
Implementing SIGTRAN for Linux Fast-STREAMS

Design for Linux

Brian F. G. Bidulock∗

OpenSS7 Corporation

June 16, 2007

Abstract

1 Background

UNIX networking has a rich history. The TCP/IP protocol
suite was first implemented by BBN using Sockets under a
DARPA research project on 4.1aBSD and then incorporated by
the CSRG into 4.2BSD [MBKQ97]. Lachmann and Associates
(Legent) subsequently implemented one of the first TCP/IP pro-
tocol suite based on the Transport Layer Interface (TLI) [TLI92]
and STREAMS [GC94]. Two other predominant TCP/IP im-
plementations on STREAMS surfaced at about the same time:
Wollongong and Mentat.

1.1 STREAMS

STREAMS is a facility first presented in a paper by Dennis M.
Ritchie in 1984 [Rit84], originally implemented on 4.1BSD and
later part of the Bell Laboratories Eighth Edition UNIX, incor-
porated into UNIX System V Release 3 and enhanced in UNIX
System V Release 4 and further in UNIX System V Release 4.2.
STREAMS was used in SVR4 for terminal input-output, pseudo-
terminals, pipes, named pipes (FIFOs), interprocess communica-
tion and networking. STREAMS was used in SVR3 for network-
ing (in the NSU package). Since its release in System V Release 3,
STREAMS has been implemented across a wide range of UNIX,
UNIX-like and UNIX-based systems, making its implementation
and use an ipso facto standard.

STREAMS is a facility that allows for a reconfigurable full
duplex communications path, Stream, between a user process and
a driver in the kernel. Kernel protocol modules can be pushed
onto and popped from the Stream between the user process and
driver. The Stream can be reconfigured in this way by a user
process. The user process, neighbouring protocol modules and
the driver communicate with each other using a message passing
scheme. This permits a loose coupling between protocol modules,
drivers and user processes, allowing a third-party and loadable
kernel module approach to be taken toward the provisioning of
protocol modules on platforms supporting STREAMS.

On UNIX System V Release 4.2, STREAMS was used for ter-
minal input-output, pipes, FIFOs (named pipes), and network
communications. Modern UNIX, UNIX-like and UNIX-based
systems providing STREAMS normally support some degree
of network communications using STREAMS; however, many
do not support STREAMS-based pipe and FIFOs1 or terminal
input-output2 without system reconfiguration.

UNIX System V Release 4.2 supported four Application Pro-
gramming Interfaces (APIs) for accessing the network communi-
cations facilities of the kernel:

Transport Layer Interface (TLI). TLI is an acronym for the
Transport Layer Interface [TLI92]. The TLI was the non-
standard interface provided by SVR3 and SVR4, later stan-
dardized by X/Open as the XTI described below. This in-
terface operated differently than the XTI in subtle ways,
and is now deprecated.

X/Open Transport Interface (XTI). XTI is an acronym for the
X/Open Transport Interface [XTI99]. The X/Open Trans-
port Interface is a standardization of the UNIX System V
Release 4, Transport Layer Interface. The interface consists
of an Application Programming Interface implemented as
a shared object library. The shared object library com-
municates with a transport provider Stream using a ser-
vice primitive interface called the Transport Provider In-
terface[TPI99].

While XTI was implemented directly over STREAMS de-
vices supporting the Transport Provider Interface (TPI)
[TPI99] under SVR4, several non-traditional approaches ex-
ist in implementation:

Berkeley Sockets. Sockets uses the BSD interface that was devel-
oped by BBN for the TCP/IP protocol suite under DARPA
contract on 4.1aBSD and released in 4.2BSD. BSD Sockets
provides a set of primary API functions that are typically
implemented as system calls. The BSD Sockets interface is
non-standard, operated differently from the POSIX inter-
face in subtle ways, and is now deprecated in favour of the
POSIX/SUS standard Sockets interface.

POSIX Sockets. Sockets were standardized by X/Open, later the
OpenGroup,3 and IEEE in the POSIX standardization pro-
cess. They appear in XNS 5.2 [XNS99], SUSv1 [SUS95],
SUSv2 [SUS98] and SUSv3 [SUS03]. POSIX/SUS Sockets
is now the common application environment for accessing
networking, deprecating the XTI for TCP/IP networking
applications.

On systems traditionally supporting Sockets and then
retrofitted to support STREAMS, there is one approach toward
supporting XTI without refitting the entire networking stack:4

XTI over Sockets. Several implementations of STREAMS on
UNIX utilize the concept of TPI over Sockets. Following
this approach, a STREAMS pseudo-device driver is provided
that hooks directly into internal socket system calls to im-
plement the driver, and yet the networking stack remains
fundamentally BSD in style.

Typically there are two approaches to implementing XTI on
systems not supporting STREAMS:

XTI Compatibility Library. Several implementations of XTI on
UNIX utilize the concept of an XTI compatibility library.5

This is purely a shared object library approach to provid-
ing XTI. Under this approach it is possible to use the XTI
application programming interface, but it is not possible to

∗bidulock@openss7.org

1. AIX, for example.

2. HP-UX, for example.

3. http://www.opengroup.org/

4. This approach is taken by True64 (Digital) UNIX.

5. One was even available for Linux at one point.

1



utilize any of the STREAMS capabilities of an underlying
Transport Provider Interface (TPI) stream.

TPI over Sockets. An alternate approach, taken by the Linux
iBCS package was to provide a pseudo-transport provider
using a legacy character device to present the appearance of
a STREAMS transport provider.

Conversely, on systems supporting STREAMS, but not tradi-
tionally supporting Sockets (such as SVR4), there are four ap-
proaches toward supporting BSD and POSIX Sockets based on
STREAMS:

Compatibility Library Under this approach, a compatibility li-
brary (libsocket.o) contains the socket calls as library
functions that internally invoke the TLI or TPI interface to
an underlying STREAMS transport provider. This is the ap-
proach originally taken by SVR4 [GC94], but this approach
has subsequently been abandoned due to the difficulties re-
garding fork(2) and fundamental incompatibilities deriving
from a library only approach.

Library and cooperating STREAMS module. Under this ap-
proach, a cooperating module, normally called sockmod, is
pushed on a Transport Provider Interface (TPI) Stream.
The library, normally called socklib or simply socket, and
cooperating sockmod module provide the BBN or POSIX
Socket API. [VS90] [Mar01]

Library and System Calls. Under this approach, the BSD or
POSIX Sockets API is implemented as system calls with
the sole exception of the socket(3) call. The underlying
transport provider is still an TPI-based STREAMS trans-
port provider, it is just that system calls instead of library
calls are used to implement the interface. [Mar01]

System Calls. Under this approach, even the socket(3) call is
moved into the kernel. Conversion between POSIX/BSD
Sockets calls and TPI service primitives is performed com-
pletely within the kernel. The sock2path(5) configuration
file is used to configure the mapping between STREAMS
devices and socket types and domains [Mar01].

1.1.1 Standardization.

During the POSIX standardization process, networking and
Sockets interfaces were given special treatment to ensure that
both the legacy Sockets approach and the STREAMS approach
to networking were compatible. POSIX has standardized both
the XTI and Sockets programmatic interface to networking.
STREAMS networking has been POSIX compliant for many
years, BSD Sockets, POSIX Sockets, TLI and XTI interfaces, and
were compliant in the SVR4.2 release. The STREAMS network-
ing provided by Linux Fast-STREAMS package provides POSIX
compliant networking.

Therefore, any application utilizing a Socket or Stream
in a POSIX compliant manner will also be compatible with
STREAMS networking.6

1.2 Linux Fast-STREAMS

The first STREAMS package for Linux that provided SVR4
STREAMS capabilities was the Linux STREAMS (LiS) package
originally available from GCOM [LiS]. This package exhibited in-
compatibilities with SVR 4.2 STREAMS and other STREAMS
implementations, was bugger and performed very poorly on
Linux. These difficulties prompted the OpenSS7 Project [SS7]
to implement an SVR 4.2 STREAMS package from scratch, with
the objective of production quality and high-performance, named
Linux Fast-STREAMS [LfS].

The OpenSS7 Project also maintains public and internal ver-
sion of the LiS package. The last public release was LiS-2.18.3 ;

the current internal release version is LiS-2.18.6. The current
production public release of Linux Fast-STREAMS is streams-
0.9.3.

2 Objective

3 Description

4 Method

5 Results

6 Analysis

7 Conclusions

8 Future Work

9 Related Work

References

[GC94] Berny Goodheart and James Cox. The magic gar-
den explained: the internals of UNIX System V Re-
lease 4, an open systems design / Berny Goodheart
& James Cox. Prentice Hall, Australia, 1994. ISBN
0-13-098138-9.

[LfS] Linux Fast-STREAMS – A High-Performance SVR
4.2 MP STREAMS Implementation for Linux.
http://www.openss7.org/download.html.

[LiS] Linux STREAMS (LiS). http://www.openss7.org/-
download.html.

[Mar01] Jim Mario. Solaris sockets, past and present. Unix
Insider, September 2001.

[MBKQ97] Marshall Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. Quaterman. The design and
implementation of the 4.4BSD operating system.
Addison-Wesley, third edition, November 1997. ISBN
0-201-54979-4.

[Rit84] Dennis M. Ritchie. A Stream Input-output Sys-
tem. AT&T Bell Laboratories Technical Journal,
63(8):1897–1910, October 1984. Part 2.

[SS7] The OpenSS7 Project. http://www.openss7.org/.

[SUS95] Single UNIX Specification, Version 1. Open Group
Publication, The Open Group, 1995. http://www.-
opengroup.org/onlinepubs/.

[SUS98] Single UNIX Specification, Version 2. Open Group
Publication, The Open Group, 1998. http://www.-
opengroup.org/onlinepubs/.

[SUS03] Single UNIX Specification, Version 3. Open Group
Publication, The Open Group, 2003. http://www.-
opengroup.org/onlinepubs/.

[TLI92] Transport Provider Interface Specification, Revision
1.5. Technical Specification, UNIX International,
Inc., Parsipanny, New Jersey, December 10 1992.
http://www.openss7.org/docs/tpi.pdf.

[TPI99] Transport Provider Interface (TPI) Specification,
Revision 2.0.0, Draft 2. Technical Specification, The
Open Group, Parsipanny, New Jersey, 1999. http://-
www.opengroup.org/onlinepubs/.

6. This compatibility is exemplified by the netperf program which does
not distinguish between BSD or STREAMS based networking in their im-
plementation or use.

2



[VS90] Ian Vessey and Glen Skinner. Implementing Berkeley
Sockets in System V Release 4. In Proceedings of the
Winter 1990 USENIX Conference. USENIX, 1990.

[XNS99] Network Services (XNS), Issue 5.2, Draft 2.0. Open
Group Publication, The Open Group, 1999. http://-
www.opengroup.org/onlinepubs/.

[XTI99] XOpen Tranport Interface (XTI). Technical Stan-
dard XTI/TLI Revision 1.0, X Programmer’s Group,
1999. http://www.opengroup.org/onlinepubs/.

3


