
where the size of the NSDU exceeds the NIDU (as specified by the size of the
NIDU_size parameter of the N_INFO_ACK primitive), the NSDU may be broken up
into more than one NIDU. When an NSDU is broken up into more than one NIDU, the
N_MORE_DATA_FLAG will be set on each NIDU except the last one. The RC_flag
may only be set on the last NIDU.

Format

The format of the message is one or more M_DATA blocks. Use of a M_PROTO
message block is optional. The M_PROTO message block is used for two reasons:

i. to indicate that the NSDU is broken into more than one NIDUs, and that the data
carried in the following M_DATA message block constitutes one NIDU;

ii. to indicate whether receipt confirmation is desired for the NSDU.

Guidelines for use of M_PROTO:

The following guidelines must be followed with respect to the use of the M_PROTO
message block:

1. The M_PROTO message block need not be present when the NSDU size is less
than or equal to the NIDU size and one of the following is true:

— receipt confirmation has been negotiated for non-use (via the N_CONN
primitives); or

— receipt confirmation has been successfully negotiated for use or non-use and
the default selection as specified via the N_OPTMGMT primitive is to be used.

2. The M_PROTO message block must be present when:

— the NSDU size is greater than the NIDU size;

— receipt confirmation has been successfully negotiated for use and the default
selection as specified via N_OPTMGMT_REQ primitive needs to be
overridden.

Revision: 2.0.0 Page 55 August 17, 1992

NPI Primitives

The structure of the M_PROTO message block, if present, is as follows:

typedef struct {
ulong PRIM_type; /*always N_DATA_REQ*/
ulong DATA_xfer_flags; /*bit masking for data xfer flags*/

} N_data_req_t;

/* Data Transfer Flags */

#define N_MORE_DATA_FLAG 0x00000001L
#define N_RC_FLAG 0x00000002L

Parameters

PRIM_type: Indicates the primitive type.

Flags

N_MORE_DATA_FLAG: When set, the MORE_DATA_FLAG indicates that
the next N_DATA_REQ message (NIDU) is also
part of this NSDU.

N_RC_FLAG: By setting this flag on the N_DATA_REQ, the
originating NS user can request confirmation of
receipt of the N_DATA primitive. The receipt is
provided by the N_DATACK primitives. The
parameter may only be present if use of Receipt
Confirmation was agreed by both NS users and the
NS provider during NC establishment.

Valid States

This primitive is valid in the NS_DATA_XFER state.

New State

The resulting state remains the same (NS_DATA_XFER).

Acknowledgements

This primitive does not require any acknowledgements, although it may generate a
fatal error. This is indicated to the NS user via a M_ERROR STREAMS message
type (specifying an errno value of EPROTO) which results in the failure of all
system calls on that stream. The applicable errors are defined as follows:

EPROTO: This indicates one of the following unrecoverable
protocol conditions:

— The network interface was found to be in an incorrect
state.

Revision: 2.0.0 Page 56 August 17, 1992

OSI Work Group

— The amount of NS user data associated with the
primitive is outside the range supported by the NS
provider (as specified by the NIDU_size parameter of
N_INFO_ACK primitive).

— The options requested are either not supported by the
NS provider or its use not specified with the
N_CONN_REQ primitive.

— The M_PROTO message block was not followed by
one or more M_DATA message blocks.

— The amount of NS user data associated with the
current NSDU is outside the range supported by the
NS provider (as specified by the NSDU_size
parameter if the N_INFO_ACK primitive.)

— The N_RC_FLAG and N_MORE_DATA_FLAG were
both set in the primitive, or the flags field contained an
unknown value.

NOTE: If the interface is in the NS_IDLE or NS_WRES_RIND states when the
provider receives the N_DATA_REQ primitive, then the NS provider should
discard the request without generating a fatal error.

Revision: 2.0.0 Page 57 August 17, 1992

NPI Primitives

4.2.2.2 Normal Data Transfer Indication

N_DATA_IND

This network-provider-originated primitive indicates to the NS user that this message
contains NS user data. As in the N_DATA_REQ primitive, the NSDU can be segmented
into more than one NIDUs. The NIDUs are associated with the NSDU by using the
MORE_DATA_FLAG. The RC_FLAG is allowed to be set only on the last NIDU.

Format

The format of the message is one or more M_DATA message blocks. The value of the NS
user data field is always the same as that supplied in the corresponding N_DATA_REQ
primitive at the peer service access point.

Use of M_PROTO message blocks is optional (see guidelines under N_DATA_REQ).

The structure of the M_PROTO message block, if present, is as follows:

typedef struct {
ulong PRIM_type; /*always N_DATA_IND*/
ulong DATA_xfer_flags; /*bit masking for data xfer flags*/

} N_data_ind_t;

/* Data Transfer Flags */

#define N_MORE_DATA_FLAG 0x00000001L
#define N_RC_FLAG 0x00000002L

Parameters

PRIM_type: Indicates the primitive type.

Flags

MORE_DATA_FLAG: When set, indicates that the next N_DATA_IND message
(NIDU) is part of this NSDU.

RC_FLAG: The value of the parameter may indicate either that
confirmation is requested or that it is not requested. The
parameter is allowed to be set only if use of Receipt
Confirmation was agreed to between both the NS users
and the NS provider during NC establishment. The value
of this parameter is always identical to that supplied in the
corresponding N_DATA_REQ primitive.

Valid States

This primitive is valid in state NS_DATA_XFER.

Revision: 2.0.0 Page 58 August 17, 1992

OSI Work Group

New State

The resulting state remains the same (NS_DATA_XFER).

Revision: 2.0.0 Page 59 August 17, 1992

NPI Primitives

4.2.3 Receipt Confirmation Service Primitives

The receipt confirmation service is requested by the confirmation request parameter on
the N_DATA_REQ primitive. For each and every NSDU with the confirmation request
parameter set, the receiving NS user should return an N_DATACK_REQ primitive.
Such acknowledgements should be issued in the same sequence as the corresponding
N_DATA_IND primitives are received, and are to be conveyed by the NS provider in
such a way so as to preserve them distinct from any previous or subsequent
acknowledgements. The NS user may thus correlate them with the original requests by
counting. When an NSDU has been segmented into more than one NIDUs, only the last
NIDU is allowed to request receipt confirmation.

N_DATACK_REQ primitives will not be subject to the flow control affecting
N_DATA_REQ primitives at the same NC endpoint. N_DATACK_IND primitives will
not be subject to the flow control affecting N_DATA_IND primitives at the same NC
endpoint.

The use of the receipt confirmation service must be agreed to by the two NS users of the
NC and the NS provider during the NC establishment by using the RC_selection
parameter on the N_CONN primitives.

4.2.3.1 Data Acknowledgement Request

N_DATACK_REQ

This is a user-originated primitive that requests that the network provider acknowledge
the N_DATA_IND that had previously been received with the receipt confirmation
parameter set.

Format

The format of the message is one M_PROTO message block and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_DATACK_REQ */

} N_datack_req_t;

Parameters

PRIM_type: Indicates the primitive type.

Valid States

This primitive is valid in state NS_DATA_XFER.

New State

The resulting state remains the same (NS_DATA_XFER).

Acknowledgements

Revision: 2.0.0 Page 60 August 17, 1992

OSI Work Group

This primitive does not require any acknowledgements, although it may generate a fatal
(unrecoverable) error. This is indicated via an M_ERROR STREAMS message type
(issued to the NS user specifying the errno value of EPROTO), which results in the
failure of all system calls on that stream. The allowable errors are as follows:

EPROTO: This indicates the following unrecoverable protocol condition:

— The network interface was found to be in an incorrect state.

NOTE: If the interface is in the NS_IDLE state when the provider receives the
N_DATACK_REQ primitive, then the NS provider should discard the request
without generating a fatal error.

If the NS provider had no knowledge of a previous N_DATA_IND with the
receipt confirmation flag set, then the NS provider should just ignore the request
without generating a fatal error.

Revision: 2.0.0 Page 61 August 17, 1992

NPI Primitives

4.2.3.2 Data Acknowledgement Indication

N_DATACK_IND

This is a NS provider originated primitive that indicates to the network service user that
the remote network service user has acknowledged the data that had previously been sent
with the receipt confirmation set.

Format

The format of the message is one M_PROTO message block and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_DATACK_IND */

} N_datack_ind_t;

Parameters

PRIM_type: Indicates the primitive type.

Valid States

This primitive is valid in state NS_DATA_XFER.

New State

The resulting state remains the same (NS_DATA_XFER).

Revision: 2.0.0 Page 62 August 17, 1992

OSI Work Group

4.2.4 Expedited Data Transfer Service

The expedited data transfer service provides a further means of information exchange on
an NC in both directions simultaneously. The transfer of expedited network service data
unit (ENSDU) is subject to separate flow control from that applying to NS user data
(However, a separate STREAMS message type for expedited data is not available with
UNIX System V Release 3.1. Until a new STREAMS message type is provided,
expedited data will be implemented via queue manipulation). The NS provider should
guarantee that an expedited-NSDU will not be delivered after any subsequently issued
NSDU or expedited-NSDU on that NC. The relationship between normal and expedited
data is shown in Table 2. Expedited data can still be delivered when the receiving NS
user is not accepting normal data (however this cannot be guaranteed if there are
blockages occurring in the lower layers).

The expedited data transfer service is a NS provider option, and its use must be agreed by
the two NS users of the NC and the NS provider during NC establishment by using the
EX_DATA_OPT parameter on the N_CONN primitives.

4.2.4.1 Expedited Data Transfer Request

N_EXDATA_REQ

This is a NS user originated primitive and is used to indicate to the network provider that
the message block contains an ENSDU.

Format

The format of the message is one M_PROTO message block, followed by one or more
M_DATA blocks. The NS user must send an integral number of octets of data within the
range supported by the NS provider (see N_INFO_ACK). The structure of the
M_PROTO message block is as follows:

typedef struct {
ulong PRIM_type; /*always N_EXDATA_REQ */

} N_exdata_req_t;

Parameters

PRIM_type: Indicates the primitive type.

Valid States

This primitive is valid in state NS_DATA_XFER.

New State

The resulting state remains the same (NS_DATA_XFER).

Acknowledgements

This primitive does not require any acknowledgements, although it may generate a fatal
(unrecoverable) error. This is indicated via an M_ERROR STREAMS message type
(issued to the NS user with the errno value of EPROTO), which results in the failure of
Revision: 2.0.0 Page 63 August 17, 1992

NPI Primitives

all system calls on that stream. The applicable errors are as follows:

EPROTO: This indicates one of the following unrecoverable protocol
conditions:

— The network interface was found to be in an incorrect state.

— The amount of NS user data associated with the primitive
defines an expedited network service data unit of a size that
is outside the range supported by the NS provider.

— Expedited data transfer is either not supported by the NS
provider or not requested with the N_CONN_REQ
primitive.

NOTE: If the interface is in the NS_IDLE or NS_WRES_RIND states when the provider
receives the N_EXDATA_REQ primitive, then the NS provider should discard the
request without generating a fatal error.

Revision: 2.0.0 Page 64 August 17, 1992

OSI Work Group

4.2.4.2 Expedited Data Transfer Indication

N_EXDATA_IND

This is a NS provider originated primitive and is used to indicate to the NS user that this
message contains an ENSDU.

Format

The format of the message is one M_PROTO message block, followed by one or more
M_DATA blocks. The value of the data in the M_DATA blocks is identical to that
supplied with the corresponding N_EXDATA_REQ primitive. The structure of the
M_PROTO message block is as follows:

typedef struct {
ulong PRIM_type; /*always N_EXDATA_IND */

} N_exdata_ind_t;

Parameters

PRIM_type: Indicates the primitive type.

Valid States

This primitive is valid in state NS_DATA_XFER.

New State

The resulting state remains the same (NS_DATA_XFER).

Revision: 2.0.0 Page 65 August 17, 1992

NPI Primitives

4.2.5 Reset Service

The reset service can be used by the NS user to resynchronize the use of the NC; or by
the NS provider to report detected loss of data unrecoverable within the network service.
All loss of data which does not involve loss of the NC is reported in this way. Invocation
of the reset service will unblock the flow of NSDUs and ENSDUs in case of congestion
of the NC; it will cause the NS provider to discard NSDUs, ENSDUs, or confirmations of
receipt associated with the NC (See Table 1), and to notify any NS user or users that did
not invoke reset that a reset has occurred. The service will be completed in finite time,
irrespective of the acceptance of the NSDUs, ENSDUs, and confirmations of receipt by
the NS users.

4.2.5.1 Reset Request

N_RESET_REQ

This user-originated primitive requests that the NS provider reset the network
connection.

Format

The format of the message is one M_PROTO message block, and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_RESET_REQ */
ulong RESET_reason; /*reason for reset */

} N_reset_req_t;

Parameters

PRIM_type: Indicates the primitive type.

RESET_reason: Gives information indicating the cause of the reset.

Valid States

This primitive is valid in the NS_DATA_XFER state.

New State

The resulting state is NS_WACK_RREQ.

Acknowledgements

Successful: This primitive does not require an immediate acknowledgement,
although when the resynchronization completes successfully, a
N_RESET_CON primitive is issued to the NS user that issued
the N_RESET_REQ.

Unsuccessful: A non-fatal error is acknowledged via the N_ERROR_ACK
primitive. In this case the resulting state remains unchanged.

Revision: 2.0.0 Page 66 August 17, 1992

OSI Work Group

The following non-fatal error codes are valid:

NOUTSTATE: The primitive was issued from an invalid state.

NSYSERR: A system error has occurred and the UNIX system error is
indicated with the N_ERROR_ACK primitive.

NOTE: If the interface is in the NS_IDLE state when the provider receives the
N_RESET_REQ primitive, then the NS provider should discard the message without
generating an error.

Revision: 2.0.0 Page 67 August 17, 1992

NPI Primitives

4.2.5.2 Reset Indication

N_RESET_IND

This network-provider-originated primitive indicates to the NS user that the network
connection has been reset.

Format

The format of the message is one M_PROTO message block, and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_RESET_IND */
ulong RESET_orig; /*reset originator */
ulong RESET_reason; /*reason for reset */

} N_reset_ind_t;

Parameters

PRIM_type: Indicates the primitive type.

RESET_orig: This parameter indicates the source of the reset.

RESET_reason: Gives information indicating the cause of the reset.

Valid States

This primitive is valid in the NS_DATA_XFER state.

New State

The new state is NS_WRES_RIND.

Revision: 2.0.0 Page 68 August 17, 1992

OSI Work Group

4.2.5.3 Reset Response

N_RESET_RES

This user-originated primitive indicates that the NS user has accepted a reset request.

Format

The format of the message is one M_PROTO message block and its structure is the
following:

typedef struct {
ulong PRIM_type; /*always N_RESET_RES */

} N_reset_res_t;

Parameters

PRIM_type: Indicates the primitive type.

Valid States

This primitive is valid in state NS_WRES_RIND.

New State

The new state is NS_WACK_RRES.

Acknowledgements:

Successful: The successful completion of this primitive is indicated via the
N_OK_ACK primitive. This results in the data transfer state.

Unsuccessful: An unsuccessful completion of this primitive is indicated by the
N_ERROR_ACK primitive. The resulting state remains the
same.

The following non-fatal error-codes are valid:

NOUTSTATE: The primitive was issued from an invalid state.

NSYSERR: A system error has occurred and the UNIX system error is
indicated in the N_ERROR_ACK primitive.

NOTE: If the interface is in the NS_IDLE state when the provider receives the
N_RESET_RES primitive, then the NS provider should discard the message without
generating an error.

Revision: 2.0.0 Page 69 August 17, 1992

NPI Primitives

4.2.5.4 Reset Confirmation

N_RESET_CON

This NS provider-originated primitive indicates to the network user that initiated the
reset, that the reset request has been confirmed. The NS provider is allowed to issue the
N_RESET_CON primitive to the NS user that initiated the reset even before receiving a
N_RESET_RES.

Format

The format of the message is one M_PROTO message block and its structure is the
following:

typedef struct {
ulong PRIM_type; /*always N_RESET_CON */

} N_reset_con_t;

Parameters

PRIM_type: Indicates the primitive type.

Valid States

This primitive is valid in state NS_WCON_RREQ.

New State

The resulting state is NS_DATA_XFER.

Revision: 2.0.0 Page 70 August 17, 1992

OSI Work Group

4.2.6 Network Connection Release Phase

The NC release service primitives are used to release a NC. The release may be
performed by:

— either or both of the NS users to release an established NC;

— the NS provider to release an established NC (all failures to maintain an NC are
indicated in this manner);

— the destination NS user to reject an N_CONN_IND;

— by the NS provider to indicate its inability to establish a requested NC.

An NC release is permitted at any time regardless of the current phase of the NC. Once
an NC release procedure has been invoked, the NC will be released; a request for release
cannot be rejected. The network service does not guarantee delivery of any data once
the NC release phase is entered (see Table 1).

4.2.6.1 Disconnect Request

N_DISCON_REQ

This user-originated primitive requests that the NS provider deny a request for a network
connection, or disconnect an existing connection.

Format

The format of the message is one M_PROTO message block, followed by one or more
M_DATA message blocks (for NS user data). The NS user data may be lost if the NS
provider initiates release before the N_DISCON_IND is delivered. Therefore, the NS
user data parameter is present only if the originator parameter (as discussed in
N_DISCON_IND definition) indicates that the release was originated by an NS user.
The NS user may send any integral number of octets of data within a range supported by
the NS provider (see N_INFO_ACK).

The structure of the M_PROTO message block is as follows:

typedef struct {
ulong PRIM_type; /*always N_DISCON_REQ */
ulong DISCON_reason; /*reason */
ulong RES_length; /*responding address length*/
ulong RES_offset; /*responding address offset*/
ulong SEQ_number; /*sequence number*/

} N_discon_req_t;

Parameters

PRIM_type: Indicates the primitive type.

DISCON_reason: Gives information about the cause of the release.

Revision: 2.0.0 Page 71 August 17, 1992

NPI Primitives

RES_length: Indicates the length of the address of the responding address
parameter. The responding address parameter is an optional
parameter, and is present in the primitive only in the case where
the primitive is used to indicate rejection of an NC
establishment attempt by an NS user. The responding address
parameter conveys the network address of the NS user entity
from which the N_DISCON_REQ was issued and under certain
circumstances (e.g. call redirection, generic addressing, etc.)
may be different from the "destination address" in the
corresponding N_CONN_REQ primitive.

RES_offset: Is the offset from the beginning of the M_PROTO message
block where the network address begins.

SEQ_number: When non-zero, it identifies the sequence number of the
N_CONN_IND message being rejected. This number is used by
the NS provider to associate the N_DISCON_REQ with an
unacknowledged N_CONN_IND that is to be rejected. If the
N_DISCON_REQ is rejecting a NC that is already established
(or rejecting a N_CONN_REQ that the NS user had previously
sent and has not yet been confirmed), then this field should have
a value of 0.

Valid States

This primitive is valid in states NS_WCON_CREQ, NS_WRES_CIND,
NS_DATA_XFER, NS_WCON_RREQ, NS_WRES_RIND.

New State

The new state depends on the original state (see Appendix B, Table B-8).

Acknowledgements:

The NS provider should generate one of the following acknowledgements upon receipt
of this primitive:

— Successful: Successful completion is indicated via the N_OK_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the N_ERROR_ACK
primitive. The applicable non-fatal errors are as follows:

NOUTSTATE: The primitive was issued from an invalid state.

NBADDATA: The amount of user data specified was outside the range
supported by the NS provider.

NSYSERR: A system error has occurred and the UNIX system error is
indicated in the primitive.

NBADSEQ: The specified sequence number referred to an invalid
N_CONN_IND message,or the N_DISCON_REQ is

Revision: 2.0.0 Page 72 August 17, 1992

OSI Work Group

rejecting an NC that is already established (or rejecting an
N_CONN_REQ that the NS user had previously sent and
has not yet been confirmed) and the value of the sequence
number is not 0.

Revision: 2.0.0 Page 73 August 17, 1992

NPI Primitives

4.2.6.2 Disconnect Indication

N_DISCON_IND

This network-provider originated primitive indicates to the NS user that either a request
for connection has been denied or an existing connection has been disconnected.

Format

The format of the message is one M_PROTO message block, followed by one or more
M_DATA blocks. The value of the NS user data parameter is identical to the value in the
corresponding N_DISCON_REQ primitive. The NS user data parameter is present only
if the originator parameter indicates that the release was initiated by the NS user.

The struct of the M_PROTO message block is as follows:

typedef struct {
ulong PRIM_type; /*always N_DISCON_IND */
ulong DISCON_orig; /*originator */
ulong DISCON_reason; /*reason */
ulong RES_length; /*responding address length */
ulong RES_offset; /*responding address offset */
ulong SEQ_number; /*sequence number*/

} N_discon_ind_t;

Parameters

PRIM_type: Indicates the primitive type.

DISCON_orig: Indicates the source of the NC release.

DISCON_reason: Gives information about the cause of the release.

RES_length: Indicates the length of the address of the responding address
parameter. The responding address parameter is an optional
parameter, and is present in the primitive only in the case where
the primitive is used to indicate rejection of an NC
establishment attempt by an NS user. When not present, the
value of this parameter is zero. When present, the value of the
disconnect address parameter is identical to that supplied with
the corresponding N_DISCON_REQ primitive.

RES_offset: Is the offset from the beginning of the M_PROTO message
block where the network address begins.

SEQ_number: When its value is non-zero, it identifies the sequence number
associated with the N_CONN_IND that is being aborted.

The value of this parameter must be zero when:

a. indicating the rejection of a previously issued
N_CONN_REQ primitive; or

Revision: 2.0.0 Page 74 August 17, 1992

OSI Work Group

b. indicating the release of a NC that is already successfully
established.

When this field is non-zero and its value is the same as the
sequence number assigned to an unacknowledged
N_CONN_IND, it indicates that the NS provider is canceling
the unacknowledged N_CONN_IND.

Valid States

The valid states are NS_WCON_CREQ, NS_WRES_CIND, NS_DATA_XFER,
NS_WCON_RREQ, and NS_WRES_RIND.

New State

The new state is NS_IDLE (except when number of outstanding connect indications is
greater than 1, in which case the resulting state is NS_WRES_CIND).

Revision: 2.0.0 Page 75 August 17, 1992

NPI Primitives

4.3 CLNS: Primitive Format and Rules

This section describes the format of the CLNS primitives and the rules associated with
these primitives. The values of the QOS parameters associated with each unitdata
transmission are selected via the N_OPTMGMT_REQ primitive.

4.3.1 Unitdata Request

N_UNITDATA_REQ

This primitive requests that the NS provider send the specified datagram to the specified
destination.

Format

The format of the message is one M_PROTO message block followed by one or more
M_DATA message blocks. The structure of the M_PROTO is as follows:

typedef struct {
ulong PRIM_type; /*always N_UNITDATA_REQ*/
ulong DEST_length; /*destination address length*/
ulong DEST_offset; /*destination address offset*/
ulong RESERVED_field[2]; /*reserved field for DLPI compatibility*/

} N_unitdata_req_t;

Parameters

PRIM_type: Indicates the primitive type.

DEST_length: Indicates the length of the destination address.

DEST_offset: Indicates the offset of the destination address from the beginning
of the M_PROTO message block.

RESERVED_field: This is a reserved field (for compatibility with DLPI) whose
value must be set to zero for both entries of the array.

Valid States

This primitive is valid in state NS_IDLE.

New State

The resulting state remains unchanged.

Acknowledgements

Successful: There is no acknowledgement for the successful completion of
this primitive.

Non-Fatal Error: If a non-fatal error occurs, it is the responsibility of the NS
provider to report it via the N_UDERROR_IND primitive. The
following non-fatal error codes are allowed:

Revision: 2.0.0 Page 76 August 17, 1992

OSI Work Group

NBADADDR: The network address as specified in the
primitive was in an incorrect format, or
the address contained illegal
information.

NBADDATA: The amount of user data specified was
outside the range supported by the NS
provider.

NOUTSTATE: The primitive was issued from an
invalid state.

Fatal Error: Fatal errors are indicated via an M_ERROR STREAMS
message type (issued to the NS user with the errno value of
EPROTO), which results in the failure of all UNIX system calls
on the stream. The fatal errors are as follows:

EPROTO: This indicates one of the following
unrecoverable protocol conditions:

— The network service interface was
found to be in an incorrect state.

— The amount of NS user data
associated with the primitive
defines a network service data unit
larger than that allowed by the NS
provider.

Revision: 2.0.0 Page 77 August 17, 1992

NPI Primitives

4.3.2 Unitdata Indication

N_UNITDATA_IND

This primitive indicates to the NS user that a datagram has been received from the
specified source address.

Format

The format of the message is one M_PROTO message block followed by one or more
M_DATA blocks containing at least one byte of data. The format of the M_PROTO is as
follows:

typedef struct {
ulong PRIM_type; /* always N_UNITDATA_IND */
ulong DEST_length; /* destination address length */
ulong DEST_offset; /* destination address offset */
ulong SRC_length; /* source address length */
ulong SRC_offset; /* source address offset */
ulong ERROR_type; /* specifies the reason for the error*/

} N_unitdata_ind_t;

Parameters

PRIM_type: Indicates the primitive type.

DEST_length: Indicates the length of the destination address. The address is
the same as in the corresponding N_UNITDATA_REQ
primitive.

DEST_offset: Indicates the offset of the destination address from the beginning
of the M_PROTO message block.

SRC_length: Indicates the length of the source network address. This address
is the same as the value associated with the stream on which the
N_UNITDATA_REQ was issued.

SRC_offset: Indicates the offset of the source address from the beginning of
the M_PROTO message block.

ERROR_type: Specifies the reason for the error. The possible values are:

N_UD_CONGESTION: This packet experienced congestion
during its delivery.

Valid States

This primitive is valid in state NS_IDLE.

New State

The resulting state remains unchanged.

Revision: 2.0.0 Page 78 August 17, 1992

OSI Work Group

4.3.3 Unitdata Error Indication

N_UDERROR_IND

This primitive indicates to the NS user that a datagram with the specified destination
address and QOS parameters has resulted in an error condition.

Format

The format of the message is one M_PROTO message block, and its structure is as
follows:

typedef struct {
ulong PRIM_type; /*always N_UDERROR_IND */
ulong DEST_length; /*destination address length */
ulong DEST_offset; /*destination address offset */
ulong RESERVED_field; /*reserved field for DLPI compatibility*/
ulong ERROR_type; /*error type */

} N_uderror_ind_t;

Parameters

PRIM_type: Indicates the primitive type.

DEST_length: Indicates the length of the destination address. The address is
the same as in the corresponding N_UNITDATA_REQ
primitive.

DEST_offset: Indicates the offset of the destination address from the beginning
of the M_PROTO message block.

RESERVED_field: This field is reserved whose value must be set to zero.

ERROR_type: Specifies the reason for the error.

Valid States

This primitive is valid in state NS_IDLE.

New State

The resulting state remains unchanged.

Revision: 2.0.0 Page 79 August 17, 1992

Revision: 2.0.0 Page 80 August 17, 1992

OSI Work Group

5. Diagnostics Requirements

Two error handling facilities should be provided to the network service user: one to
handle non-fatal errors, and the other to handle fatal errors.

5.1 Non-Fatal Error Handling Facility

These are errors that do not change the state of the network service interface as seen by
the network service user, and provide the user the option of reissuing the network service
primitive with the corrected options specification. The non-fatal error handling is
provided only to those primitives that require acknowledgements, and uses the
N_ERROR_ACK to report these errors. These errors retain the state of the network
service interface the same as it was before the network provider received the primitive
that was in error. Syntax errors and rule violations are reported via the non-fatal error
handling facility.

5.2 Fatal Error Handling Facility

These errors are issued by the NS provider when it detects errors that are not correctable
by the network service user, or if it is unable to report a correctable error to the network
service user. Fatal errors are indicated via the STREAMS message type M_ERROR
with the UNIX system error EPROTO. The M_ERROR STREAMS message type will
result in the failure of all the UNIX system calls on the stream. The network service user
can recover from a fatal error by having all the processes close the files associated with
the stream, and then reopening them for processing.

Revision: 2.0.0 Page 81 August 17, 1992

Revision: 2.0.0 Page 82 August 17, 1992

OSI Work Group

6. References

1. CCITT X.213, (Geneva, 1986), "Network Service Definition for Open Systems
Interconnection (OSI) for CCITT Applications", (Grey Book)

2. ISO 8348 - "Information Processing Systems - Data Communications - Network
Service Definition", 4/15/87

3. ISO 8348/AD1 - "Information Processing Systems - Data Communications -
Network Service Definition - Addendum 1: Connectionless Mode Transmission",
4/15/87

4. ISO 8473 - "Information Processing Systems - Data Communications Protocol for
Providing the Connectionless Mode Network Service", SC6 N4542

5. ISO 8208 - "Information Processing Systems - X.25 Packet Level Protocol for Data
Terminal Equipment", 9/15/87

6. ISO 8878 - "Information Processing Systems - Data Communications - Use of X.25
to Provide the OSI Connection-Mode Network Service", 9/1/87

7. System V Interface Definition, Issue 2 - Volume 3

8. CCITT X.210, (Geneva, 1984), "Open Systems Interconnection (OSI) Layer
Service Definition Conventions", (Red Book)

Revision: 2.0.0 Page 83 August 17, 1992

Revision: 2.0.0 Page 84 August 17, 1992

OSI Work Group

7. Addendum for OSI Conformance

This section describes the formats and rules that are specific to OSI. The addendum must
be used along with the generic NPI as defined in the main document when implementing
a NS provider that will be configured with the OSI Transport Layer.

7.1 Quality of Service: Model & Description

The "Quality of Service" characteristics apply to both CONS as well as CLNS.

7.1.1 QOS Overview

QOS (Quality of Service) is described in terms of QOS parameters. There are two types
of QOS parameters:

1. Those that are "negotiated" on a per-connection basis during NC establishment.
(CLNS does not support end-to-end QOS parameter negotiation).

2. Those that are not negotiated and their values are selected/determined by local
management methods.

Table 8 summarizes the supported parameters both for connection-mode and
connectionless network service. For more details on the definition of the QOS
parameters, refer to CCITT X.213 [1] and ISO 8348 [2].

PARAMETER SERVICE MODE NEGOTIATION
NC Establishment Delay CONS Local
NC Establishment Failure Probability CONS Local
Throughput CONS End-to_End
Transit Delay CONS, CLNS End-to-End (for CONS)

Local (for CLNS)
Residual Error Rate CONS, CLNS Local
NC Resilience CONS Local
Transfer Failure Probability CONS Local
NC Release Delay CONS Local
NC Release Failure Probability CONS Local
Protection CONS, CLNS End-to-End (for CONS)

Local (for CLNS)
Priority CONS, CLNS End-to-End (for CONS)

Local (for CLNS)
Maximum Acceptable Cost CONS, CLNS Local

TABLE 8. Supported QOS Parameters

Revision: 2.0.0 Page 85 August 17, 1992

Addendum for OSI Conformance

7.1.2 QOS Parameter Formats

This section describes the formats of the QOS parameters for CONS and/or CLNS
services. The requested QOS parameter values apply to complete NSDUs.

7.1.2.1 NC Establishment Delay

This parameter applies to CONS only. It is defined as the maximum acceptable delay
between a N_CONN_REQ and the corresponding N_CONN_CON primitive. NC
establishment delay is measured in milliseconds.

Format:

long nc_estab_delay; /*maximum NC establishment delay*/

nc_estab_delay: Is the maximum acceptable delay value for NC establishment.

7.1.2.2 NC Establishment Failure Probability

This parameter applies to CONS only. NC Establishment Failure Probability is the
percent ratio (rounded to the nearest integer) of total NC establishment failures to total
NC establishment attempts in a measurement sample. A measurement sample consists of
100 NC establishment attempts.

NC establishment failure occurs due to NS provider behavior such as misconnection, NC
refusal, and excessive delay. NC establishment attempts that fail due to NS user
behavior such as error, NC refusal, or excessive delay are excluded in calculating NC
establishment failure probability.

Format:

long nc_estab_fail_prob; /*maximum NC estab failure probability*/

nc_estab_fail_prob: Is the maximum acceptable percent value (rounded to the
nearest integer) for the NC establishment failure probability.

7.1.2.3 Throughput

This parameter applies to CONS only, is specified separately for each direction of
transfer, and has end-to-end significance. Throughput is defined in terms of at least two
successfully transferred NSDUs presented continuously to the NS provider at the
maximum rate the NS provider can continuously sustain, and unconstrained by flow
control applied by the receiving NS user. Given a sequence of "n" NSDUs (where is
greater than or equal to two; suggested value is 100), throughput is defined to be the
smaller of:

a. the number of NS user data octets contained in the last "n-1" NSDUs divided by
the time between the first and the last N_DATA_REQs in the sequence; and

b. the number of NS user data octets contained in the last "n-1" NSDUs divided by
the time between the first and the last N_DATA_INDs in the sequence.

Revision: 2.0.0 Page 86 August 17, 1992

OSI Work Group

Throughput should be measured and specified in bits per second.

Format:

typedef struct {
long thru_targ_value;
long thru_min_value;

} thru_values_t;

thru_targ_value: Specifies the requested QOS value for throughput for data
transfer between the two NS users.

thru_min_value: Specifies the requested lowest acceptable QOS value for
throughput between the two NS users.

7.1.2.4 Transit Delay

This parameter applies to CONS as well as CLNS. Transit Delay is the elapsed time
between a N_DATA_REQ and the corresponding N_DATA_IND (calculated on
successfully transferred NSDUs only). The pair of values specified for an NC applies to
both directions of transfer. The specified values are averages (based on 100 samples
using a NSDU size of 128 bytes).

Transit Delay should be measured in milliseconds.

Format:

typedef struct {
long td_targ_value;
long td_max_value;

} td_values_t;

td_targ_value: Specifies the desired QOS value for transit delay between the
two NS users.

td_max_value: Specifies the maximum QOS value that the source NS user will
agree for transit delay between the two NS users.

7.1.2.5 Residual Error Rate

This parameter applies to both CONS as well as CLNS. Residual Error Rate is the
percent ratio (rounded to the nearest integer) of total incorrect, lost, and duplicate
NSDUs to total NSDUs transferred across the NS boundary during a measurement
period. The measurement period will be 3600 seconds.

Format:

long residual_error_rate; /*maximum acceptable residual error rate*/

residual_error_rate: Specifies the maximum acceptable percent value (rounded to
the nearest integer) of the residual error rate.

Revision: 2.0.0 Page 87 August 17, 1992

Addendum for OSI Conformance

7.1.2.6 NC Resilience

This parameter applies to CONS only. NC Resilience specifies the percent probability
(rounded to the nearest integer) of a NS provider invoked NC release or a NS provider
invoked reset during a specified time interval on an established NC. The time interval
will be 3600 seconds.

Format:

long nc_resilience; /*maximum acceptable nc resilience*/

nc_resilience: Specifies the maximum acceptable value for NC resilience.

7.1.2.7 Transfer Failure Probability

This parameter applies to CONS only. It is the percent ratio (rounded to the nearest
integer) of total transfer failures to total transfer samples observed during a performance
measurement. A transfer sample is a discrete observation of NS provider performance in
transferring NSDUs between specified sending and receiving NS user. A transfer sample
will last for the duration of the NC. A transfer failure is a transfer sample in which the
observed performance is worse than the specified minimum acceptable level. A transfer
failure is identified by comparing the measured values for the supported performance
parameters with specified transfer failure thresholds. The three supported performance
parameters are throughput, transit delay, and residual error rate.

Format:

long xfer_fail_prob; /*maximum xfer failure prob*/

xfer_fail_prob: Specifies the maximum acceptable percent value (rounded to
the nearest integer) for transfer failure probability.

7.1.2.8 NC Release Delay

This parameter applies to CONS only. NC Release Delay is defined as the maximum
acceptable delay between a NS user invoked N_DISCON_REQ and the successful
release of the NC at the peer NS user. NC Release Delay is specified independently for
each NS user. It does not apply in cases where NC release is invoked by the NS
provider. NC release delay should be measured in milliseconds.

Format:

long nc_rel_delay; /*maximum nc release delay*/

nc_rel_delay: Is the maximum acceptable value for NC release delay.

7.1.2.9 NC Release Failure Probability

This parameter applies to CONS only. It is the percent ratio (rounded to the nearest
integer) of total NC release requests resulting in release failure to total NC release
requests included in a measurement sample. A measurement sample consists of a 100
NC release requests. This parameter is specified independently for each NS user.
Revision: 2.0.0 Page 88 August 17, 1992

OSI Work Group

A release failure is defined to occur for a particular NS user, if that user does not receive
a N_DISCON_IND within a specified maximum NC release delay of the NS user issuing
the N_DISCON_REQ (given that the former NS user has not issued a
N_DISCON_REQ).

Format:

long nc_rel_fail_prob; /*maximum nc rel fail probability*/

nc_rel_fail_prob: Is the maximum acceptable percent value (rounded to the
nearest integer) of NC release failure probability.

7.1.2.10 Protection

This parameter applies to both CONS and CLNS.

It specifies the extent to which the NS provider attempts to prevent unauthorized
monitoring or manipulation of NS user originated information.

/* Types of protection */

#define N_NO_PROT 0x00000000L /*no protection*/
#define N_PASSIVE_PROT 0x00000001L /*protection against passive monitoring*/
#define N_ACTIVE_PROT 0x00000002L /*protection against active monitoring*/
#define N_ACTIVE_PASSIVE_PROT 0x00000003L /*maximum protection*/

Four protection options are provided:

1. No protection features;

2. Protection against passive monitoring;

3. Protection against modification, replay, addition, or deletion

4. Both 2 and 3.

Format:

typedef struct {
long protect_targ_value; /*target protection*/
long protect_min_value; /*minimum protection*/

} protection_values_t;

protect_targ_value: Specifies the target protection of the NS user originated
information.

protect_min_value: Specifies the lowest quality acceptable of protection of the NS
user originated information.

7.1.2.11 Priority

This parameter applies to both CONS and CLNS.

Revision: 2.0.0 Page 89 August 17, 1992

Addendum for OSI Conformance

It specifies the target priority of:

a. an NSDU in relation to any other NSDUs (for CLNS);

b. a NC (for CONS).

The number of priority levels is limited to 15 (where level 1 is the highest priority and
level 15 is the lowest priority).

Format:

typedef struct {
long priority_targ_value; /*target priority*/
long priority_min_value; /*minimum priority*/

} priority_values_t;

priority_targ_value: Specifies the target NC priority level.

priority_min_value: Specifies the lowest quality acceptable of the NC priority level.

7.1.2.12 Maximum Acceptable Cost

This parameter applies to both CONS and CLNS. It specifies the maximum acceptable
cost in local currency (composed of communications and end-system resource costs), or
indicates to the NS provider that it should choose the least expensive means available to
it.

Format

long max_accept_cost; /*acceptable cost maximum*/

/* Choose least expensive means */

#define N_LEAST_EXPENSIVE 0x00000000L /*choose least expensive means*/

max_accept_cost: Specifies the maximum acceptable cost in local currency.

Revision: 2.0.0 Page 90 August 17, 1992

OSI Work Group

7.1.3 QOS Data Structures

The quality of services parameters are organized into six different structures for
simplicity:

N_QOS_CO_RANGE1: QOS range requested for connection-mode service
as used with the N_CONN_REQ and
N_CONN_IND primitives.

N_QOS_CO_SEL1: QOS values selected for the connection-mode
service as used with the N_CONN_RES and
N_CONN_CON primitives.

N_QOS_CL_RANGE1: Range of QOS values for connectionless-mode
service as specified with the QOS_range_length
and QOS_range_offset parameters of the
N_INFO_ACK primitive.

N_QOS_CL_SEL1: QOS values supported/selected for connectionless-
mode service as specified with the QOS_length and
QOS_offset parameters of the N_INFO_ACK and
the N_OPTMGMT_REQ primitives.

N_QOS_CO_OPT_RANGE1: Range of QOS values for connection-mode service
as specified with the QOS_range_length and
QOS_range_offset parameters of the
N_INFO_ACK primitive.

N_QOS_CO_OPT_SEL1: Default QOS values supported/selected for
connection-mode service as specified with the
QOS_length and QOS_offset parameters of the
N_INFO_ACK and the N_OPTMGMT_REQ
primitives.

7.1.3.1 Structure N_QOS_CO_RANGE1

Structure N_qos_co_range1 defines the QOS parameters that are transferred between the
source and destination NS users for a NC. The format of this structure is as follows:

typedef struct {
ulong n_qos_type; /*always N_QOS_CO_RANGE*/
thru_values_t src_throughput_range; /*source throughput range*/
thru_values_t dest_throughput_range; /*dest throughput range*/
td_values_t transit_delay_range; /*transit delay range*/
protection_values_t protection_range; /*protection range*/
priority_values_t priority_range; /*priority target*/

} N_qos_co_range1_t;

This structure should be used in the QOS_length and QOS_offset fields of the following
NPI primitives:

Revision: 2.0.0 Page 91 August 17, 1992

Addendum for OSI Conformance

• N_CONN_REQ

• N_CONN_IND

7.1.3.2 Structure N_QOS_CO_SEL1

Structure N_qos_co_sel1 defines the QOS parameters that are transferred between the
destination and source NS users for a NC. The format of this structure is as follows:

typedef struct {
ulong n_qos_type; /*always N_QOS_CO_SEL*/
long src_throughput_sel; /*source throughput selected*/
long dest_throughput_sel; /*destination throughput selected*/
long transit_delay_sel; /*transit delay selected*/
long protection_sel; /*NC protection selected*/
long priority_sel; /*NC priority selected*/

} N_qos_co_sel1_t;

This structure should be used in the QOS_length and QOS_offset fields of the following
NPI primitives:

• N_CONN_RES

• N_CONN_CON

7.1.3.3 Structure N_QOS_CL_RANGE1

Structure N_qos_cl_range1 defines the range of QOS parameter values that are
supported by the NS provider. The format of the structure is as follows:

typedef struct {
ulong n_qos_type; /*always N_QOS_CL_RANGE*/
td_values_t transit_delay_max; /*maximum transit delay*/
long residual_error_rate; /*residual error rate*/
protection_values_t protection_range; /*target protection*/
priority_values_t priority_range; /*target priority*/
long max_accept_cost; /*maximum acceptable cost*/

} N_qos_cl_range1_t;

This structure should be used in the:

• QOS_range_length and QOS_range_offset fields of the N_INFO_ACK primitive;

7.1.3.4 Structure N_QOS_CL_SEL1

Structure N_qos_cl_sel1 defines the QOS parameters values that will apply to each
unitdata transmission between the CLNS users. The format of the structure is as follows:

Revision: 2.0.0 Page 92 August 17, 1992

OSI Work Group

typedef struct {
ulong n_qos_type; /*always N_QOS_CL_sel*/
long transit_delay_max; /*maximum transit delay*/
long residual_error_rate; /*residual error rate*/
long protection_sel; /*protection selected*/
long priority_sel; /*priority selected*/
long max_accept_cost; /*maximum acceptable cost*/

} N_qos_cl_sel1_t;

This structure should be used in the:

• QOS_length and QOS_offset fields of the N_INFO_ACK primitive;

• QOS_length and QOS_offset fields of the N_OPTMGMT_REQ primitive.

7.1.3.5 Structure N_QOS_CO_OPT_RANGE1

Structure N_qos_opt_range1 defines the range of the default QOS parameter values that
are supported by the NS provider. This allows the NS user to select values within the
range supported by the NS provider. The format of the structure is as follows:

typedef struct {
ulong n_qos_type; /*always N_QOS_CO_OPT_RANGE*/
thru_values_t src_throughput; /*source throughput values*/
thru_values_t dest_throughput; /*dest throughput values*/
td_values_t transit_delay; /*transit delay values*/
long nc_estab_delay; /*NC establishment delay*/
long nc_estab_fail_prob; /*NC estab failure probability*/
long residual_error_rate; /*residual error rate*/
long xfer_fail_prob; /*transfer failure probability*/
long nc_resilience; /*NC resilience*/
long nc_rel_delay; /*NC release delay*/
long nc_rel_fail_prob; /*NC release fail probability*/
protection_values_t protection_range; /*protection range*/
priority_values_t priority_range; /*priority range*/
long max_accept_cost; /*maximum acceptable cost*/

} N_qos_co_opt_range1_t;

This structure should be used in the:

• QOS_range_length and QOS_range_offset fields of the N_INFO_ACK primitive;

7.1.3.6 Structure N_QOS_CO_OPT_SEL1

Structure N_qos_opt_sel1 defines the selected QOS parameter values. The format of the
structure is as follows: as follows:

Revision: 2.0.0 Page 93 August 17, 1992

Addendum for OSI Conformance

typedef struct {
ulong n_qos_type; /*always N_QOS_CO_OPT_SEL*/
thru_values_t src_throughput; /*source throughput values*/
thru_values_t dest_throughput; /*dest throughput values*/
td_values_t transit_delay; /*transit delay values*/
long nc_estab_delay; /*NC establishment delay*/
long nc_estab_fail_prob; /*NC estab failure probability*/
long residual_error_rate; /*residual error rate*/
long xfer_fail_prob; /*transfer failure probability*/
long nc_resilience; /*NC resilience*/
long nc_rel_delay; /*NC release delay*/
long nc_rel_fail_prob; /*NC release failure probability*/
long protection_sel; /*protection selected*/
long priority_sel; /*priority selected*/
long max_accept_cost; /*maximum acceptable cost*/

} N_qos_co_opt_sel1_t;

This structure should be used in the:

• QOS_length and QOS_offset fields of the N_INFO_ACK primitive;

• QOS_length and QOS_offset fields of the N_OPTMGMT_REQ primitive.

Revision: 2.0.0 Page 94 August 17, 1992

OSI Work Group

7.2 NPI Primitives: Rules for OSI Conformance

The following are the rules that apply to the NPI primitives for OSI compatibility.

7.2.1 Local Management Primitives

7.2.1.1 N_INFO_ACK

Parameters

NSDU_size: A value greater than zero specifies the maximum size of a
Network Service Data Unit (NSDU); a value of 0 specifies that
the transfer of normal data is not supported by the NS provider,
and a value of -1 specifies that there is no limit on the size of a
NSDU.

ENSDU_size: A value between 1 and 32 inclusive specifies the maximum size
of an Expedited Network Service Data Unit (ENSDU); a value
of 0 specifies that the transfer of expedited data is not supported
by the NS provider.

CDATA_size: A value between 1 and 128 inclusive specifies the maximum
number of octets of data that may be associated with connection
establishment primitives. A value of 0 specifies that the NS
provider does not allow data to be sent with connection
establishment primitives.

When used in an OSI conformant environment, CDATA_size
shall always equal 128.

DDATA_size: A value between 1 and 128 inclusive specifies the maximum
number of octets of data that may be associated with the
disconnect primitives; a value of 0 specifies that the NS
provider does not allow data to be sent with the disconnect
primitives.

When used in an OSI conformant environment, DDATA_size
shall always equal 128.

ADDR_size: A value between 1 and 40 indicates the maximum size of a
network address in decimal digits.

When used in an OSI conformant environment, ADDR_size shall
always equal 40 in order to accomodate a full NSAP address.

QOS_length: Indicates the length in bytes of the default/negotiated/selected
values of the QOS parameters. The applicable QOS parameters
are defined in the following structures:

i. N_QOS_CO_OPT_SEL1 for CONS; and

Revision: 2.0.0 Page 95 August 17, 1992

Addendum for OSI Conformance

ii. N_QOS_CL_SEL1 for CLNS.

In the connection-mode environment, when this primitive is
invoked before the NC is established on the stream, the values
returned specify the the default values supported by the NS
provider. When this primitive is invoked after a NC has been
established on the stream, the values returned indicate the
negotiated values for the QOS parameters. In the connection-
less environment, these values represent the default or the
selected QOS parameter values.

In case a QOS parameter is not supported by the NS Provider, a
value of QOS_UNKNOWN will be returned. In the case where
no QOS parameters are supported by the NS provider, the length
of this field will be zero.

QOS_range_length: Indicates the length in bytes, of the available range of QOS
parameters values supported by the NS provider. These ranges
are used by the NS user to select QOS parameter values that are
valid with the NS provider.

The applicable QOS parameters are defined in the following
structures:

i. N_QOS_CO_OPT_RANGE1 for CONS; and

ii. N_QOS_CL_RANGE1 for CLNS.

QOS parameter values are selected, or the default values altered
via the N_OPTMGMT_REQ primitive. In the connection-mode
environment, the values for end-to-end QOS parameters may be
specified with the N_CONN primitives for negotiation. If the
NS provider does not support a certain QOS parameter, its value
will be set to QOS_UNKNOWN. In the case where no QOS
parameters are supported by the NS provider, the length of this
field will be zero.

NIDU_size: This indicates the amount of user data that may be present in a
N_DATA primitive. The NIDU_size should not be larger than
the NSDU_size specification.

SERV_type: Specifies the service type supported by the NS provider. The
possible values can be N_CONS, N_CLNS, (or both by using
N_CONS|N_CLNS).

If the SERV_type is N_CLNS, the following rules will apply:

— The ENSDU_size, CDATA_size, DDATA_size, and
DEFAULT_rc_sel fields are not used and their values should
be set to 0;

Revision: 2.0.0 Page 96 August 17, 1992

OSI Work Group

— The NSDU_size should be the same as the NIDU_size.

NODU_size: The NODU_size specifies the optimal NSDU size in octets of an
NSDU given the current routing information.

PROTOID_length: The length of the protocol identifiers to be bound.

PROTOID_offset: The offset of the protocol identifiers to be bound, from the
beginning of the block.

7.2.1.2 N_OPTMGMT_REQ

Parameters

QOS_length: Indicates the length of the default values of the QOS parameters
as selected by the NS user. In the connection-mode environment
these values will be used in subsequent N_CONN_REQ
primitives on the stream that do not specify values for these
QOS parameters. In the connection-less environment, these
values represent the selected QOS values that would apply to
each unitdata transmission. The applicable QOS parameters are
defined in the following structures:

i. N_QOS_CO_OPT_SEL1 for CONS; and

ii. N_QOS_CL_SEL1 for CLNS.

If the NS user cannot determine the value of a QOS parameter,
its value should be set to QOS_UNKNOWN. If the NS user
does not specify any QOS parameter values, the length of this
field should be set to zero.

7.2.2 CONS: Connection Establishment Phase

Rules for QOS Parameter Negotiation

The negotiation for NC throughput and NC transit-delay QOS parameters are
conducted as follows:

a. in the N_CONN_REQ primitive, the source NS user specifies two values for
each negotiable QOS parameter:

1. a "target" which is the QOS value desired; and

2. a "lowest acceptable" QOS value to which the source NS user will agree;

The value of each of these parameters must be within the limit of the allowable
values defined for the network service. "Default" values for these parameters
are supported by the NS provider. The default values may be selected by the
NS user via the N_OPTMGMT_REQ primitive.

b. if the NS provider agrees to provide a value of QOS which is in the range
between the "target" and the "lowest acceptable" QOS values, inclusive, of the

Revision: 2.0.0 Page 97 August 17, 1992

Addendum for OSI Conformance

N_CONN_REQ, then the NS provider specifies two parameters in the
N_CONN_IND issued to the destination NS user:

1. an "available" value which is the QOS value the NS provider is willing to
provide; and

2. a "lowest acceptable" QOS value which is identical to the "lowest
acceptable" value specified in the N_CONN_REQ; (if the NS provider
does not agree to provide QOS in the given range, then the NC
establishment request is rejected);

c. if the destination NS user agrees to a QOS value which is in the range between
the "available" and the "lowest acceptable" QOS values, inclusive, of the
N_CONN_IND, then the destination NS user specifies a single parameter,
"selected" in the N_CONN_RES; this parameter is the QOS value the
destination NS user agrees to; (if the destination NS user does not agree to a
QOS in the given range, then the NC establishment request is rejected);

d. the NS provider adopts the QOS value for the NC which was specified by the
destination NS user and supplies this as a single parameter, "selected", in the
N_CONN_CON primitive.

• The negotiation for the NC protection parameter is conducted as follows:

a. In the N_CONN_REQ primitive, the calling NS user specifies values for the
"Target" and "Lowest Quality Acceptable" subparameters; permitted value
assignments are:

Case1: both the "Target" and "Lowest Quality Acceptable" are
"unspecified";

Case2: values other than "unspecified" are specified for both "Target" and
"Lowest Quality Acceptable";

Case3: a value other than "unspecified" is specified for "Target" and the
"Lowest Quality Acceptable" is "unspecified".

NOTE: In case where "Target" is "unspecified", the "Lowest Quality
Acceptable" must also be "unspecified".

b. If the NS provider does not support a choice of NC protection levels, the value
of the "Target" parameter is conveyed by the NS provider and passed to the
called NS user unchanged as the "Available" subparameter in the
N_CONN_IND primitive;

c. If the NS provider does support a choice of NC protection levels, then:

1. In Case1, the NS provider determines the QOS value to be offered on the
NC and specifies it in the "Available" subparameter in the
N_CONN_IND primitive;

Revision: 2.0.0 Page 98 August 17, 1992

OSI Work Group

2. In Case2 and Case3, if the NS provider does not agree to provide a QOS
in the requested range, then the NC establishment attempt is rejected as
described in clause 13.5 of ISO 8348. If the NS provider does agree to
provide a QOS in the requested range, then in the N_CONN_IND
primitive, the "Available" subparameter specifies the highest QOS value
within the range which the NS provider is willing to provide.

d. The value of the "Lowest Quality Acceptable" subparameter in the
N_CONN_IND primitive is identical to that in the N_CONN_REQ primitive;

e. If the value of the "Available" subparameter of the N_CONN_IND primitive is
"unspecified" then:

1. if the called NS user does not agree to accept establishment of a NC with
this unspecified quality, the NS user rejects the NC establishment
attempt as described in clause 13.4 of ISO 8348;

2. if the called NS user does agree, then the NS user specifies the value
"unspecified" in the "Selected" subparameter of the N_CONN_RES
primitive.

f. If the value of the "Available" subparameter in the N_CONN_IND primitive is
not "unspecified" then:

1. if the called NS user does not agree to a QOS in the range identified by
the "Available" and "Lowest Quality Acceptable" subparameters of the
N_CONN_IND primitive, then the NS user rejects the NC establishment
attempt as described in clause 13.4 of ISO 8348;

2. if the called NS user does agree to a QOS in the identified range, then the
NS user specifies the agreed value in the "Selected" subparameter of the
N_CONN_RES primitive.

g. In the N_CONN_CON primitive, the "Selected" subparameter has a value
identical to that of "Selected" in the N_CONN_RES primitive.

• The negotiation of the NC priority parameter is conducted as follows:

a. In the N_CONN_REQ primitive, the calling NS user specifies values for the
"Target" and "Lowest Quality Acceptable" subparameters; permitted value
assignments are:

Case1: both the "Target" and "Lowest Quality Acceptable" are
"unspecified";

Case2: values other than "unspecified" are specified for both "Target" and
"Lowest Quality Acceptable";

Case3: a value other than "unspecified" is specified for "Target" and the
"Lowest Quality Acceptable" is "unspecified".

NOTE: In case where "Target" is "unspecified", the "Lowest Quality

Revision: 2.0.0 Page 99 August 17, 1992

Addendum for OSI Conformance

Acceptable" must also be "unspecified".

b. If the NS provider does not support a choice of NC priority levels, the value of
the "Target" parameter is conveyed by the NS provider and passed to the called
NS user unchanged as the "Available" subparameter in the N_CONN_IND
primitive;

c. If the NS provider does support a choice of NC priority levels, then:

1. In Case1, the NS provider determines the QOS value to be offered on the
NC and specifies it in the "Available" subparameter in the
N_CONN_IND primitive;

2. In Case2 and Case3, if the NS provider does not agree to provide a QOS
in the requested range, then the NC establishment attempt is rejected as
described in clause 13.5 of ISO 8348. If the NS provider does agree to
provide a QOS in the requested range, then in the N_CONN_IND
primitive, the "Available" subparameter specifies the highest QOS value
within the range which the NS provider is willing to provide.

d. The value of the "Lowest Quality Acceptable" subparameter in the
N_CONN_IND primitive is identical to that in the N_CONN_REQ primitive;

e. If the value of the "Available" subparameter of the N_CONN_IND primitive is
"unspecified" then:

1. if the called NS user does not agree to accept establishment of a NC with
this unspecified quality, the NS user rejects the NC establishment
attempt as described in clause 13.4 of ISO 8348;

2. if the called NS user does agree, then the NS user specifies the value
"unspecified" in the "Selected" subparameter of the N_CONN_RES
primitive.

f. If the value of the "Available" subparameter in the N_CONN_IND primitive is
not "unspecified" then:

1. if the called NS user does not agree to a QOS in the range identified by
the "Available" and "Lowest Quality Acceptable" subparameters of the
N_CONN_IND primitive, then the NS user rejects the NC establishment
attempt as described in clause 13.4 of ISO 8348;

2. if the called NS user does agree to a QOS in the identified range, then the
NS user specifies the agreed value in the "Selected" subparameter of the
N_CONN_RES primitive.

g. In the N_CONN_CON primitive, the "Selected" subparameter has a value
identical to that of "Selected" in the N_CONN_RES primitive.

Revision: 2.0.0 Page 100 August 17, 1992

OSI Work Group

Rules for QOS Parameter Selection

When a NS user/provider cannot determine the value of a QOS field, it should return
a value of QOS_UNKNOWN.

#define QOS_UNKNOWN -1

Rules for Receipt Confirmation Selection

• The receipt confirmation selection parameter values on the various primitives are
related such that:

1. on the N_CONN_REQ, either of the defined values may occur (namely,
"use of receipt confirmation", or "no use of receipt confirmation").

2. on the N_CONN_IND, the value is either equal to the value on the request
primitive, or is "no use of receipt confirmation".

3. on the N_CONN_RES, the value is either equal to the value on the
indication primitive or is "no use of receipt confirmation".

4. on the N_CONN_CON, the value is equal to the value on the response
primitive.

• Since the NS users and the NS provider must agree to the use of receipt
confirmation selection, there are four possible cases of negotiation of receipt
confirmation on an NC:

1. if the source NS user does not request it -- it is not used;

2. if the source NS user requests it but the NS provider does not provide it -- it
is not used;

3. if the source NS user requests it and the NS provider agrees to provide it,
but the destination NS user does not agree to its use -- it is not used;

4. if the source NS user requests it, the NS provider agrees to provide it, and
the destination NS user agrees to its use -- it can be used.

Rules for Expedited Data Selection

• The expedited data selection parameter values on the various primitives are
related such that:

1. on the N_CONN_REQ, either of the defined values may occur, (namely
"use of expedited data" or "no use of expedited data");

2. on the N_CONN_IND, the value is either equal to the value on the request
primitive, or is "no use of expedited data";

3. on the N_CONN_RES, the value is either equal to the value on the
indication primitive, or is "no use of expedited data";

Revision: 2.0.0 Page 101 August 17, 1992

Addendum for OSI Conformance

4. on the N_CONN_CON, the value is equal to the value on the response
primitive.

• Since the NS users and the NS provider must agree to the use of expedited data
selection, there are four possible cases of negotiation of expedited data on an NC:

1. if the source NS user does not request it -- it is not used;

2. if the source NS user requests it but the NS provider does not provide it -- it
is not used;

3. if the source NS user requests it and the NS provider agrees to provide it,
but the destination NS user does not agree to its use -- it is not used;

4. if the source NS user requests it, the NS provider agrees to provide it, and
the destination NS user agrees to its use -- it can be used.

7.2.2.1 N_CONN_REQ

Parameters

QOS_length: Indicates the length of the QOS parameters values that apply to
the NC being requested.

The applicable QOS parameters are defined in the following
structure:

i. N_QOS_CO_RANGE1

If the NS user cannot determine the value of a QOS parameter,
its value should be set to QOS_UNKNOWN. If the NS user
does not specify any QOS parameter values, the length of this
field should be set to zero.

Flags

REC_CONF_OPT: The receipt confirmation selection parameter
indicates whether receipt confirmation service is
desired by the calling NS user on the NC. The
receipt confirmation service must be provided in the
network service to be used on the NC. When set, it
indicates "use of receipt confirmation", and when
not set it indicates "no use of receipt confirmation".

EX_DATA_OPT: The expedited data selection parameter indicates
whether the expedited data service is desired by the
calling NS user on the NC. The expedited data
transfer service must be provided by the NS
provider for it to be used on the NC. When set, it
indicates "use of expedited data", and when not set
it indicates "no use of expedited data".

Revision: 2.0.0 Page 102 August 17, 1992

OSI Work Group

7.2.2.2 N_CONN_IND

Parameters

QOS_length: Indicates the length of the QOS parameters values that are
negotiated during NC establishment.

The applicable QOS parameters are defined in the following
structure:

i. N_QOS_CO_RANGE1

If the NS provider does not support or cannot determine the
value of a QOS parameter, its value will be set to
QOS_UNKNOWN. If the NS provider does not specify any
QOS parameter values, the length of this field should be set to
zero.

QOS_offset: Indicates the offset of the QOS parameters from the beginning
of the M_PROTO message block.

Flags

REC_CONF_OPT: The receipt confirmation selection parameter
indicates whether the receipt confirmation service is
available on the NC and the calling NS user desires
its use. The receipt confirmation service must be
provided in the network service to be used on the
NC. When set, it indicates "use of receipt
confirmation", and when not set, it indicates "no use
of receipt confirmation". The value on the
N_CONN_IND is either equal to the value on the
request primitive or is "no use of receipt
confirmation".

EX_DATA_OPT: The expedited data selection parameter indicates
whether the expedited data transfer service is
available on the NC and the calling NS user desires
its use. The expedited data transfer service must be
provided by the NS provider for it to be used on the
NC. When set, it indicates "use of expedited data"
or "no use of expedited data". The value on the
N_CONN_IND is either equal to the value on the
request primitive or is "no use of expedited data".

7.2.2.3 N_CONN_RES

Parameters

QOS_length: Indicates the length of the QOS parameters values that are
negotiated during NC establishment. The applicable QOS

Revision: 2.0.0 Page 103 August 17, 1992

Addendum for OSI Conformance

parameters are defined in the following structure:

i. N_QOS_CO_SEL1

If the NS user does not agree to the QOS values, it will reject
the NC establishment by invoking a N_DISCON_REQ primitive
(the originator parameter in the N_DISCON_REQ primitive
will indicate NS user invoked release). If the NS user cannot
determine the value of a QOS parameter, its value should be set
to QOS_UNKNOWN. If the NS user does not specify any QOS
parameter values, the length of this field should be set to zero.

Flags

REC_CONF_OPT: The receipt confirmation selection parameter
indicates whether the receipt confirmation service
can be used on the NC. The receipt confirmation
service must be provided in the network service to
be used on the NC. When set, it indicates "use of
receipt confirmation", and when not set it indicates
"no use of receipt confirmation". The value on the
N_CONN_RES is either equal to the value on the
indication primitive or is "no use of receipt
confirmation".

EX_DATA_OPT: The expedited data selection parameter indicates
whether the expedited data transfer service can be
used on the NC. The expedited data transfer
service must be provided by the NS provider for it
to be used on the NC. When set, it indicates "use of
expedited data", and when not set, it indicates "no
use of expedited data". The value on the
N_CONN_RES is either equal to the value on the
indication primitive or is "no use of expedited data".

7.2.2.4 N_CONN_CON

Parameters

QOS_length: Indicates the length of the QOS parameters values selected by
the responding NS user. The applicable QOS parameters are
defined in the following structure:

i. N_QOS_CO_SEL1

If the NS provider does not support or cannot determine the
selected value of a QOS parameter, its value will be set to
QOS_UNKNOWN. If the NS provider does not specify any
QOS parameter values, the length of this field should be set to
zero.

Revision: 2.0.0 Page 104 August 17, 1992

OSI Work Group

Flags

REC_CONF_OPT: The receipt confirmation selection parameter
indicates whether the receipt confirmation service
can be used on the NC. The receipt confirmation
service must be provided in the network service to
be used on the NC. When set, it indicates "use of
receipt confirmation", and when not set it indicates
"no use of receipt confirmation". The value on the
N_CONN_CON is equal to the value on the
response primitive.

EX_DATA_OPT: The expedited data selection parameter indicates
whether the expedited data transfer service can be
used on the NC. The expedited data transfer
service must be provided by the NS provider for it
to be used on the NC. When set, it indicates "use of
expedited data", and when not set, it indicates "no
use of expedited data". The value on the
N_CONN_CON is equal to the value on the
response primitive.

7.2.3 CONS: Reset Service

7.2.3.1 N_RESET_REQ

Parameters

RESET_reason: Gives information indicating the cause of the reset.

Rules governing the value of the RESET_reason parameter

For an N_RESET_REQ, the reason shall always indicate N_USER_RESYNC.

7.2.3.2 N_RESET_IND

Parameters

RESET_orig: This parameter indicates the source of the reset.

Reset Originator

N_PROVIDER: NS provider originated reset

N_USER: NS user originated reset

N_UNDEFINED: reset originator undefined

RESET_reason: Gives information indicating the cause of the reset.

Rules governing the value of the RESET_reason parameter

The value conveyed in this parameter will be as follows:

Revision: 2.0.0 Page 105 August 17, 1992

Addendum for OSI Conformance

i. when the originator parameter indicates an NS provider invoked reset; the
parameter is one of:

N_CONGESTION: reset due to congestion;

N_RESET_UNSPECIFIED: reset-reason unspecified.

ii. when the originator parameter indicates an NS user invoked reset, the value is:

N_USER_RESYNC: user resynchronization.

iii. when the originator parameter has the value "undefined", then the value of the
reason parameter is:

N_REASON_UNDEFINED: reset reason undefined

7.2.4 CONS: NC Release Phase

7.2.4.1 N_DISCON_REQ

Parameters:

DISCON_reason: Gives information about the cause of the release.

Rules governing the value of the DISCON_reason parameter

The value conveyed in the parameter will be as follows:

N_DISC_NORMAL: "disconnection-normal condition"

N_DISC_ABNORMAL: "disconnection-abnormal condition"

N_REJ_P "connection rejection-permanent condition"

N_REJ_T: "connection rejection-transient condition"

N_REJ_QOS_UNAVAIL_P: "connection rejection-QOS not available/permanent
condition"

N_REJ_QOS_UNAVAIL_T: "connection rejection-QOS not available/transient
condition"

N_REJ_INCOMPAT_INFO: "connection rejection-incompatible information in
NS user data"

N_REJ_UNSPECIFIED: "connection rejection-reason unspecified"

7.2.4.2 N_DISCON_IND

Parameters

DISCON_orig: Indicates the source of the NC release. Its value are as follows:

N_PROVIDER: NS provider originated disconnect

N_USER: NS user originated disconnect

Revision: 2.0.0 Page 106 August 17, 1992

OSI Work Group

N_UNDEFINED: disconnect originator undefined

The value "undefined" is not permitted when an
N_DISCON_IND is issued by an NS user or the NS provider in
order to reject an NC establishment attempt.

DISCON_reason: Gives information about the cause of the release.

Rules governing the value of the DISCON_reason parameter

The value conveyed in the parameter will be as follows:

a. When the originator parameter indicates an NS provider invoked release, the value
is one of:

N_DISC_P: "disconnection-permanent condition"

N_DISC_T: "disconnection-transient condition"

N_REJ_NSAP_UNKNOWN: "connection rejection-NSAP address
unknown (permanent condition)"

N_REJ_NSAP_UNREACH_P: "connection rejection-NSAP unreachable
(permanent condition)"

N_REJ_NSAP_UNREACH_T: "connection rejection-NSAP unreachable
(transient condition)"

N_REJ_QOS_UNAVAIL_P: "connection rejection-QOS not
available/permanent condition"

N_REJ_QOS_UNAVAIL_T: "connection rejection-QOS not
available/transient condition"

N_REJ_UNSPECIFIED: "connection rejection-reason unspecified"

b. When the originator parameter indicates an NS user invoked release, the value is
one of:

N_DISC_NORMAL: "disconnection-normal condition"

N_DISC_ABNORMAL: "disconnection-abnormal condition"

N_REJ_P "connection rejection-permanent condition"

N_REJ_T: "connection rejection-transient condition"

N_REJ_QOS_UNAVAIL_P: "connection rejection-QOS not
available/permanent condition"

N_REJ_QOS_UNAVAIL_T: "connection rejection-QOS not
available/transient condition"

N_REJ_INCOMPAT_INFO: "connection rejection-incompatible
information in NS user data"

Revision: 2.0.0 Page 107 August 17, 1992

Addendum for OSI Conformance

N_REJ_UNSPECIFIED: "connection rejection-reason unspecified"

c. When the originator parameter value is undefined, then the value of the reason
parameter shall be:

N_REASON_UNDEFINED: disconnect reason undefined

7.2.5 CLNS

7.2.5.1 N_UDERROR_IND

Parameters

ERROR_type: Specifies the reason for the error. The possible values are:

N_UD_UNDEFINED: no reason specified;

N_UD_TD_EXCEEDED: transit delay exceeded;

N_UD_CONGESTION: NS provider congestion;

N_UD_QOS_UNAVAIL: other requested
QOS/service characteristic
unavailable;

N_UD_LIFE_EXCEEDED: NSDU lifetime exceeded;

N_UD_ROUTE_UNAVAIL: suitable route unavailable.

Revision: 2.0.0 Page 108 August 17, 1992

OSI Work Group

Appendix A. Mapping NPI Primitives to ISO 8348 and CCITT X.213

Table A-1 shows a mapping of the NPI primitives to the OSI network service definition
primitives.

NETWORK PRIMITIVE STREAM MESSAGE TYPE OSI NETWORK PRIMITIVE

N_CONN_REQ M_PROTO N-CONNECT request

N_CONN_IND M_PROTO N-CONNECT indication

N_CONN_RES M_PROTO N-CONNECT response

N_CONN_CON M_PROTO N-CONNECT confirm

N_DATA_REQ M_PROTO N-DATA request

N_DATA_IND M_PROTO N-DATA indication

N_EXDATA_REQ M_PROTO N-EXPEDITED-DATA request

N_EXDATA_IND M_PROTO N-EXPEDITED-DATA indication

N_DATACK_REQ M_PROTO N-DATA-ACKNOWLEDGE request

N_DATACK_IND M_PROTO N-DATA-ACKNOWLEDGE indication

N_RESET_REQ M_PROTO N-RESET request

N_RESET_IND M_PROTO N-RESET indication

N_RESET_RES M_PROTO N-RESET response

N_RESET_CON M_PROTO N-RESET confirm

N_DISCON_REQ M_PROTO N_DISCONNECT request

N_DISCON_IND M_PROTO N-DISCONNECT indication

N_UNITDATA_REQ M_PROTO N-UNITDATA request

N_UNITDATA_IND M_PROTO N-UNITDATA indication

N_BIND_REQ M_PROTO ‡

N_BIND_ACK M_PCPROTO ‡

N_UNBIND_REQ M_PROTO ‡

N_OK_ACK M_PCPROTO ‡

N_ERROR_ACK M_PCPROTO ‡

N_INFO_REQ M_PCPROTO ‡

N_INFO_ACK M_PCPROTO ‡

N_UDERROR_IND M_PROTO ‡

N_OPTMGMT_REQ M_PROTO ‡

‡ — Local management issue, not defined in ISO 8348 and CCITTX.213

Table A-1. Mapping NPI Primitives to OSI NS

Revision: 2.0.0 Page 109 August 17, 1992

Revision: 2.0.0 Page 110 August 17, 1992

OSI Work Group

Appendix B. State/Event Tables

This appendix contains tables showing the network-user’s view of the possible states that
the NPI may enter due to an event, and the possible events that may occur on the
interface.

The N_INFO_REQ, N_INFO_ACK, N_TOKEN_REQ, and N_TOKEN_ACK primitives
are excluded from the state transition table because they can be issued from several
states, and secon- dly, they do not cause a state transition to occur. However, the
N_INFO_REQ and the N_TOKEN_REQ primitives may not be issued by the NS user
when a local acknowledgement to a previously issued primitive is pending.

STATE ABBREVIATION DESCRIPTION SERVICE TYPE

sta_0 unbnd unbound CONS, CLNS

sta_1 w_ack, b_req awaiting acknowledgement CONS, CLNS
of N_BIND_REQ

sta_2 w_ack, u_req awaiting acknowledgement CONS, CLNS
of N_UNBIND_REQ

sta_3 idle idle-no connection CONS, CLNS

sta_4 w_ack, op_req awaiting acknowledgement CONS, CLNS
of N_OPTMGMT_REQ

sta_5 w_ack, r_res awaiting acknowledgement CONS
of N_RESET_RES

sta_6 w_con, c_req awaiting confirmation of CONS
N_CONN_REQ

sta_7 w_res, c_ind awaiting response of CONS
N_CONN_IND

sta_8 w_ack, c_res awaiting acknowledgement CONS
of N_CONN_RES

sta_9 data_t data transfer CONS

sta_10 w_con, r_req awaiting confirmation of CONS
N_RESET_REQ

sta_11 w_res, r_ind awaiting response of CONS
N_RESET_IND

sta_12 w_ack, dreq6 awaiting acknowledgement CONS
of N_DISCON_REQ

sta_13 w_ack, dreq7 awaiting acknowledgement CONS
of N_DISCON_REQ

sta_14 w_ack, dreq9 awaiting acknowledgement CONS
of N_DISCON_REQ

sta_15 w_ack, dreq10 awaiting acknowledgement CONS
of N_DISCON_REQ

sta_16 w_ack, dreq11 awaiting acknowledgement CONS
of N_DISCON_REQ

Table B-1. Kernel Level NPI States

Revision: 2.0.0 Page 111 August 17, 1992

State/Event Tables

Tables B-2 and B-3 describe the variables and outputs used in the state tables.

VARIABLE DESCRIPTION

is a value contained in the
N_CONN_RES primitive
that is used to identify the
stream on which the NC is to
be established. When its
value is zero, it indicates that
the NC is to be established on
the stream on which the
N_CONN_IND arrived.
When its value is non-zero, it
identifies another stream on
which the NS provider is to
accept the NC.

token

counter for the number of
outstanding connection
indications not responded to
by the network user entity.

outcnt

Table B-2. State Table Variables

OUTPUT DESCRIPTION

[1] outcnt = 0
[2] outcnt = outcnt + 1
[3] outcnt = outcnt - 1

pass connection to stream as
indicated by the token in the
N_CONN_RES primitive.

[4]

Table B-3. State Table Outputs

Revision: 2.0.0 Page 112 August 17, 1992

OSI Work Group

Table B-4 shows outgoing events that are initiated by the network-user entity. These
events are either requests to the network provider or responses to an event of the network
provider.

EVENT DESCRIPTION SERVICE TYPE

info_req information request CONS, CLNS
bind_req bind request CONS, CLNS
unbind_req unbind request CONS, CLNS
optmgmt_req options mgmt request CONS, CLNS
conn_req connection request CONS
conn_res connection response CONS
discon_req disconnect request CONS
data_req data request CONS
exdata_req expedited data request CONS
datack_req data ack request CONS
reset_req reset request CONS
reset_res reset response CONS
unitdata_req unitdata request CLNS

Table B-4. Kernel Level NPI Outgoing Events

Revision: 2.0.0 Page 113 August 17, 1992

State/Event Tables

Table B-5 shows incoming events that are initiated by the network provider. These events
are either confirmations of a request, or are indications to the NS user entity that an event
has occurred.

EVENT DESCRIPTION SERVICE TYPE

info_ack information acknowledgement CONS, CLNS
bind_ack bind acknowledgement CONS, CLNS
error_ack error acknowledgement CONS, CLNS
ok_ack1 ok acknowledgement CONS, CLNS

outcnt == 0
ok_ack2 ok acknowledgement CONS, CLNS

outcnt == 1, token == 0
ok_ack3 ok acknowledgement CONS, CLNS

outcnt == 1, token! == 0
ok_ack4 ok acknowledgement CONS, CLNS

outcnt>1, token! == 0
conn_ind connection indication CONS
conn_conf connection confirm CONS
discon_ind1 disconnect indication CONS

outcnt == 0
discon_ind2 disconnect indication CONS

outcnt == 1
discon_ind3 disconnect indication CONS

outcnt > 1
data_ind data indication CONS
exdata_ind expedited data indication CONS
datack_ind data ack indication CONS
reset_ind reset indication CONS
reset_conf reset confirm CONS
pass_conn pass connection CONS
unitdata_ind unitdata indication CLNS
uderror_ind unitdata error indication CLNS

Table B-5. Kernel Level NPI Incoming Events

Revision: 2.0.0 Page 114 August 17, 1992

OSI Work Group

Tables B-6 and B-7 describe the possible events the NPI may enter given a current state
and event. The contents of each box represent the next state given the current state
(column) and the current incoming or outgoing event (row). An empty box represents a
state/event combination that is invalid. Along with the next state, each box may include
an action. The network provider must take specific actions in the order specified in the
state table.

STATE sta_3
EVENT
unitdata_req sta_3
unitdata_ind sta_3
uderror_ind sta_3

Table B-6. Data Transfer State Table for CLNS

STATE sta_0 sta_1 sta_2 sta_3 sta_4
EVENT
bind_req sta_1
unbind_req sta_2
optmgmt_req sta_4
bind_ack sta_3 [1]
error_ack sta_0 sta_3 sta_3
ok_ack1 sta_0 sta_3

Table B-7. Initialization State Table for CONS

Revision: 2.0.0 Page 115 August 17, 1992

State/Event Tables

STATE 3 5 6 7 8 9 10 11 12 13 14 15 16
EVENT

conn_req 6
conn_ind 7 7

[2] [2]
conn_res 8
conn_con 9
discon_req 12 13 14 15 16
data_req 9
exdata_req 9
reset_req 10
reset_res 5
data_ind 9
exdata_ind 9
datack_req 9
datack_ind 9
reset_ind 11
reset_con 9
discon_ind1 3 3 3 3
discon_ind2 3

[3]
discon_ind3 7

[3]
error_ack 11 3 7 9 6 7 9 10 11
ok_ack1 9 3 3 3 3
ok_ack2 9 3

[3] [3]
ok_ack3 3 3

[3,4] [3]
ok_ack4 7 7

[3,4] [3]
pass_conn 9

NOTE: The column headings and box entries are state (sta_) numbers as described in
Table B-1. Refer to Table B-3 for the interpretation of the bracketed numbers.

Table B-8. State Table for CONS for Connection/Release/Data Transfer States

Revision: 2.0.0 Page 116 August 17, 1992

OSI Work Group

Appendix C. Primitive Precedence Tables

Tables C-1 and C-2 describe the precedence of the NPI primitives for both the stream
write and read queues. In both these tables, primitive Y is already on the queue and
primitive X is about to be put on the queue. The stream write queue contains network
user initiated primitives and the stream read queue contains network provider initiated
primitives. The column headings are a shorthand notation for the row headings.

PRIM X R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
PRIM Y on queue

R1 n_conn_req 4

R2 n_conn_res 3 1

R3 n_discon_req 1

R4 n_data_req 5 1 2 3 2

R5 n_exdata_req 5 1 1 3 2

R6 n_bind_req

R7 n_unbind_req

R8 n_info_req

R9 n_unitdata_req 1

R10 n_optmgmt_req

R11 n_reset_req 3

R12 n_reset_res 3 1 1

R13 n_datack_req 5 1 2 3 1

Blank not applicable - queue should be empty.

1 X has no precedence over Y.

2 X has precedence over Y.

3 X has precedence over Y and Y must be removed.

4 X has precedence over Y and both X and Y must be removed.

5 X may have precedence over Y (choice of user). It it does then it is the same as 3.

Table C-1. STREAM Write Queue Precedence Table

Revision: 2.0.0 Page 117 August 17, 1992

Primitive Precedence Tables

PRIM X I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14
PRIM Y on queue

I1 n_conn_ind 4 2

I2 n_conn_con 3 1 1 2

I3 n_discon_ind 1 2 2 2

I4 n_data_ind 5 1 2 2 1 3 2

I5 n_exdata_ind 5 1 1 1 3 2

I6 n_info_ack 1 1 1 1 1 1 1 1

I7 n_bind_ack 1

I8 n_error_ack 1 1 1 1 1 1 1 1

I9 n_ok_ack 1 1 1 1 1 1 1 1

I10 n_unitdata_ind 2 2 1 2

I11 n_uderror_ind 2 1 1 1

I12 n_reset_ind 3 2

I13 n_reset_con 3 2

I14 n_datack_ind 5 2 1

Blank not applicable - queue should be empty.

1 X has no precedence over Y.

2 X has precedence over Y.

3 X has precedence over Y and Y must be removed.

4 X has precedence over Y and both X and Y must be removed.

5 X may have precedence over Y (choice of user). If it does then it is the same as 3.

Table C-2. STREAM Read Queue Precedence Table

Revision: 2.0.0 Page 118 August 17, 1992

OSI Work Group

Appendix D. NPI Header File Listing

This appendix contains a listing of the NPI header file needed by implementations.

/*
* npi.h header for the Network Provider Interface (OSI Conforming)
*/

#define N_CURRENT_VERSION 0x02 /* current version of NPI */
#define N_VERSION_2 0x02 /* version of npi, December

* 16, 1991 */
/*
* Primitives that are initiated by the network user.
*/

#define N_CONN_REQ 0 /* NC request */
#define N_CONN_RES 1 /* Accept previous

* connection indication */
#define N_DISCON_REQ 2 /* NC disconnection request */
#define N_DATA_REQ 3 /* Connection-Mode data

* transfer request */
#define N_EXDATA_REQ 4 /* Expedited data request */
#define N_INFO_REQ 5 /* Information Request */
#define N_BIND_REQ 6 /* Bind a NS user to network

* address */
#define N_UNBIND_REQ 7 /* Unbind NS user from

* network address */
#define N_UNITDATA_REQ 8 /* Connection-less data send

* request */
#define N_OPTMGMT_REQ 9 /* Options Management

* request */
/*
* Primitives that are initiated by the network provider.
*/
#define N_CONN_IND 11 /* Incoming connection

* indication */
#define N_CONN_CON 12 /* Connection established */
#define N_DISCON_IND 13 /* NC disconnected */
#define N_DATA_IND 14 /* Incoming connection-mode

* data indication */
#define N_EXDATA_IND 15 /* Incoming expedited data

* indication */
#define N_INFO_ACK 16 /* Information

* Acknowledgement */
#define N_BIND_ACK 17 /* NS User bound to network

* address */
#define N_ERROR_ACK 18 /* Error Acknowledgement */
#define N_OK_ACK 19 /* Success Acknowledgement */
#define N_UNITDATA_IND 20 /* Connection-less data

* receive indication */
#define N_UDERROR_IND 21 /* UNITDATA Error Indication */
/*

Revision: 2.0.0 Page 119 August 17, 1992

NPI Header File

* Additional NPI Primitivies
*/

#define N_DATACK_REQ 23 /* Data acknowledgement
* request */

#define N_DATACK_IND 24 /* Data acknowledgement
* indication */

#define N_RESET_REQ 25 /* NC reset request */
#define N_RESET_IND 26 /* Incoming NC reset request

* indication */
#define N_RESET_RES 27 /* Reset processing accepted */
#define N_RESET_CON 28 /* Reset processing complete */

/*
* The following are the events that drive the state machine
*/
/* Initialization events */
#define NE_BIND_REQ 0 /* bind request */
#define NE_UNBIND_REQ 1 /* unbind request */
#define NE_OPTMGMT_REQ 2 /* manage options request */
#define NE_BIND_ACK 3 /* bind acknowledgement */
#define NE_ERROR_ACK 5 /* error acknowledgement */
#define NE_OK_ACK1 6 /* ok ack, outcnt == 0 */
#define NE_OK_ACK2 7 /* ok ack, outcnt == 1, q ==

* rq */
#define NE_OK_ACK3 8 /* ok ack, outcnt == 1, q!

* == rq */
#define NE_OK_ACK4 9 /* ok ack, outcnt > 1 */

/* Connection-Mode events */
#define NE_CONN_REQ 10 /* connect request */
#define NE_CONN_RES 11 /* connect response */
#define NE_DISCON_REQ 12 /* disconnect request */
#define NE_DATA_REQ 13 /* data request */
#define NE_EXDATA_REQ 14 /* expedited data request */
#define NE_CONN_IND 16 /* connect indication */
#define NE_CONN_CON 17 /* connect confirm */
#define NE_DATA_IND 18 /* data indication */
#define NE_EXDATA_IND 19 /* expedited data indication */
#define NE_DISCON_IND1 21 /* disconnect indication,

* outcnt == 0 */
#define NE_DISCON_IND2 22 /* disconnect indication,

* outcnt == 1 */
#define NE_DISCON_IND3 23 /* disconnect indication,

* outcnt > 1 */
#define NE_PASS_CON 24 /* pass connection */
#define NE_RESET_REQ 28 /* reset request */
#define NE_RESET_RES 29 /* reset response */
#define NE_DATACK_REQ 30 /* data acknowledgement

Revision: 2.0.0 Page 120 August 17, 1992

OSI Work Group

* request */
#define NE_DATACK_IND 31 /* data acknowledgement

* indication */
#define NE_RESET_IND 32 /* reset indication */
#define NE_RESET_CON 33 /* reset confirm */

/* Connection-less events */
#define NE_UNITDATA_REQ 25 /* unitdata request */
#define NE_UNITDATA_IND 26 /* unitdata indication */
#define NE_UDERROR_IND 27 /* unitdata error indication */

#define NE_NOEVENTS 36 /* no events */

/*
* NPI interface states
*/
#define NS_UNBND 0 /* NS user not bound to

* network address */
#define NS_WACK_BREQ 1 /* Awaiting acknowledgement

* of N_BIND_REQ */
#define NS_WACK_UREQ 2 /* Pending acknowledgement

* for N_UNBIND_REQ */
#define NS_IDLE 3 /* Idle, no connection */
#define NS_WACK_OPTREQ 4 /* Pending acknowledgement

* of N_OPTMGMT_REQ */
#define NS_WACK_RRES 5 /* Pending acknowledgement

* of N_RESET_RES */
#define NS_WCON_CREQ 6 /* Pending confirmation of

* N_CONN_REQ */
#define NS_WRES_CIND 7 /* Pending response of

* N_CONN_REQ */
#define NS_WACK_CRES 8 /* Pending acknowledgement

* of N_CONN_RES */
#define NS_DATA_XFER 9 /* Connection-mode data

* transfer */
#define NS_WCON_RREQ 10 /* Pending confirmation of

* N_RESET_REQ */
#define NS_WRES_RIND 11 /* Pending response of

* N_RESET_IND */
#define NS_WACK_DREQ6 12 /* Waiting ack of

* N_DISCON_REQ */
#define NS_WACK_DREQ7 13 /* Waiting ack of

* N_DISCON_REQ */
#define NS_WACK_DREQ9 14 /* Waiting ack of

* N_DISCON_REQ */
#define NS_WACK_DREQ10 15 /* Waiting ack of

* N_DISCON_REQ */
#define NS_WACK_DREQ11 16 /* Waiting ack of

* N_DISCON_REQ */

#define NS_NOSTATES 18 /* No states */

Revision: 2.0.0 Page 121 August 17, 1992

NPI Header File

/*
* N_ERROR_ACK error return code values
*/
#define NBADADDR 1 /* Incorrect address

* format/illegal address
* information */

#define NBADOPT 2 /* Options in incorrect
* format or contain illegal
* information */

#define NACCESS 3 /* User did not have proper
* permissions */

#define NNOADDR 5 /* NS Provider could not
* allocate address */

#define NOUTSTATE 6 /* Primitive was issues in
* wrong sequence */

#define NBADSEQ 7 /* Sequence number in
* primitive was
* incorrect/illegal */

#define NSYSERR 8 /* UNIX system error
* occurred */

#define NBADDATA 10 /* User data spec. outside
* range supported by NS
* provider */

#define NBADFLAG 16 /* Flags specified in
* primitive were
* illegal/incorrect */

#define NNOTSUPPORT 18 /* Primitive type not
* supported by the NS
* provider */

#define NBOUND 19 /* Illegal second attempt to
* bind listener or default
* listener */

#define NBADQOSPARAM 20 /* QOS values specified are
* outside the range
* supported by the NS
* provider */

#define NBADQOSTYPE 21 /* QOS structure type
* specified is not
* supported by the NS
* provider */

#define NBADTOKEN 22 /* Token used is not
* associated with an open
* stream */

#define NNOPROTOID 23 /* Protocol id could not be
* allocated */

/*
* N_UDERROR_IND reason codes
*/
#define N_UD_UNDEFINED 10 /* no reason specified */
#define N_UD_TD_EXCEEDED 11 /* Transit delay exceeded */
#define N_UD_CONGESTION 12 /* NS Provider congestion */

Revision: 2.0.0 Page 122 August 17, 1992

OSI Work Group

#define N_UD_QOS_UNAVAIL 13 /* Requested QOS/service
* characteristic
* unavailable */

#define N_UD_LIFE_EXCEEDED 14 /* NSDU Lifetime exceeded */
#define N_UD_ROUTE_UNAVAIL 15 /* Suitable route

* unavailable */
#define N_UD_SEG_REQUIRED 16 /* Segmentation reqd where

* none permitted */

/*
* NPI Originator for Resets and Disconnects
*/
#define N_PROVIDER 0x0100 /* provider originated

* reset/disconnect */
#define N_USER 0x0101 /* user originated

* reset/disconnect */
#define N_UNDEFINED 0x0102 /* reset/disconnect

* originator undefined */

/*
* NPI Disconnect & Reset reasons when the originator is the N_UNDEFINED
*/
#define N_REASON_UNDEFINED 0x0200

/*
* NPI Disconnect reasons when the originator is the N_PROVIDER
*/
#define N_DISC_P 0x0300 /* Disconnection-permanen t

* condition */
#define N_DISC_T 0x0301 /* Disconnection-transien t

* condition */
#define N_REJ_NSAP_UNKNOWN 0x0302 /* Connection rejection-NSAP

* address unknown
* (permanent condition) */

#define N_REJ_NSAP_UNREACH_P 0x0303 /* Connection rejection-NSAP
* unreachable (permanent
* condition) */

#define N_REJ_NSAP_UNREACH_T 0x0304 /* Connection rejection-NSAP
* unreachable (transient
* condition) */

/*
* NPI Disconnect reasons when the originator is the N_USER
*/
#define N_DISC_NORMAL 0x0400 /* Disconnection-normal

* condition */
#define N_DISC_ABNORMAL 0x0401 /* Disconnection-abnormal

* condition */

Revision: 2.0.0 Page 123 August 17, 1992

NPI Header File

#define N_REJ_P 0x0402 /* Connection
* rejection-permanent
* condition */

#define N_REJ_T 0x0403 /* Connection
* rejection-transient
* condition */

#define N_REJ_INCOMPAT_INFO 0x0406 /* Connection
* rejection-incompatible
* information in
* NS-user-data */

/*
* NPI Disconnect reasons when the originator is the N_USER or N_PROVIDER
*/
#define N_REJ_QOS_UNAVAIL_P 0x0305 /* Connection rejection-QOS

* unavailable (permanent
* condition) */

#define N_REJ_QOS_UNAVAIL_T 0x0306 /* Connection rejection-QOS
* unavailable (transient
* condition) */

#define N_REJ_UNSPECIFIED 0x0307 /* Connection
* rejection-reason
* unspecified */

/*
* NPI Reset reasons when originator is N_PROVIDER
*/
#define N_CONGESTION 0x0500 /* Reset due to congestion */
#define N_RESET_UNSPECIFIED 0x0501 /* Reset-reason

* "unspecified" */

/*
* NPI Reset reasons when originator is N_USER
*/
#define N_USER_RESYNC 0x0600 /* Reset due to user

* resynchronization */

/*
* CONN_flags definition; (used in N_conn_req, N_conn_ind, N_conn_res, and
* N_conn_con primitives)
*
* Flags to indicate support of network provider options; (used with the
* OPTIONS_flags field of N_info_ack primitive)
*/

#define REC_CONF_OPT 0x00000001L /* Receipt Confirmation
* Selection and Support */

#define EX_DATA_OPT 0x00000002L /* Expedited Data Selection
* and Support */

Revision: 2.0.0 Page 124 August 17, 1992

OSI Work Group

/* This flag is used with the OPTIONS_flags field of N_info_ack as well as */
/* the OPTMGMT_flags field of the N_optmgmt_req primitive */

#define DEFAULT_RC_SEL 0x00000003L /* Indicates if default
* receipt confirmation is
* selected */

/*
* BIND_flags; (used with N_bind_req primitive)
*/

#define DEFAULT_LISTENER 0x00000001L /* indicates if this stream
* is the default listener */

#define TOKEN_REQUEST 0x00000002L /* indicates if "token"
* should be assigned to
* thestream */

#define DEFAULT_DEST 0x00000004L /* indicates if default
* dest. stream */

/*
* QOS Parameter Definitions
*/

/*
* Throughput
*
* This parameter is specified for both directions.
*/

typedef struct {
long thru_targ_value; /* target throughput values */
long thru_min_value; /* minimum acceptable

* throughput value */
} thru_values_t;

/*
* Transit Delay
*/

typedef struct {
long td_targ_value; /* target transit delay */
long td_max_value; /* maximum acceptable

* transit delay */
} td_values_t;

Revision: 2.0.0 Page 125 August 17, 1992

NPI Header File

/*
* Protection Values
*/

typedef struct {
long protect_targ_value; /* target protection value */
long protect_min_value; /* minimum or available

* protection */
} protection_values_t;

/*
* Priority Values
*/

typedef struct {
long priority_targ_value; /* target priority */
long priority_min_value; /* minimum acceptable

* priority */
} priority_values_t;

/*
* Types of protection specifications
*/
#define N_NO_PROT 0x00000000L /* no protection */
#define N_PASSIVE_PROT 0x00000001L /* protection against

* passive monitoring */
#define N_ACTIVE_PROT 0x00000002L /* protection against

* active monitoring */
#define N_ACTIVE_PASSIVE_PROT 0x00000003L /* protection against

* active and passive
* monitoring */

/*
* Cost Selection
*/

#define N_LEAST_EXPENSIVE 0x00000000L /* choose least expensive
* means */

/*
* QOS STRUCTURE TYPES AND DEFINED VALUES
*/

#define N_QOS_CO_RANGE1 0x0101
#define N_QOS_CO_SEL1 0x0102

Revision: 2.0.0 Page 126 August 17, 1992

OSI Work Group

#define N_QOS_CL_RANGE1 0x0103
#define N_QOS_CL_SEL1 0x0104
#define N_QOS_CO_OPT_RANGE1 0x0105
#define N_QOS_CO_OPT_SEL1 0x0106

/*
* When a NS user/provider cannot determine the value of a QOS field, it
* should return a value of QOS_UNKNOWN.
*/

#define QOS_UNKNOWN -1

/*
* QOS range for CONS. (Used with N_CONN_REQ and N_CONN_IND.)
*/
typedef struct {

ulong n_qos_type; /* always N_QOS_CO_RANGE */
thru_values_t src_throughput_range; /* source throughput range */
thru_values_t dest_throughput_range; /* destination throughput

* range */
td_values_t transit_delay_range; /* transit delay range */
protection_values_t protection_range; /* protection range */
priority_values_t priority_range; /* priority range */

} N_qos_co_range_t;

/*
* QOS selected for CONS. (Used with N_CONN_RES and N_CONN_CON.)
*/

typedef struct {
ulong n_qos_type; /* always N_QOS_CO_SEL */
long src_throughput_sel; /* source throughput

* selected */
long dest_throughput_sel; /* destination throughput

* selected */
long transit_delay_sel; /* transit delay selected */
long protection_sel; /* NC protection selected */
long priority_sel; /* NC priority selected */

} N_qos_co_sel_t;

/*
* QOS range for CLNS options management. (Used with N_INFO_ACK.)
*/
typedef struct {

ulong n_qos_type; /* always N_QOS_CL_RANGE */
td_values_t transit_delay_max; /* maximum transit delay */
ulong residual_error_rate; /* residual error rate */
protection_values_t protection_range; /* protection range */

Revision: 2.0.0 Page 127 August 17, 1992

NPI Header File

priority_values_t priority_range; /* priority range */
long max_accept_cost; /* maximum acceptable cost */

} N_qos_cl_range_t;

/*
* QOS selection for CLNS options management. (Used with N_OPTMGMT_REQ and
* N_INFO_ACK.)
*/
typedef struct {

ulong n_qos_type; /* always N_QOS_CL_sel */
long transit_delay_max; /* maximum transit delay */
ulong residual_error_rate; /* residual error rate */
long protection_sel; /* protection selected */
long priority_sel; /* priority selected */
long max_accept_cost; /* maximum acceptable cost */

} N_qos_cl_sel_t;

/*
* QOS range for CONS options management. (Used with N_OPTMGMT_REQ.)
*/
typedef struct {

ulong n_qos_type; /* always N_QOS_CO_OPT_RANGE */
thru_values_t src_throughput; /* source throughput values */
thru_values_t dest_throughput; /* dest throughput values */
td_values_t transit_delay_t; /* transit delay values */
long nc_estab_delay; /* NC establishment delay */
ulong nc_estab_fail_prob; /* NC estab failure

* probability */
ulong residual_error_rate; /* residual error rate */
ulong xfer_fail_prob; /* transfer failure

* probability */
ulong nc_resilience; /* NC resilience */
long nc_rel_delay; /* NC release delay */
ulong nc_rel_fail_prob; /* NC release failure

* probability */
protection_values_t protection_range; /* protection range */
priority_values_t priority_range; /* priority range */
long max_accept_cost; /* maximum acceptable cost */

} N_qos_co_opt_range_t;

/*
* QOS values selected for CONS options management. (Used with N_OPTMGMT_REQ
* and N_INFO_ACK.)
*/
typedef struct {

ulong n_qos_type; /* always N_QOS_CO_OPT_SEL */
thru_values_t src_throughput; /* source throughput values */
thru_values_t dest_throughput; /* dest throughput values */
td_values_t transit_delay_t; /* transit delay values */
long nc_estab_delay; /* NC establishment delay */

Revision: 2.0.0 Page 128 August 17, 1992

OSI Work Group

ulong nc_estab_fail_prob; /* NC estab failure
* probability */

ulong residual_error_rate; /* residual error rate */
ulong xfer_fail_prob; /* transfer failure

* probability */
ulong nc_resilience; /* NC resilience */
long nc_rel_delay; /* NC release delay */
ulong nc_rel_fail_prob; /* NC release failure

* probability */
long protection_sel; /* protection selected */
long priority_sel; /* priority selected */
long max_accept_cost; /* maximum acceptable cost */

} N_qos_co_opt_sel_t;

/*
* NPI Primitive Definitions
*/

/*
* Local management service primitives
*/

/*
* Information request
*/

typedef struct {
ulong PRIM_type; /* always N_INFO_REQ */

} N_info_req_t;

/*
* Information acknowledgement
*/

typedef struct {
ulong PRIM_type; /* always N_INFO_ACK */
ulong NSDU_size; /* maximum NSDU size */
ulong ENSDU_size; /* maximum ENSDU size */
ulong CDATA_size; /* connect data size */
ulong DDATA_size; /* discon data size */
ulong ADDR_size; /* address size */
ulong ADDR_length; /* address length */
ulong ADDR_offset; /* address offset */
ulong QOS_length; /* QOS values length */
ulong QOS_offset; /* QOS values offset */
ulong QOS_range_length; /* length of QOS values’

* range */

Revision: 2.0.0 Page 129 August 17, 1992

NPI Header File

ulong QOS_range_offset; /* offset of QOS values’
* range */

ulong OPTIONS_flags; /* bit masking for options
* supported */

ulong NIDU_size; /* network i/f data unit
* size */

long SERV_type; /* service type */
ulong CURRENT_state; /* current state */
ulong PROVIDER_type; /* type of NS provider */
ulong NODU_size; /* optimal NSDU size */
ulong PROTOID_length; /* length of bound protocol

* ids */
ulong PROTOID_offset; /* offset of bound protocol

* ids */
ulong NPI_version; /* version # of npi that is

* supported */
} N_info_ack_t;

/*
* Service types supported by NS provider
*/
#define N_CONS 1 /* Connection-mode network

* service supported */
#define N_CLNS 2 /* Connection-less network

* service supported */

/*
* Valid provider types
*/
#define N_SNICFP 1
#define N_SUBNET 2
/*
* Bind request
*/

typedef struct {
ulong PRIM_type; /* always N_BIND_REQ */
ulong ADDR_length; /* length of address */
ulong ADDR_offset; /* offset of address */
ulong CONIND_number; /* requested # of connect- */
/* indications to be queued */
ulong BIND_flags; /* bind flags */
ulong PROTOID_length; /* length of bound protocol

* ids */
ulong PROTOID_offset; /* offset of bound protocol

* ids */
} N_bind_req_t;

/*
* Bind acknowledgement

Revision: 2.0.0 Page 130 August 17, 1992

OSI Work Group

*/

typedef struct {
ulong PRIM_type; /* always N_BIND_ACK */
ulong ADDR_length; /* address length */
ulong ADDR_offset; /* offset of address */
ulong CONIND_number; /* connection indications */
ulong TOKEN_value; /* value of "token" assigned

* to stream */
ulong PROTOID_length; /* length of bound protocol

* ids */
ulong PROTOID_offset; /* offset of bound protocol

* ids */
} N_bind_ack_t;

/*
* Unbind request
*/

typedef struct {
ulong PRIM_type; /* always N_UNBIND_REQ */

} N_unbind_req_t;

/*
* Options management request
*/

typedef struct {
ulong PRIM_type; /* always N_OPTMGMT_REQ */
ulong QOS_length; /* length of QOS parameter

* values */
ulong QOS_offset; /* offset of QOS parameter

* values */
ulong OPTMGMT_flags; /* options management flags */

} N_optmgmt_req_t;

/*
* Error acknowledgement for CONS services
*/

typedef struct {
ulong PRIM_type; /* always N_ERROR_ACK */
ulong ERROR_prim; /* primitive in error */
ulong NPI_error; /* NPI error code */
ulong UNIX_error; /* UNIX error code */

} N_error_ack_t;

Revision: 2.0.0 Page 131 August 17, 1992

NPI Header File

/*
* Successful completion acknowledgement
*/

typedef struct {
ulong PRIM_type; /* always N_OK_ACK */
ulong CORRECT_prim; /* primitive being

* acknowledged */
} N_ok_ack_t;

/*
* CONS PRIMITIVES
*/

/*
* Network connection request
*/

typedef struct {
ulong PRIM_type; /* always N_CONN_REQ */
ulong DEST_length; /* destination address

* length */
ulong DEST_offset; /* destination address

* offset */
ulong CONN_flags; /* bit masking for options

* flags */
ulong QOS_length; /* length of QOS parameter

* values */
ulong QOS_offset; /* offset of QOS parameter

* values */
} N_conn_req_t;

/*
* Connection indication
*/

typedef struct {
ulong PRIM_type; /* always N_CONN_IND */
ulong DEST_length; /* destination address

* length */
ulong DEST_offset; /* destination address

* offset */
ulong SRC_length; /* source address length */
ulong SRC_offset; /* source address offset */
ulong SEQ_number; /* sequence number */
ulong CONN_flags; /* bit masking for options

* flags */
ulong QOS_length; /* length of QOS parameter

* values */

Revision: 2.0.0 Page 132 August 17, 1992

OSI Work Group

ulong QOS_offset; /* offset of QOS parameter
* values */

} N_conn_ind_t;

/*
* Connection response
*/

typedef struct {
ulong PRIM_type; /* always N_CONN_RES */
ulong TOKEN_value; /* NC response token value */
ulong RES_length; /* responding address length */
ulong RES_offset; /* responding address offset */
ulong SEQ_number; /* sequence number */
ulong CONN_flags; /* bit masking for options

* flags */
ulong QOS_length; /* length of QOS parameter

* values */
ulong QOS_offset; /* offset of QOS parameter

* values */
} N_conn_res_t;

/*
* Connection confirmation
*/

typedef struct {
ulong PRIM_type; /* always N_CONN_CON */
ulong RES_length; /* responding address length */
ulong RES_offset; /* responding address offset */
ulong CONN_flags; /* bit masking for options

* flags */
ulong QOS_length; /* length of QOS parameter

* values */
ulong QOS_offset; /* offset of QOS parameter

* values */
} N_conn_con_t;

/*
* Connection mode data transfer request
*/

typedef struct {
ulong PRIM_type; /* always N_DATA_REQ */
ulong DATA_xfer_flags; /* data transfer flags */

} N_data_req_t;

Revision: 2.0.0 Page 133 August 17, 1992

NPI Header File

/*
* NPI MORE_DATA_FLAG for segmenting NSDU into more than 1 NIDUs
*/
#define N_MORE_DATA_FLAG 0x00000001L /* Indicates that the next

* NIDU is part of this NSDU */
/*
* NPI Receipt confirmation request set flag
*/
#define N_RC_FLAG 0x00000002L /* Indicates if receipt

* confirmation is required */

/*
* Incoming data indication for an NC
*/

typedef struct {
ulong PRIM_type; /* always N_DATA_IND */
ulong DATA_xfer_flags; /* data transfer flags */

} N_data_ind_t;

/*
* Data acknowledgement request
*/

typedef struct {
ulong PRIM_type; /* always N_DATACK_REQ */

} N_datack_req_t;

/*
* Data acknowledgement indication
*/

typedef struct {
ulong PRIM_type; /* always N_DATACK_IND */

} N_datack_ind_t;
/*
* Expedited data transfer request
*/

typedef struct {
ulong PRIM_type; /* always N_EXDATA_REQ */

} N_exdata_req_t;

/*
* Expedited data transfer indication
*/

typedef struct {
ulong PRIM_type; /* always N_EXDATA_IND */

Revision: 2.0.0 Page 134 August 17, 1992

OSI Work Group

} N_exdata_ind_t;

/*
* NC reset request
*/

typedef struct {
ulong PRIM_type; /* always N_RESET_REQ */
ulong RESET_reason; /* reason for reset */

} N_reset_req_t;
/*
* NC reset indication
*/

typedef struct {
ulong PRIM_type; /* always N_RESET_IND */
ulong RESET_orig; /* reset originator */
ulong RESET_reason; /* reason for reset */

} N_reset_ind_t;
/*
* NC reset response
*/
typedef struct {

ulong PRIM_type; /* always N_RESET_RES */
} N_reset_res_t;

/*
* NC reset confirmed
*/

typedef struct {
ulong PRIM_type; /* always N_RESET_CON */

} N_reset_con_t;

/*
* NC disconnection request
*/

typedef struct {
ulong PRIM_type; /* always N_DISCON_REQ */
ulong DISCON_reason; /* reason */
ulong RES_length; /* responding address length */
ulong RES_offset; /* responding address offset */
ulong SEQ_number; /* sequence number */

} N_discon_req_t;

/*
* NC disconnection indication
*/

Revision: 2.0.0 Page 135 August 17, 1992

NPI Header File

typedef struct {
ulong PRIM_type; /* always N_DISCON_IND */
ulong DISCON_orig; /* originator */
ulong DISCON_reason; /* reason */
ulong RES_length; /* address length */
ulong RES_offset; /* address offset */
ulong SEQ_number; /* sequence number */

} N_discon_ind_t;

/*
* CLNS PRIMITIVES
*/
/*
* Unitdata transfer request
*/

typedef struct {
ulong PRIM_type; /* always N_UNITDATA_REQ */
ulong DEST_length; /* destination address

* length */
ulong DEST_offset; /* destination address

* offset */
ulong RESERVED_field[2]; /* reserved field for DLPI

* compatibility */
} N_unitdata_req_t;

/*
* Unitdata transfer indication
*/

typedef struct {
ulong PRIM_type; /* always N_UNITDATA_IND */
ulong SRC_length; /* source address length */
ulong SRC_offset; /* source address offset */
ulong DEST_length; /* source address length */
ulong DEST_offset; /* source address offset */
ulong ERROR_type; /* reserved field for DLPI

* compatibility */
} N_unitdata_ind_t;

/*
* Unitdata error indication for CLNS services
*/

typedef struct {
ulong PRIM_type; /* always N_UDERROR_IND */
ulong DEST_length; /* destination address

* length */

Revision: 2.0.0 Page 136 August 17, 1992

OSI Work Group

ulong DEST_offset; /* destination address
* offset */

ulong RESERVED_field; /* reserved field for DLPI
* compatibility */

ulong ERROR_type; /* error type */
} N_uderror_ind_t;

/*
* The following represents a union of all the NPI primitives
*/

union N_primitives {
ulong type;
N_info_req_t info_req; /* information request */
N_info_ack_t info_ack; /* information

* acknowledgement */
N_bind_req_t bind_req; /* bind request */
N_bind_ack_t bind_ack; /* bind acknowledgement */
N_unbind_req_t unbind_req; /* unbind request */
N_optmgmt_req_t optmgmt_req; /* options management

* request */
N_error_ack_t error_ack; /* error acknowledgement */
N_uderror_ind_t uderror_ind; /* unitdata error indication */
N_ok_ack_t ok_ack; /* ok acknowledgement */
N_conn_req_t conn_req; /* connect request */
N_conn_ind_t conn_ind; /* connect indication */
N_conn_res_t conn_res; /* connect response */
N_conn_con_t conn_con; /* connect confirm */
N_data_req_t data_req; /* data request */
N_data_ind_t data_ind; /* data indication */
N_datack_req_t datack_req; /* data acknowledgement

* request */
N_datack_ind_t datack_ind; /* data acknowledgement

* indication */
N_exdata_req_t exdata_req; /* expedited data request */
N_exdata_ind_t exdata_ind; /* expedited data indication */
N_reset_req_t reset_req; /* reset request */
N_reset_ind_t reset_ind; /* reset indication */
N_reset_res_t reset_res; /* reset response */
N_reset_con_t reset_con; /* reset confirm */
N_discon_req_t discon_req; /* disconnect request */
N_discon_ind_t discon_ind; /* disconnect indication */
N_unitdata_req_t unitdata_req; /* unitdata request */
N_unitdata_ind_t unitdata_ind; /* unitdata indication */

};

Revision: 2.0.0 Page 137 August 17, 1992

NPI Header File

PLEASE DISCARD THIS PAGE!!!

Revision: 2.0.0 - cxxxviii - August 17, 1992

Table of Contents

1. Introduction . 1
1.1 Related Documentation 1

1.1.1 Role 1
1.2 Definitions, Acronyms, and Abbreviations 2

2. The Network Layer 3
2.1 Model of the NPI 3
2.2 NPI Services 3

3. NPI Services Definition 7
3.1 Local Management Services Definition 7

3.1.1 Network Information Reporting Service 7
3.1.2 NS User Bind Service 7
3.1.3 NS User Unbind Service 8
3.1.4 Receipt Acknowledgement Service 9
3.1.5 Options Management Service 9
3.1.6 Error Acknowledgement Service 10

3.2 Connection-Mode Network Services Definition 11
3.2.1 Connection Establishment Phase 12

3.2.1.1 User Primitives for Successful Network Connection
Establishment 12

3.2.1.2 Provider Primitives for Successful Network Connection
Establishment 12

3.2.2 Data Transfer Phase 14
3.2.2.1 User Primitives for Data Transfer 14
3.2.2.2 Provider Primitives for Data Transfer 14

3.2.3 Reset Operation Primitives 16
3.2.3.1 User Primitives for Reset Operations 17
3.2.3.2 Provider Primitives for Reset Operations 17

3.2.4 Connection Termination Phase 19
3.2.4.1 User Primitives for Connection Termination 19
3.2.4.2 Provider Primitives for Connection

Termination 19
3.3 Connectionless Network Services Definition 22

3.3.1 User Request Primitives 23
3.3.2 Provider Response Primitives 23

4. NPI Primitives 25
4.1 Management Primitives 27

4.1.1 Network Information Request 27
4.1.2 Network Information Acknowledgement 28
4.1.3 Bind Protocol Address Request 33
4.1.4 Bind Protocol Address Acknowledgement 36

Revision: 2.0.0 - i - August 17, 1992

4.1.5 Unbind Protocol Address Request 39
4.1.6 Network Options Management Request 40
4.1.7 Error Acknowledgement 42
4.1.8 Successful Receipt Acknowledgement 44

4.2 CONS: Primitive Format and Rules 45
4.2.1 Connection Establishment Phase 45

4.2.1.1 Network Connection Request 45
4.2.1.2 Network Connection Indication 48
4.2.1.3 Network Connection Response 50
4.2.1.4 Network Connection Confirm 53

4.2.2 Normal Data Transfer Phase 55
4.2.2.1 Normal Data Transfer Request 55
4.2.2.2 Normal Data Transfer Indication 58

4.2.3 Receipt Confirmation Service Primitives 60
4.2.3.1 Data Acknowledgement Request 60
4.2.3.2 Data Acknowledgement Indication 62

4.2.4 Expedited Data Transfer Service 63
4.2.4.1 Expedited Data Transfer Request 63
4.2.4.2 Expedited Data Transfer Indication 65

4.2.5 Reset Service 66
4.2.5.1 Reset Request 66
4.2.5.2 Reset Indication 68
4.2.5.3 Reset Response 69
4.2.5.4 Reset Confirmation 70

4.2.6 Network Connection Release Phase 71
4.2.6.1 Disconnect Request 71
4.2.6.2 Disconnect Indication 74

4.3 CLNS: Primitive Format and Rules 76
4.3.1 Unitdata Request 76
4.3.2 Unitdata Indication 78
4.3.3 Unitdata Error Indication 79

5. Diagnostics Requirements 81
5.1 Non-Fatal Error Handling Facility 81
5.2 Fatal Error Handling Facility 81

6. References . 83

7. Addendum for OSI Conformance 85
7.1 Quality of Service: Model & Description 85

7.1.1 QOS Overview 85
7.1.2 QOS Parameter Formats 86

7.1.2.1 NC Establishment Delay 86
7.1.2.2 NC Establishment Failure Probability 86
7.1.2.3 Throughput 86
7.1.2.4 Transit Delay 87

Revision: 2.0.0 - ii - August 17, 1992

7.1.2.5 Residual Error Rate 87
7.1.2.6 NC Resilience 88
7.1.2.7 Transfer Failure Probability 88
7.1.2.8 NC Release Delay 88
7.1.2.9 NC Release Failure Probability 88
7.1.2.10 Protection 89
7.1.2.11 Priority 89
7.1.2.12 Maximum Acceptable Cost 90

7.1.3 QOS Data Structures 91
7.1.3.1 Structure N_QOS_CO_RANGE1 91
7.1.3.2 Structure N_QOS_CO_SEL1 92
7.1.3.3 Structure N_QOS_CL_RANGE1 92
7.1.3.4 Structure N_QOS_CL_SEL1 92
7.1.3.5 Structure N_QOS_CO_OPT_RANGE1 93
7.1.3.6 Structure N_QOS_CO_OPT_SEL1 93

7.2 NPI Primitives: Rules for OSI Conformance 95
7.2.1 Local Management Primitives 95

7.2.1.1 N_INFO_ACK 95
7.2.1.2 N_OPTMGMT_REQ 97

7.2.2 CONS: Connection Establishment Phase 97
7.2.2.1 N_CONN_REQ 102
7.2.2.2 N_CONN_IND 103
7.2.2.3 N_CONN_RES 103
7.2.2.4 N_CONN_CON 104

7.2.3 CONS: Reset Service 105
7.2.3.1 N_RESET_REQ 105
7.2.3.2 N_RESET_IND 105

7.2.4 CONS: NC Release Phase 106
7.2.4.1 N_DISCON_REQ 106
7.2.4.2 N_DISCON_IND 106

7.2.5 CLNS 108
7.2.5.1 N_UDERROR_IND 108

Appendix A. Mapping NPI Primitives to ISO 8348 and CCITT X.213 109

Appendix B. State/Event Tables 111

Appendix C. Primitive Precedence Tables 117

Appendix D. NPI Header File Listing 119

Revision: 2.0.0 - iii - August 17, 1992

Revision: 2.0.0 - iv - August 17, 1992

Revision: 2.0.0 - v - August 17, 1992

