
STREAMS vs. Sockets Performance Comparison for SCTP

Experimental Test Results for Linux

Brian F. G. Bidulock∗

OpenSS7 Corporation

June 16, 2007

Abstract

With the objective of contrasting performance between
STREAMS and legacy approaches to system facilities, a compar-
ison is made between the tested performance of the Linux Native
Sockets TCP implementation and STREAMS TPI SCTP and
XTIoS TCP implementations using the Linux Fast-STREAMS
package [LfS].

1 Background

UNIX networking has a rich history. The TCP/IP protocol suite
was first implemented by BBN using Sockets under a DARPA re-
search project on 4.1aBSD and then incorporated by the CSRG
into 4.2BSD [MBKQ97]. Lachmann and Associates (Legent) sub-
sequently implemented one of the first TCP/IP protocol suite
based on the Transport Provider Interface (TPI) [TLI92] and
STREAMS [GC94]. Two other predominant TCP/IP implemen-
tations on STREAMS surfaced at about the same time: Wollon-
gong and Mentat.

1.1 STREAMS

STREAMS is a facility first presented in a paper by Dennis M.
Ritchie in 1984 [Rit84], originally implemented on 4.1BSD and
later part of Bell Laboratories Eighth Edition UNIX, incorpo-
rated into UNIX System V Release 3 and enhanced in UNIX
System V Release 4 and further in UNIX System V Release
4.2. STREAMS was used in SVR4 for terminal input-output,
pseudo-terminals, pipes, named pipes (FIFOs), interprocess com-
munication and networking. STREAMS was used in SVR3 for
networking (with the NSU package). Since its release in System
V Release 3, STREAMS has been implemented across a wide
range of UNIX, UNIX-like and UNIX-based systems, making its
implementation and use an ipso facto standard.

STREAMS is a facility that allows for a reconfigurable full
duplex communications path, Stream, between a user process and
a driver in the kernel. Kernel protocol modules can be pushed
onto and popped from the Stream between the user process and
driver. The Stream can be reconfigured in this way by a user
process. The user process, neighbouring protocol modules and
the driver communicate with each other using a message passing
scheme. This permits a loose coupling between protocol modules,
drivers and user processes, allowing a third-party and loadable
kernel module approach to be taken toward the provisioning of
protocol modules on platforms supporting STREAMS.

On UNIX System V Release 4.2, STREAMS was used for ter-
minal input-output, pipes, FIFOs (named pipes), and network
communications. Modern UNIX, UNIX-like and UNIX-based
systems providing STREAMS normally support some degree
of network communications using STREAMS; however, many
do not support STREAMS-based pipe and FIFOs1 or terminal
input-output2 directly or without reconfiguration.

UNIX System V Release 4.2 supported four Application Pro-
grammer Interfaces (APIs) for accessing the network communi-

cations facilities of the kernel:

Transport Layer Interface (TLI). TLI is an acronym for the
Transport Layer Interface [TLI92]. The TLI was the non-
standard interface provided by SVR4, later standardized by
X/Open as the XTI described below. This interface is now
deprecated.

X/Open Transport Interface (XTI). XTI is an acronym for the
X/Open Transport Interface [XTI99]. The X/Open Trans-
port Interface is a standardization of the UNIX System V
Release 4, Transport Layer Interface. The interface con-
sists of an Application Programming Interface implemented
as a shared object library. The shared object library com-
municates with a transport provider Stream using a service
primitive interface called the Transport Provider Interface.

While XTI was implemented directly over STREAMS de-
vices supporting the Transport Provider Interface (TPI)
[TPI99] under SVR4, several non-traditional approaches ex-
ist in implementation:

Berkeley Sockets. Sockets uses the BSD interface that was de-
veloped by BBN for TCP/IP protocol suite under DARPA
contract on 4.1aBSD and released in 4.2BSD. BSD Sock-
ets provides a set of primary API functions that are typi-
cally implemented as system calls. The BSD Sockets inter-
face is non-standard and is now deprecated in favour of the
POSIX/SUS standard Sockets interface.

POSIX Sockets. Sockets were standardized by the OpenGroup
[OG] and IEEE in the POSIX standardization process.
They appear in XNS 5.2 [XNS99], SUSv1 [SUS95], SUSv2
[SUS98] and SUSv3 [SUS03].

On systems traditionally supporting Sockets and then
retrofitted to support STREAMS, there is one approach toward
supporting XTI without refitting the entire networking stack:3

XTI over Sockets. Several implementations of STREAMS on
UNIX utilize the concept of TPI over Sockets. Following
this approach, a STREAMS pseudo-device driver is provided
that hooks directly into internal socket system calls to im-
plement the driver, and yet the networking stack remains
fundamentally BSD in style.

Typically there are two approaches to implementing XTI on
systems not supporting STREAMS:

XTI Compatibility Library. Several implementations of XTI on
UNIX utilize the concept of an XTI compatibility library.4

This is purely a shared object library approach to provid-
ing XTI. Under this approach it is possible to use the XTI

∗bidulock@openss7.org

1. For example, AIX.

2. For example, HP-UX.

3. This approach is taken by True64 (Digital) UNIX.

4. One was even available for Linux at one point.

1

application programming interface, but it is not possible to
utilize any of the STREAMS capabilities of an underlying
Transport Provider Interface (TPI) stream.

TPI over Sockets. An alternate approach, taken by the Linux
iBCS package was to provide a pseudo-transport provider
using a legacy character device to present the appearance of
a STREAMS transport provider.

Conversely, on systems supporting STREAMS, but not tradi-
tionally supporting Sockets (such as SVR4), there are four ap-
proaches toward supporting BSD and POSIX Sockets based on
STREAMS:

Compatibility Library Under this approach, a compatibility li-
brary (libsocket.o) contains the socket calls as library
functions that internally invoke the TLI or TPI interface to
an underlying STREAMS transport provider. This is the ap-
proach originally taken by SVR4 [GC94], but this approach
has subsequently been abandoned due to the difficulties re-
garding fork(2) and fundamental incompatibilities deriving
from a library only approach.

Library and cooperating STREAMS module. Under this ap-
proach, a cooperating module, normally called sockmod, is
pushed on a Transport Provider Interface (TPI) Stream.
The library, normally called socklib or simply socket, and
cooperating sockmod module provide the BBN or POSIX
Socket API. [VS90] [Mar01]

Library and System Calls. Under this approach, the BSD or
POSIX Sockets API is implemented as system calls with
the sole exception of the socket(3) call. The underlying
transport provider is still an TPI-based STREAMS trans-
port provider, it is just that system calls instead of library
calls are used to implement the interface. [Mar01]

System Calls. Under this approach, even the socket(3) call is
moved into the kernel. Conversion between POSIX/BSD
Sockets calls and TPI service primitives is performed com-
pletely within the kernel. The sock2path(5) configuration
file is used to configure the mapping between STREAMS
devices and socket types and domains [Mar01].

1.1.1 Standardization.

During the POSIX standardization process, networking and
Sockets interfaces were given special treatment to ensure that
both the legacy Sockets approach and the STREAMS approach
to networking were compatible. POSIX has standardized both
the XTI and Sockets programmatic interface to networking.
STREAMS networking has been POSIX compliant for many
years, BSD Sockets, POSIX Sockets, TLI and XTI interfaces, and
were compliant in the SVR4.2 release. The STREAMS network-
ing provided by Linux Fast-STREAMS package provides POSIX
compliant networking.

Therefore, any application utilizing a Socket or Stream
in a POSIX compliant manner will also be compatible with
STREAMS networking.5

1.2 Linux Fast-STREAMS

The first STREAMS package for Linux that provided SVR4
STREAMS capabilities was the Linux STREAMS (LiS) package
originally available from GCOM [LiS]. This package exhibited in-
compatibilities with SVR 4.2 STREAMS and other STREAMS
implementations, was buggy and performed very poorly on Linux.
These difficulties prompted the OpenSS7 Project [SS7] to imple-
ment an SVR 4.2 STREAMS package from scratch, with the ob-
jective of production quality and high-performance, named Linux
Fast-STREAMS [LfS].

The OpenSS7 Project also maintains public and internal ver-
sions of the LiS package. The last public release was LiS-2.18.3 ;
the current internal release version is LiS-2.18.6. The current
production public release of Linux Fast-STREAMS is streams-
0.9.3.

2 Objective

The question has been asked whether there are performance dif-
ferences between a purely BSD-style approach and a STREAMS
approach to TCP/IP networking, cf. [RBD97]. However, there
did not exist a system which permitted both approaches to be
tested on the same operating system. Linux Fast-STREAMS
running on the GNU/Linux operating system now permits this
comparison to be made. The objective of the current study, there-
fore, was to determine whether, for the Linux operating system, a
STREAMS-based approach to TCP/IP networking is a viable re-
placement for the BSD-style sockets approach provided by Linux,
termed NET4.

When developing STREAMS, the authors oft times found that
there were a number of preconceptions espoused by Linux advo-
cates about both STREAMS and STREAMS-based networking,
as follows:

• STREAMS is slow.

• STREAMS is more flexible, but less efficient [LML].

• STREAMS performs poorly on uniprocessor and ever poorer
on SMP.

• STREAMS networking is slow.

• STREAMS networking is unnecessarily complex and cum-
bersome.

For example, the Linux kernel mailing list has this to say about
STREAMS:

(REG) STREAMS allow you to ”push” filters onto a network
stack. The idea is that you can have a very primitive
network stream of data, and then ”push” a filter (”mod-
ule”) that implements TCP/IP or whatever on top of
that. Conceptually, this is very nice, as it allows clean
separation of your protocol layers. Unfortunately, imple-
menting STREAMS poses many performance problems.
Some Unix STREAMS based server telnet implementa-
tions even ran the data up to user space and back down
again to a pseudo-tty driver, which is very inefficient.

STREAMS will never be available in the standard
Linux kernel, it will remain a separate implementation
with some add-on kernel support (that come with the
STREAMS package). Linus and his networking gurus are
unanimous in their decision to keep STREAMS out of the
kernel. They have stated several times on the kernel list
when this topic comes up that even optional support will
not be included.

(REW, quoting Larry McVoy) ”It’s too bad, I can see why
some people think they are cool, but the performance cost
- both on uniprocessors and even more so on SMP boxes
- is way too high for STREAMS to ever get added to the
Linux kernel.”

Please stop asking for them, we have agreement amoungst
the head guy, the networking guys, and the fringe folks
like myself that they aren’t going in.

(REG, quoting Dave Grothe, the STREAMS guy)
STREAMS is a good framework for implementing
complex and/or deep protocol stacks having nothing to
do with TCP/IP, such as SNA. It trades some efficiency
for flexibility. You may find the Linux STREAMS
package (LiS) to be quite useful if you need to port
protocol drivers from Solaris or UnixWare, as Caldera
did.

The Linux STREAMS (LiS) package is available for download
if you want to use STREAMS for Linux. The following site also
contains a dissenting view, which supports STREAMS.

The current study attempts to determine the validity of these
preconceptions.

5. This compatibility is exemplified by the netperf program which does
not distinguish between BSD or STREAMS based networking in their im-
plementation or use.

2

3 Description

Three implementations are tested:

Linux Kernel TCP (tcp).

The native Linux socket and networking system.

OpenSS7 STREAMS XTIoS inet Driver.

A STREAMS pseudo-device driver that communicates with
a socket internal to the kernel.

The OpenSS7 implementation of STREAMS XTI over Sock-
ets implementation of TCP. While the implementation uses
the Transport Provider Interface and STREAMS to commu-
nicate with the driver, internal to the driver a TCP Socket
is opened and conversion between STREAMS and Sockets
performed.

OpenSS7 STREAMS TPI SCTP Driver (sctp).

A STREAMS pseudo-device driver that fully implements
SCTP and communicates with the IP layer in the ker-
nel. Both the OpenSS7 native sockets version and the
STREAMS version are based on the same protocol engine
core.

The three implementations tested vary in their implementation
details. These implementation details are described below.

3.1 Linux Kernel TCP

Normally, in BSD-style implementations of Sockets, Sockets is
not merely the Application Programmer Interface, but also con-
sists of a more general purpose network protocol stack imple-
mentation [MBKQ97], even though the mechanism is not used
for more than TCP/IP networking. [GC94]

Although BSD networking implementations consist of a num-
ber of networking layers with soft interrupts used for each layer
of the networking stack [MBKQ97], the Linux implementation,
although based on the the BSD approach, tightly integrates the
socket, protocol, IP and interface layers using specialized inter-
faces. Although roughly corresponding to the BSD stack as il-
lustrated in Figure 1, the socket, protocol and interface layers
in the BSD stack have well defined, general purpose interfaces
applicable to a wider range of networking protocols.

Both Linux TCP implementations are a good example of the
tight integration between the components of the Linux network-
ing stack.

Write side processing. On the write side of the Socket, bytes
are copied from the user into allocated socket buffers. Write
side socket buffers are charged against the send buffer. Socket
buffers are immediately dispatched to the IP layer for processing.
When the IP layer (or a driver) consumes the socket buffer, it
releases the amount of send buffer space that was charged for the
send buffer. If there is insufficient space in the send buffer to
accommodate the write, the calling processed is either blocked or
the system call returns an error (ENOBUFS).

For loop-back operation, immediately sending the socket buffer
to the IP layer has the additional ramification that the socket
buffer is immediately struck from the send buffer and immediately
added to the receive buffer on the receiving socket. Therefore,
the size of the send buffer or the send low water mark, have no
effect.

Read side processing. On the read side of the Socket, the
network layer calls the protocol’s receive function. The receive
function checks if socket is locked (by a reading or writing user).
If the socket is locked the socket buffer placed in the socket’s
backlog queue. The backlog queue can hold a maximum number
of socket buffers. If this maximum is exceeded, the packet is
dropped. If the socket is unlocked, and the socket buffer will fit

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

SocketSocket

Protocol

Interface

Protocol

Interface

Protocol

Interface

TCP UDP SCTP

IP

Interface

Figure 1: Sockets: BSD and Linux

in the socket’s receive buffer, the socket buffer is charged against
the receive buffer. If the socket buffer will not fit in the receive
buffer, the socket buffer is dropped.

Read side processing under Linux does not differ from BSD, ex-
cept for loop-back devices. Normally, for non-loop-back devices,
skbuffs received by the device are queued against the IP layer
and the IP layer software interrupt is raised. When the software
interrupt runs, skbuffss are delivered directly to the transport
protocol layer without intermediate queueing [MBKQ97].

For loop-back operation, however, Linux skips queueing at the
IP protocol layer (which does not exist as it does in BSD) and,
instead, delivers skbuffs directly to the transport protocol.

Due to this difference between Linux and BSD on the read side,
it is expected that performance results for Linux would vary from
that of BSD, and the results of this testing would therefore not
be directly applicable to BSD.

Buffering. Buffering at the Socket consist of a send buffer and
low water mark and a receive buffer and low water mark. When
the send buffer is consumed with outstanding messages, writing
processes will either block or the system call will fail with an error
(ENOBUFS). When the send buffer is full higher than the low water
mark, a blocked writing process will not be awoken (regardless of
whether the process is blocked in write or blocked in poll/select).
The send low water mark for Linux is fixed at one-half of the
send buffer.

It should be noted that for loop-back operation under Linux,
the send buffering mechanism is effectively defeated.

When the receive buffer is consumed with outstanding mes-
sages, received messages will be discarded. This is in rather stark
contrast to BSD where messages are effectively returned to the
network layer when the socket receive buffer is full and the net-
work layer can determine whether messages should be discarded
or queued further [MBKQ97].

When there is no data in the receive buffer, the reading process
will either block or return from the system call with an error
(ENOBUFS again). When the receive buffer has fewer bytes of data
in it than the low water mark, a blocked reading process will not
be awoken (regardless of whether the process is blocked in write

3

or blocked in poll/select). The receive low water mark for Linux
is typically set to BSD default of 1 byte.6

It should be noted that the Linux buffering mechanism does
not have hysteresis like that of STREAMS. When the amount
of data in the send buffer exceeds the low water mark, poll will
cease to return POLLOUT; when the receive buffer is less than the
low water mark, poll will cease to return POLLIN.

Scheduling. Scheduling of processes and the buffering mecha-
nism are closely related.

Writing processes for loop-back operation under TCP Sockets
are allowed to spin wildly. Written data charged against the
send buffer is immediately released when the loop-back interface
is encountered and immediately delivered to the receiving socket
(or discarded). If the writing process is writing data faster that
the reading process is consuming it, the excess will simply be
discarded, and no back-pressure signalled to the sending socket.

If receive buffer sizes are sufficiently large, the writing process
will lose the processor on uniprocessor systems and the reading
process scheduled before the buffer overflows; if they are not, the
excess will be discarded. On multiprocessor systems, provided
that the read operation takes less time than the write operation,
the reading process will be able to keep pace with the writing
process. If the receiving process is run with a very low priority,
the writing process will always have the processor and a large
percentage of the written messages will be discarded.

It should be noted that this is likely a Linux-specific deficiency
as the BSD system introduces queueing, even on loop-back.

Reading processes for loop-back operation under TCP Sockets
are awoken whenever a single byte is received (due to the default
receive low water mark). If the reading process has higher priority
than the writing process on uniprocessors, the reading process
will be awoken for each message sent and the reading process
will read that message before the writing process is permitted to
write another. On SMP systems, because reading processes will
likely have the socket locked while reading each message, backlog
processing will likely be invoked.

3.2 Linux Fast-STREAMS

Linux Fast-STREAMS is an implementation of SVR4.2
STREAMS for the GNU/Linux system developed by the
OpenSS7 Project [SS7] as a replacement for the buggy, under-
performing and now deprecated Linux STREAMS (LiS) package.
Linux Fast-STREAMS provides the STREAMS executive and in-
terprocess communication facilities (pipes and FIFOs). Add-on
packages provide compatibility between Linux Fast-STREAMS
and other STREAMS implementations, a complete XTI shared
object library, and transport providers. Transport providers for
the TCP/IP suite consist of an inet driver that uses the XTI
over Sockets approach as well as a full STREAMS implemen-
tation of SCTP (Stream Control Transmission Protocol), UDP
(User Datagram Protocol) and RAWIP (Raw Internet Protocol).

3.2.1 XTI over Sockets

The XTI over Sockets implementation is the inet STREAMS
driver developed by the OpenSS7 Project [SS7]. As illustrated
in Figure 2, this driver is implemented as a STREAMS pseudo-
device driver and uses STREAMS for passing TPI service primi-
tives to and from upstream modules or the Stream head. Within
the driver, data and other TPI service primitives are translated
into kernel socket calls to a socket that was opened by the driver
corresponding to the transport provider instance. Events re-
ceived from this internal socket are also translated into transport
provider service primitives and passed upstream.

Write side processing. Write side processing uses standard
STREAMS flow control mechanisms as are described for TPI,

Protocol

Interface

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

Stream head Socket

inet

Driver

Figure 2: XTI over Sockets inet Driver

below, with the exception that once the message blocks arrive
at the driver they are passed to the internal socket. Therefore,
a unique characteristic of the write side processing for the XTI
over Sockets driver is that data is first copied from user space
into STREAMS message blocks and then copied again from the
STREAMS message blocks to the socket. This constitutes two
copies per byte versus one copy per byte and has a significant
impact on the performance of the driver at large message sizes.7

Read side processing. Read side processing uses standard
STREAMS flow control mechanisms as are described for TPI,
below. A unique characteristic of the read side processing fro
the XTI over Sockets driver is that data is first copied from the
internal socket to a STREAMS message block and then copied
again from the STREAMS message block to user space. This
constitutes two copies per byte versus one copy per byte and has
a significant impact on the performance of the driver at large
message sizes.8

Buffering. Buffering uses standard STREAMS queueing and
flow control mechanisms as are described for TPI, below.

Scheduling. Scheduling resulting from queueing and flow con-
trol are the same as described for TPI below. Considering that
the internal socket used by the driver is on the loop-back inter-
face, data written on the sending socket appears immediately at
the receiving socket or is discarded.

3.2.2 STREAMS TPI

The STREAMS TPI implementation of SCTP is a direct
STREAMS implementation that uses the sctp driver developed
by the OpenSS7 Project [SS7]. As illustrated in Figure 3,
this driver interfaces to Linux at the network layer, but pro-
vides a complete STREAMS implementation of the transport
layer. Interfacing with Linux at the network layer provides for
de-multiplexed STREAMS architecture [RBD97]. The driver

6. The fact that Linux sets the receive low water mark to 1 byte is an
indication that the buffering mechanism on the read side simply does not
work.

7. This expectation of peformance impact is held up by the test results.

8. This expectation of peformance impact is held up by the test results.

4

presents the Transport Provider Interface (TPI) [TPI99] for use
by upper level modules and the XTI library [XTI99].

Protocol

Interface

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

Stream head Socket

Driver

sctp

Figure 3: STREAMS sctp Driver

Linux Fast-STREAMS also provides a raw IP driver (raw) and
an SCTP driver (sctp) that operate in the same fashion as the
sctp driver. That is, performing all transport protocol functions
within the driver and interfacing to the Linux NET4 IP layer.
One of the project objectives of performing the current testing
was to determine whether it would be worth the effort to write a
STREAMS transport implementation of TCP, the only missing
component in the TCP/IP suite that necessitates the continued
support of the XTI over Sockets (inet) driver.

Write side processing. Write side processing follows standard
STREAMS flow control. When a write occurs at the Stream head,
the Stream head checks for downstream flow control on the write
queue. If the Stream is flow controlled, the calling process is
blocked or the write system call fails (EAGAIN). When the Stream
is not flow controlled, user data is transferred to allocated mes-
sage blocks and passed downstream. When the message blocks
arrive at a downstream queue, the count of the data in the mes-
sage blocks is added to to the queue count. If the queue count
exceeds the high water mark defined for the queue, the queue is
marked full and subsequent upstream flow control tests will fail.

Read side processing. Read side processing follows standard
STREAMS flow control. When a read occurs at the Stream head,
the Stream head checks the read queue for messages. If the read
queue has no messages queued, the queue is marked to be enabled
when messages arrive and the calling process is either blocked or
the system call returns an error (EAGAIN). If messages exist on
the read queue, they are dequeued and data copied from the
message blocks to the user supplied buffer. If the message block
is completely consumed, it is freed; otherwise, the message block
is placed back on the read queue with the remaining data.

Buffering. Buffering follows the standard STREAMS queueing
and flow control mechanisms. When a queue is found empty
by a reading process, the fact that the queue requires service is
recorded. Once the first message arrives at the queue following
a process finding the queue empty, the queue’s service procedure

will be scheduled with the STREAMS scheduler. When a queue
is tested for flow control and the queue is found to be full, the fact
that a process wishes to write the to queue is recorded. When
the count of the data on the queue falls beneath the low water
mark, previous queues will be back enabled (that is, their service
procedures will be scheduled with the STREAMS scheduler).

Scheduling. When a queue downstream from the stream head
write queue is full, writing processes either block or fail with an
error (EAGAIN). When the forward queue’s count falls below its
low water mark, the stream head write queue is back-enabled.
Back-enabling consists of scheduling the queue’s service proce-
dure for execution by the STREAMS scheduler. Only later, when
the STREAMS scheduler runs pending tasks, does any writing
process blocked on flow control get woken.

When a stream head read queue is empty and a reading pro-
cesses either block or fail with an error (EAGAIN). When a mes-
sage arrives at the stream head read queue, the service proce-
dure associated with the queue is scheduled for later execution
by the STREAMS scheduler. Only later, when the STREAMS
scheduler runs pending tasks, does any reading process blocked
awaiting messages get awoken.

4 Method

To test the performance of STREAMS networking, the Linux
Fast-STREAMS package was used [LfS]. The Linux Fast-
STREAMS package builds and installs Linux loadable kernel
modules and includes the modified netperf and iperf programs
used for testing.

Test Program. One program used is a version of the netperf

network performance measurement tool developed and main-
tained by Rick Jones for Hewlett-Packard. This modified ver-
sion is available from the OpenSS7 Project [Jon07]. While the
program is able to test using both POSIX Sockets and XTI
STREAMS interfaces, modifications were required to the package
to allow it to compile for Linux Fast-STREAMS.

The netperf program has many options. There-
fore, two benchmark scripts (called netperf benchmark and
netperf nice2) were used to obtain repeatable raw data for
the various machines and distributions tested. This benchmark
script is included in the netperf distribution available from the
OpenSS7 Project [Jon07]. A listing of these scripts are provided
in Appendix A.

4.1 Implementations Tested

The following implementations were tested:

TCP Sockets. This is the Linux NET4 Sockets implementation
of TCP, described in Section 3.1, with normal scheduling priori-
ties. Normal scheduling priority means invoking the sending and
receiving processes without altering their run-time scheduling pri-
ority.

TCP Sockets with artificial process priorities. This is the
Linux NET4 Sockets implementation of TCP, described in Sec-
tion 3.1, with artificial scheduling priorities. Artificial scheduling
priority means invoking the sending and receiving processes with
extreme run-timer scheduling priority alterations.

Early on in the testing it was discovered that Sockets exhibits
remarkably poor performance on UP machines when the process
priority of the sender and the receiver are the same. This is
largely due to deficiencies in the traditional Socket implementa-
tion with regard to buffering, flow control and scheduling. When
the receiver has an equal or higher effective priority than the

5

sender, Sockets causes context thrashing9 between the sender and
receiver that impairs overall performance.

To circumvent these deficiencies, a test was also performed by
increasing the priority of the sender to the maximum (nice -n
-20) and decreasing the priority of the receiver to the minimum
(nice -n 19). While this is a markedly artificial situation, it is
indicative of the performance that could be achieved by Sockets
if it did not have these fundamental deficiencies.

These results are not indicative of the performance that can be
expected by most TCP applications on the loop-back interface.

STREAMS XTIoS TCP. This is the OpenSS7 STREAMS
implementation of XTI over Sockets for TCP, described in Sec-
tion 3.2.1. This implementation is tested using normal run-time
scheduling priorities.

STREAMS TPI SCTP. This is the OpenSS7 STREAMS im-
plementation of SCTP using XTI/TPI directly, described in Sec-
tion 3.2.2. This implementation is tested using normal run-time
scheduling priorities.

4.2 Distributions Tested

To remove the dependence of test results on a particular Linux
kernel or machine, various Linux distributions were used for test-
ing. The distributions tested are as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7
WhiteBox 3 2.4.27
CentOS 4 2.6.9-5.0.3.EL
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-server
Fedora Core 6 2.6.20-1.2933.fc6

4.3 Test Machines

To remove the dependence of test results on a particular machine,
various machines were used for testing as follows:

Hostname Processor Memory Architecture

porky 2.57GHz PIV 1Gb (333MHz) i686 UP
pumbah 2.57GHz PIV 1Gb (333MHz) i686 UP
daisy 3.0GHz i630 HT 1Gb (400MHz) x86 64 SMP
mspiggy 1.7GHz PIV 1Gb (333MHz) i686 UP

5 Results

The results for the various distributions and machines is tabu-
lated in Appendix B. The data is tabulated as follows:

Performance. Performance is charted by graphing the number of
messages sent and received per second against the logarithm
of the message send size.

Delay. Delay is charted by graphing the number of seconds per
send and receive against the sent message size. The delay
can be modelled as a fixed overhead per send or receive oper-
ation and a fixed overhead per byte sent. This model results
in a linear graph with the zero x-intercept representing the
fixed per-message overhead, and the slope of the line rep-
resenting the per-byte cost. As all implementations use the
same primary mechanism for copying bytes to and from user
space, it is expected that the slope of each graph will be sim-
ilar and that the intercept will reflect most implementation
differences.

Throughput. Throughput is charted by graphing the logarithm
of the product of the number of messages per second and
the message size against the logarithm of the message size.

It is expected that these graphs will exhibit strong log-log-
linear (power function) characteristics. Any curvature in
these graphs represents throughput saturation.

Improvement. Improvement is charted by graphing the quotient
of the bytes per second of the implementation and the bytes
per second of the Linux sockets implementation as a per-
centage against the message size. Values over 0% represent
an improvement over Linux sockets, whereas values under
0% represent the lack of an improvement.

The results are organized in the sections that follow in order
of the machine tested.

5.1 Porky

Porky is a 2.57GHz Pentium IV (i686) uniprocessor machine with
1Gb of memory. Linux distributions tested on this machine are
as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 4 2.6.9-5.0.3.EL
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-server

5.1.1 Fedora Core 6

Fedora Core 6 is the most recent full release Fedora distribution.
This distribution sports a 2.6.20-1.2933.fc6 kernel with the latest
patches. This is the x86 distribution with recent updates.

Performance. Figure 4 plots the measured performance of TCP
Sockets (both normal and artificial scheduling priorities),
TCP XTIoS STREAMS and SCTP XTI STREAMS im-
plementations. The higher performing TCP Sockets graph
(with dashed lines and designated with ‘(A)’) is the artifical
scheduling priority plot. The under performing TCP Sock-
ets graph (with the solid lines and designated with ‘(N)’) is
the normal scheduling plot.

TCP Sockets with normal scheduling shows dismal perfor-
mance in comparison to both STREAMS – TCP XTIoS and
SCTP XTI – approaches at all message sizes beneath 4096
bytes. It is necessary to artificially reduce the receiver pri-
ority to a minimum (nice -n 19) and artificially increase
the sender priority to a maximum (nice -n -20) to acheive
better results on TCP Sockets beneath 4096 bytes, at the
cost of poorer performance above 4096 bytes.

The slightly different performance between TCP XTIoS and
SCTP XTI can be explained by the significant overheads
that the SCTP protocol introduces on small message sizes.

Delay. Figure 5 plots the average message delay of TCP Sockets
(both normal and artificial), TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

The average delay of TCP XTIoS STREAMS and SCTP
XTI STREAMS approaches is similar and comparable with
TCP Sockets with artificial scheduling and message sizes be-
neath 4096. With normal scheduling, however, TCP Sockets
has poor per message delays (intercept) but superior per-
byte delays (slope).

Throughput. Figure 6 plots the effective throughput of
TCP Sockets, TCP XTIoS STREAMS and SCTP XTI
STREAMS implementations.

All curves exhibit good power function characteristics be-
neath 1024 byte message sizes, indicating structure and ro-
bustness for each implementation, but each implementation
exhibits saturation characteristics above 1024 bytes.

9. In fact, it appears that under normal conditions on the loopback in-
terface, one context switch per write is occuring.

6

Improvement. Figure 7 plots the relative percentage of
throughput of TCP Sockets, TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

For the normal case, TCP XTIoS STREAMS and SCTP
XTI STREAMS exhibit significant improvements over TCP
Sockets for message sizes less than 4096 bytes and are supe-
rior or comparable at message sizes greater than 4096 bytes.
Forcing TCP Sockets into a specific behaviour by artificially
maximizing the sender priority and minimizing the receive
priority results in improved behaviour below 4096 bytes for
TCP Sockets but is worse than normal scheduling priority
TCP Sockets for message sizes of 4096 bytes or more.

The results for Fedora Core 6 on Porky are, for the most part,
similar to the results from other distributions on the same host
and also similar to the results for other distributions on other
hosts.

5.1.2 CentOS 4.0

CentOS 4.0 is a clone of the RedHat Enterprise 4 distribution.
This is the x86 version of the distribution. The distribution sports
a 2.6.9-5.0.3.EL kernel.

Performance. Figure 8 plots the measured performance of TCP
Sockets (both normal and artificial scheduling priorities),
TCP XTIoS STREAMS and SCTP XTI STREAMS im-
plementations. The higher performing TCP Sockets graph
(with dashed lines and designated with ‘(A)’) is the artifical
scheduling priority plot. The under performing TCP Sock-
ets graph (with the solid lines and designated with ‘(N)’) is
the normal scheduling plot.

TCP Sockets with normal scheduling shows dismal perfor-
mance in comparison to both STREAMS – TCP XTIoS and
SCTP XTI – approaches at all message sizes beneath 4096
bytes. It is necessary to artificially reduce the receiver pri-
ority to a minimum (nice -n 19) and artificially increase
the sender priority to a maximum (nice -n -20) to acheive
better results on TCP Sockets beneath 4096 bytes, at the
cost of poorer performance above 4096 bytes.

The slightly different performance between TCP XTIoS and
SCTP XTI can be explained by the significant overheads
that the SCTP protocol introduces on small message sizes.

Delay. Figure 9 plots the average message delay of TCP Sockets
(both normal and artificial), TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

The average delay of TCP XTIoS STREAMS and SCTP
XTI STREAMS approaches is similar and comparable with
TCP Sockets with artificial scheduling and message sizes be-
neath 4096. With normal scheduling, however, TCP Sockets
has poor per message delays (intercept) but superior per-
byte delays (slope).

Throughput. Figure 10 plots the effective throughput of
TCP Sockets, TCP XTIoS STREAMS and SCTP XTI
STREAMS implementations.

All curves exhibit good power function characteristics be-
neath 1024 byte message sizes, indicating structure and ro-
bustness for each implementation, but each implementation
exhibits saturation characteristics above 1024 bytes.

Improvement. Figure 11 plots the relative percentage of
throughput of TCP Sockets, TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

For the normal case, TCP XTIoS STREAMS and SCTP
XTI STREAMS exhibit significant improvements over TCP
Sockets for message sizes less than 4096 bytes and are supe-
rior or comparable at message sizes greater than 4096 bytes.

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 4: Fedora Core 6 on Porky Performance

SCTP Streams Tx
SCTP Streams Rx

TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)

TCP XTIoS Tx
TCP XTIoS Rx

 0

 1e−05

 2e−05

 3e−05

 4e−05

 5e−05

 6e−05

 7e−05

 8e−05

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

|

Message Size (Bytes)

Figure 5: Fedora Core 6 on Porky Delay

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 6: Fedora Core 6 on Porky Throughput

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 7: Fedora Core 6 on Porky Comparison

7

Forcing TCP Sockets into a specific behaviour by artificially
maximizing the sender priority and minimizing the receive
priority results in improved behaviour below 4096 bytes for
TCP Sockets but is worse than normal scheduling priority
TCP Sockets for message sizes of 4096 bytes or more.

The results for CentOS on Porky are, for the most part, similar
to the results from other distributions on the same host and also
similar to the results for other distributions on other hosts.

5.1.3 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the SuSE/Novell
distribution. There have been two releases subsequent to this
one: the 10.1 and recent 10.2 releases. The SuSE 10 release
sports a 2.6.13 kernel and the 2.6.13-15-default kernel was the
tested kernel.

Performance. Figure 12 plots the measured performance of
TCP Sockets (both normal and artificial scheduling prior-
ities), TCP XTIoS STREAMS and SCTP XTI STREAMS
implementations. The higher performing TCP Sockets
graph (with dashed lines and designated with ‘(A)’) is the
artifical scheduling priority plot. The under performing
TCP Sockets graph (with the solid lines and designated with
‘(N)’) is the normal scheduling plot.

TCP Sockets with normal scheduling shows dismal perfor-
mance in comparison to both STREAMS – TCP XTIoS and
SCTP XTI – approaches at all message sizes beneath 4096
bytes. It is necessary to artificially reduce the receiver pri-
ority to a minimum (nice -n 19) and artificially increase
the sender priority to a maximum (nice -n -20) to acheive
better results on TCP Sockets beneath 4096 bytes, at the
cost of poorer performance above 4096 bytes.

The slightly different performance between TCP XTIoS and
SCTP XTI can be explained by the significant overheads
that the SCTP protocol introduces on small message sizes.

Delay. Figure 13 plots the average message delay of TCP Sock-
ets (both normal and artificial), TCP XTIoS STREAMS
and SCTP XTI STREAMS implementations.

The average delay of TCP XTIoS STREAMS and SCTP
XTI STREAMS approaches is similar and comparable with
TCP Sockets with artificial scheduling and message sizes be-
neath 4096. With normal scheduling, however, TCP Sockets
has poor per message delays (intercept) but superior per-
byte delays (slope).

Throughput. Figure 14 plots the effective throughput of
TCP Sockets, TCP XTIoS STREAMS and SCTP XTI
STREAMS implementations.

All curves exhibit good power function characteristics be-
neath 1024 byte message sizes, indicating structure and ro-
bustness for each implementation, but each implementation
exhibits saturation characteristics above 1024 bytes.

Improvement. Figure 15 plots the relative percentage of
throughput of TCP Sockets, TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

For the normal case, TCP XTIoS STREAMS and SCTP
XTI STREAMS exhibit significant improvements over TCP
Sockets for message sizes less than 4096 bytes and are supe-
rior or comparable at message sizes greater than 4096 bytes.
Forcing TCP Sockets into a specific behaviour by artificially
maximizing the sender priority and minimizing the receive
priority results in improved behaviour below 4096 bytes for
TCP Sockets but is worse than normal scheduling priority
TCP Sockets for message sizes of 4096 bytes or more.

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 8: CentOS on Porky Performance

SCTP Streams Tx
SCTP Streams Rx

TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)

TCP XTIoS Tx
TCP XTIoS Rx

 0

 1e−05

 2e−05

 3e−05

 4e−05

 5e−05

 6e−05

 7e−05

 8e−05

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

|

Message Size (Bytes)

Figure 9: CentOS on Porky Delay

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 10: CentOS on Porky Throughput

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 11: CentOS on Porky Comparison

8

The results for SuSE 10 OSS on Porky are, for the most part,
similar to the results from other distributions on the same host
and also similar to the results for other distributions on other
hosts.

5.1.4 Ubuntu 7.04

Ubuntu 7.04 is the current release of the Ubuntu distribution.
The Ubuntu 7.04 release sports a 2.6.20 kernel. The tested dis-
tribution had current updates applied.

Performance. Figure 16 plots the measured performance of
TCP Sockets (both normal and artificial scheduling prior-
ities), TCP XTIoS STREAMS and SCTP XTI STREAMS
implementations. The higher performing TCP Sockets
graph (with dashed lines and designated with ‘(A)’) is the
artifical scheduling priority plot. The under performing
TCP Sockets graph (with the solid lines and designated with
‘(N)’) is the normal scheduling plot.

TCP Sockets with normal scheduling shows dismal perfor-
mance in comparison to both STREAMS – TCP XTIoS and
SCTP XTI – approaches at all message sizes beneath 4096
bytes. It is necessary to artificially reduce the receiver pri-
ority to a minimum (nice -n 19) and artificially increase
the sender priority to a maximum (nice -n -20) to acheive
better results on TCP Sockets beneath 4096 bytes, at the
cost of poorer performance above 4096 bytes.

The slightly different performance between TCP XTIoS and
SCTP XTI can be explained by the significant overheads
that the SCTP protocol introduces on small message sizes.

Delay. Figure 17 plots the average message delay of TCP Sock-
ets (both normal and artificial), TCP XTIoS STREAMS
and SCTP XTI STREAMS implementations.

The average delay of TCP XTIoS STREAMS and SCTP
XTI STREAMS approaches is similar and comparable with
TCP Sockets with artificial scheduling and message sizes be-
neath 4096. With normal scheduling, however, TCP Sockets
has poor per message delays (intercept) but superior per-
byte delays (slope).

Throughput. Figure 18 plots the effective throughput of
TCP Sockets, TCP XTIoS STREAMS and SCTP XTI
STREAMS implementations.

All curves exhibit good power function characteristics be-
neath 1024 byte message sizes, indicating structure and ro-
bustness for each implementation, but each implementation
exhibits saturation characteristics above 1024 bytes.

Improvement. Figure 19 plots the relative percentage of
throughput of TCP Sockets, TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

For the normal case, TCP XTIoS STREAMS and SCTP
XTI STREAMS exhibit significant improvements over TCP
Sockets for message sizes less than 4096 bytes and are supe-
rior or comparable at message sizes greater than 4096 bytes.
Forcing TCP Sockets into a specific behaviour by artificially
maximizing the sender priority and minimizing the receive
priority results in improved behaviour below 4096 bytes for
TCP Sockets but is worse than normal scheduling priority
TCP Sockets for message sizes of 4096 bytes or more.

The results for Ubuntu 7.04 on Porky are, for the most part,
similar to the results from other distributions on the same host
and also similar to the results for other distributions on other
hosts.

5.2 Pumbah

Pumbah is a 2.57GHz Pentium IV (i686) uniprocessor machine
with 1Gb of memory. This machine differs from Porky in memory

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 12: SuSE on Porky Performance

SCTP Streams Tx
SCTP Streams Rx

TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)

TCP XTIoS Tx
TCP XTIoS Rx

 0

 1e−05

 2e−05

 3e−05

 4e−05

 5e−05

 6e−05

 7e−05

 8e−05

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

|

Message Size (Bytes)

Figure 13: SuSE on Porky Delay

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 14: SuSE on Porky Throughput

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 15: SuSE on Porky Comparison

9

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 16: Ubuntu 7.04 on Porky Performance

SCTP Streams Tx
SCTP Streams Rx

TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)

TCP XTIoS Tx
TCP XTIoS Rx

 0

 1e−05

 2e−05

 3e−05

 4e−05

 5e−05

 6e−05

 7e−05

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

|

Message Size (Bytes)

Figure 17: Ubuntu 7.04 on Porky Delay

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 18: Ubuntu 7.04 on Porky Throughput

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 19: Ubuntu 7.04 on Porky Comparison

type only (Pumbah has somewhat faster memory than Porky.)
Linux distributions tested on this machine are as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7

Pumbah is a control machine and is used to rule out differences
between recent 2.6 kernels and one of the oldest and most stable
2.4 kernels.

5.2.1 RedHat 7.2

RedHat 7.2 is one of the oldest (and arguably the most stable)
glibc2 based releases of the RedHat distribution. This distribu-
tion sports a 2.4.20-28.7 kernel. The distribution has all available
updates applied.

Performance. Figure 20 plots the measured performance of
TCP Sockets (both normal and artificial scheduling prior-
ities), TCP XTIoS STREAMS and SCTP XTI STREAMS
implementations. The higher performing TCP Sockets
graph (with dashed lines and designated with ‘(A)’) is the
artifical scheduling priority plot. The under performing
TCP Sockets graph (with the solid lines and designated with
‘(N)’) is the normal scheduling plot.

TCP Sockets with normal scheduling shows dismal perfor-
mance in comparison to both STREAMS – TCP XTIoS and
SCTP XTI – approaches at all message sizes beneath 4096
bytes. It is necessary to artificially reduce the receiver pri-
ority to a minimum (nice -n 19) and artificially increase
the sender priority to a maximum (nice -n -20) to acheive
better results on TCP Sockets beneath 4096 bytes, at the
cost of poorer performance above 4096 bytes.

The slightly different performance between TCP XTIoS and
SCTP XTI can be explained by the significant overheads
that the SCTP protocol introduces on small message sizes.

STREAMS demonstrates significant improvements at
mssage sizes of less than 1024 bytes, and comparable per-
formace at larger message sizes.

A significant result is that the TCP XTI over Socket ap-
proach indeed provided improvements over TCP Sockets it-
self at message sizes beneath 1024 bytes. This improvement
can only be accounted for by buffering and schedule dif-
ferences, and when the receiving process was given a lower
scheduling priority than the sending process, TCP Sockets
performed much better.

Delay. Figure 21 plots the average message delay of TCP Sock-
ets (both normal and artificial), TCP XTIoS STREAMS
and SCTP XTI STREAMS implementations.

The average delay of TCP XTIoS STREAMS and SCTP
XTI STREAMS approaches is similar and comparable with
TCP Sockets with artificial scheduling and message sizes be-
neath 4096. With normal scheduling, however, TCP Sockets
has poor per message delays (intercept) but superior per-
byte delays (slope).

STREAMS demonstrates significant improvements at mes-
sage sizes of less than 1024 bytes, and comparable perfor-
mance at larger message sizes.

The slope of the dleay curve is best for SCTP XTI, then
TCP Sockets (for message sizes greater than or equal to
1024 bytes), then TCP XTI over Sockets, then TCP Sockets
(with low priority receiver).

The slope of the delay curve either indicates that SCTP
XTI STREAMS has the best overall per-byte handling per-
formance.

10

Throughput. Figure 22 plots the effective throughput of
TCP Sockets, TCP XTIoS STREAMS and SCTP XTI
STREAMS implementations.

All curves exhibit good power function characteristics be-
neath 1024 byte message sizes, indicating structure and ro-
bustness for each implementation, but each implementation
exhibits saturation characteristics above 1024 bytes.

STREAMS demonstrates significant improvements at most
message sizes.

As can be seen from Figure 22, all implementations exhibit
strong power function characteristics, indicating structure
and robustness for each implementation, except for TCP
Sockets at regular scheduling prioritys.

TCP Sockets at regular scheduling priorities exhibits a
strong dicontinuity between message sizes of 512 btyes and
1024 bytes. This non-linearity can be explained by the poor
buffering, flow control and scheduling capabilities of Sockets
when compared to STREAMS. Indeed, when the receiving
process was artificially downgraded to a low priority (nice
-19) to avoid the weaknesses inherent in the Sockets ap-
proach, it exhibits better characteristics. Perhaps surpris-
ingly, by wrapping the internal socket with STREAMS, the
TCP XTIoS approach does not exhibit the weaknesses of
Sockets alone and in some way compensates for the deffi-
ciencies of Socket buffering, flow control and scheduling.

Improvement. Figure 23 plots the relative percentage of
throughput of TCP Sockets, TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

For the normal case, TCP XTIoS STREAMS and SCTP
XTI STREAMS exhibit significant improvements over TCP
Sockets for message sizes less than 4096 bytes and are supe-
rior or comparable at message sizes greater than 4096 bytes.
Forcing TCP Sockets into a specific behaviour by artificially
maximizing the sender priority and minimizing the receive
priority results in improved behaviour below 4096 bytes for
TCP Sockets but is worse than normal scheduling priority
TCP Sockets for message sizes of 4096 bytes or more.

STREAMS demonstrates significant improvements (approx.
150-180% improvement) at message sizes below 1024 bytes.
That STREAMS SCTP and TCP give such an improve-
ment over a wide range of message sizes is a dramatic im-
provement. Note that dramatic improvement is also demon-
strated for TCP Sockets when the receiver is artificially
given the lowest possible scheduling priority, thus circum-
venting Sockets’ poor scheduling and flow control character-
istics.

5.3 Daisy

Daisy is a 3.0GHz i630 (x86 64) hyper-threaded machine with
1Gb of memory. Linux distributions tested on this machine are
as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 5.0 2.6.18-8.1.3.el5

This machine is used as an SMP control machine. Most of the
tests were performed on uniprocessor non-hyper-threaded ma-
chines. This machine is hyper-threaded and runs full SMP ker-
nels. This machine also supports EMT64 and runs x86 64 ker-
nels. It is used to rule out both SMP differences as well as 64-bit
architecture differences.

5.3.1 Fedora Core 6 (x86 64)

Fedora Core 6 is the most recent full release Fedora distribution.
This distribution sports a 2.6.20-1.2933.fc6 kernel with the latest

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 20: RedHat 7.2 on Pumbah Performance

SCTP Streams Tx
SCTP Streams Rx

TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)

TCP XTIoS Tx
TCP XTIoS Rx

 0

 1e−05

 2e−05

 3e−05

 4e−05

 5e−05

 6e−05

 7e−05

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

|

Message Size (Bytes)

Figure 21: RedHat 7.2 on Pumbah Delay

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 22: RedHat 7.2 on Pumbah Throughput

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 23: RedHat 7.2 on Pumbah Comparison

11

patches. This is the x86 64 distribution with recent updates.

Performance. Figure 24 plots the measured performance of
TCP Sockets (both normal and artificial scheduling prior-
ities), TCP XTIoS STREAMS and SCTP XTI STREAMS
implementations. The higher performing TCP Sockets
graph (with dashed lines and designated with ‘(A)’) is the
artifical scheduling priority plot. The under performing
TCP Sockets graph (with the solid lines and designated with
‘(N)’) is the normal scheduling plot.

TCP Sockets with normal scheduling shows dismal perfor-
mance in comparison to both STREAMS – TCP XTIoS and
SCTP XTI – approaches at all message sizes beneath 4096
bytes. It is necessary to artificially reduce the receiver pri-
ority to a minimum (nice -n 19) and artificially increase
the sender priority to a maximum (nice -n -20) to acheive
better results on TCP Sockets beneath 4096 bytes, at the
cost of poorer performance above 4096 bytes.

The slightly different performance between TCP XTIoS and
SCTP XTI can be explained by the significant overheads
that the SCTP protocol introduces on small message sizes.

Delay. Figure 25 plots the average message delay of TCP Sock-
ets (both normal and artificial), TCP XTIoS STREAMS
and SCTP XTI STREAMS implementations.

The average delay of TCP XTIoS STREAMS and SCTP
XTI STREAMS approaches is similar and comparable with
TCP Sockets with artificial scheduling and message sizes be-
neath 4096. With normal scheduling, however, TCP Sockets
has poor per message delays (intercept) but superior per-
byte delays (slope).

Throughput. Figure 26 plots the effective throughput of
TCP Sockets, TCP XTIoS STREAMS and SCTP XTI
STREAMS implementations.

All curves exhibit good power function characteristics be-
neath 1024 byte message sizes, indicating structure and ro-
bustness for each implementation, but each implementation
exhibits saturation characteristics above 1024 bytes.

Improvement. Figure 27 plots the relative percentage of
throughput of TCP Sockets, TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

For the normal case, TCP XTIoS STREAMS and SCTP
XTI STREAMS exhibit significant improvements over TCP
Sockets for message sizes less than 4096 bytes and are supe-
rior or comparable at message sizes greater than 4096 bytes.
Forcing TCP Sockets into a specific behaviour by artificially
maximizing the sender priority and minimizing the receive
priority results in improved behaviour below 4096 bytes for
TCP Sockets but is worse than normal scheduling priority
TCP Sockets for message sizes of 4096 bytes or more.

5.4 Mspiggy

Mspiggy is a 1.7Ghz Pentium IV (M-processor) uniprocessor
notebook (Toshiba Satellite 5100) with 1Gb of memory. Linux
distributions tested on this machine are as follows:

Distribution Kernel

SuSE 10.0 OSS 2.6.13-15-default

Note that this is the same distribution that was also tested on
Porky. The purpose of testing on this notebook is to rule out
the differences between machine architectures on the test results.
Tests performed on this machine are control tests.

Performance. Figure 28 plots the measured performance of
TCP Sockets (both normal and artificial scheduling prior-
ities), TCP XTIoS STREAMS and SCTP XTI STREAMS

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 24: Fedora Core 6 on Daisy Performance

SCTP Streams Tx
SCTP Streams Rx

TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)

TCP XTIoS Tx
TCP XTIoS Rx

 0

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 3e−05

 3.5e−05

 4e−05

 4.5e−05

 5e−05

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

|

Message Size (Bytes)

Figure 25: Fedora Core 6 on Daisy Delay

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 26: Fedora Core 6 on Daisy Throughput

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 27: Fedora Core 6 on Daisy Comparison

12

implementations. The higher performing TCP Sockets
graph (with dashed lines and designated with ‘(A)’) is the
artifical scheduling priority plot. The under performing
TCP Sockets graph (with the solid lines and designated with
‘(N)’) is the normal scheduling plot.

TCP Sockets with normal scheduling shows dismal perfor-
mance in comparison to both STREAMS – TCP XTIoS and
SCTP XTI – approaches at all message sizes beneath 4096
bytes. It is necessary to artificially reduce the receiver pri-
ority to a minimum (nice -n 19) and artificially increase
the sender priority to a maximum (nice -n -20) to acheive
better results on TCP Sockets beneath 4096 bytes, at the
cost of poorer performance above 4096 bytes.

The slightly different performance between TCP XTIoS and
SCTP XTI can be explained by the significant overheads
that the SCTP protocol introduces on small message sizes.

STREAMS demonstrates significant improvements at mes-
sage sizes of less than 4096 bytes, and improvements at all
message sizes.

A significant result is that the TCP XTI over Socket ap-
proach indeed provided improvements over TCP Sockets it-
self at message sizes beneath 4096 bytes. This improvement
can only be accounted for by buffering differences. When the
receiving process was given a lower scheduling priority (nice
-n 19) than the sending process (nice -n -20), forcing the
implementation into a tight corner, TCP Sockets performed
better; however, only for smaller message sizes.

Delay. Figure 29 plots the average delay of TCP Sockets (both
normal and artificial), TCP XTIoS STREAMS and SCTP
XTI STREAMS implementations.

The average delay of TCP XTIoS STREAMS and SCTP
XTI STREAMS approaches is similar and comparable with
TCP Sockets with artificial scheduling and message sizes be-
neath 4096. With normal scheduling, however, TCP Sockets
has poor per message delays (intercept) but superior per-
byte delays (slope).

Throughput. Figure 30 plots the effective throughput of
TCP Sockets, TCP XTIoS STREAMS and SCTP XTI
STREAMS implementations.

All curves exhibit good power function characteristics be-
neath 1024 byte message sizes, indicating structure and ro-
bustness for each implementation, but each implementation
exhibits saturation characteristics above 1024 bytes.

Improvement. Figure 31 plots the relative percentage of
throughput of TCP Sockets, TCP XTIoS STREAMS and
SCTP XTI STREAMS implementations.

For the normal case, TCP XTIoS STREAMS and SCTP
XTI STREAMS exhibit significant improvements over TCP
Sockets for message sizes less than 4096 bytes and are supe-
rior or comparable at message sizes greater than 4096 bytes.
Forcing TCP Sockets into a specific behaviour by artificially
maximizing the sender priority and minimizing the receive
priority results in improved behaviour below 4096 bytes for
TCP Sockets but is worse than normal scheduling priority
TCP Sockets for message sizes of 4096 bytes or more.

STREAMS demonstrates significant improvements (approx.
250% improvement) at message sizes below 1024 bytes. That
STREAMS SCTP gives a 200% improvement over a wide
range of message sizes is a dramatic improvement.

6 Analysis

With some caveats as described at the end of this section, the
results are consistent enough across the various distributions and

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 28: SuSE 10.0 OSS Mspiggy Performance

SCTP Streams Tx
SCTP Streams Rx

TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)

TCP XTIoS Tx
TCP XTIoS Rx

 0

 2e−05

 4e−05

 6e−05

 8e−05

 0.0001

 0.00012

 0.00014

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

|

Message Size (Bytes)

Figure 29: SuSE 10.0 OSS Mspiggy Delay

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 30: SuSE 10.0 OSS Mspiggy Throughput

SCTP Streams Tx
SCTP Streams Rx
TCP Sockets Tx (N)
TCP Sockets Rx (N)
TCP Sockets Tx (A)
TCP Sockets Rx (A)
TCP XTIoS Tx
TCP XTIoS Rx

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 31: SuSE 10.0 OSS Mspiggy Comparison

13

machines tested to draw some conclusions regarding the efficiency
of the implementations tested. This section is responsible for
providing an analysis of the results and drawing conclusions con-
sistent with the experimental results.

6.1 Discussion

The test results reveal that the maximum throughput perfor-
mance, as tested by the netperf program, of the STREAMS
implementation of SCTP is superior to that of the Linux Kernel
Sockets implementation of TCP. In fact, STREAMS TPI SCTP
implementation performance at smaller message sizes is signifi-
cantly (as much as 200-300%) greater than that of Linux Kernel
Sockets TCP. As the common belief is that STREAMS would
exhibit poorer performance, this is perhaps a startling result to
some.

Perhaps even more surprising is that the STREAMS imple-
mentation of TCP using XTI over Sockets is superior to the TCP
Socket alone! And, again by as much as 200-300%.

Looking at both implementations, the differences can be de-
scribed by implementation similarities and differences:

Send processing. When Linux Sockets TCP receives a send
request, the available send buffer space is checked. If the current
data would cause the send buffer fill to exceed the send buffer
maximum, either the calling process blocks awaiting available
buffer, or the system call returns with an error (ENOBUFS). If
the current send request will fit into the send buffer, a socket
buffer (skbuff) is allocated, data is copied from user space to
the buffer, and the socket buffer is dispatched to the IP layer for
transmission.

Linux 2.6 kernels have an amazing amount of special case code
that gets executed for even a simple TCP send operation. Linux
2.4 kernels are more direct. The result is the same, even though
they are different in the depths to which they must delve before
discovering that a send is just a simple send. This might explain
part of the rather striking differences between the performance
comparison between STREAMS and Sockets on 2.6 and 2.4 ker-
nels.10

When the STREAMS Stream head receives a putmsg(2) re-
quest, it checks downstream flow control. If the Stream is flow
controlled downstream, either the calling process blocks awaiting
succession of flow control, or the putmsg(2) system call returns
with an error (EAGAIN). if the Stream is not flow controlled on the
write side, message blocks are allocated to hold the control and
data portions of the request and the message blocks are passed
downstream to the driver. When the driver receives an M DATA or
M PROTO message block from the Stream head, in its put proce-
dure, it simply queues it to the driver write queue with putq(9).
putq(9) will result in the enabling of the service procedure for
the driver write queue under the proper circumstances. When
the service procedure runs, messages will be dequeued from the
driver write queue transformed into IP datagrams and sent to the
IP layer for transmission on the network interface.

Linux Fast-STREAMS has a feature whereby the driver can
request that the Stream head allocate a Linux socket buffer
(skbuff) to hold the data buffer associated with an allocated
message block. The STREAMS SCTP driver utilizes this feature
(but the STREAMS XTIoS TCP driver cannot). STREAMS
also has the feature that a write offset can be applied to all data
block allocated and passed downstream. However, neither the
STREAMS TPI SCTP nor XTIoS TCP drivers use this capabil-
ity. It is currently only used by the second generation STREAMS
UDP and RAWIP drivers.

Network processing. Network processing (that is the bottom
end under the transport protocol) for both implementations is ef-
fectively the same, with only minor differences. In the STREAMS

SCTP implementation, no sock structure exists, so issuing socket
buffers to the network layer is performed in a slightly more direct
fashion.

Loop-back processing is identical as this is performed by the
Linux NET4 IP layer in both cases.

For Linux Sockets TCP, when the IP layer frees or orphans
the socket buffer, the amount of data associated with the socket
buffer is subtracted from the current send buffer fill. If the current
buffer fill is less than 1/2 of the maximum, all processes blocked
on write or blocked on poll are are woken.

For STREAMS SCTP, when the IP layer frees or orphans
the socket buffer, the amount of data associated with the socket
buffer is subtracted from the current send buffer fill. If the cur-
rent send buffer fill is less than the send buffer low water mark
(SO SNDLOWAT or XTI SNDLOWAT), and the write queue is blocked
on flow control, the write queue is enabled.

One disadvantage that it is expected would slow STREAMS
SCTP performance is the fact that on the sending side, a
STREAMS buffer is allocated along with a skbuff and the
skbuff is passed to Linux NET4 IP and the loop-back device.
For Linux Sockets TCP, the same skbuff is reused on both sides
of the interface. For STREAMS SCTP, there is (currently) no
mechanism for passing through the original STREAMS message
block and a new message block must be allocated. This results
in two message block allocations per skbuff.

Receive processing. Under Linux Sockets TCP, when a socket
buffer is received from the network layer, a check is performed
whether the associated socket is locked by a user process or not.
If the associated socket is locked, the socket buffer is placed on a
backlog queue awaiting later processing by the user process when
it goes to release the lock. A maximum number of socket buffers
are permitted to be queued against the backlog queue per socket
(approx. 300).

If the socket is not locked, or if the user process is processing
a backlog before releasing the lock, the message is processed:
the receive socket buffer is checked and if the received message
would cause the buffer to exceed its maximum size, the message
is discarded and the socket buffer freed. If the received message
fits into the buffer, its size is added to the current send buffer
fill and the message is queued on the socket receive queue. If a
process is sleeping on read or in poll, an immediate wakeup is
generated.

In the STREAMS SCTP implementation on the receive side,
again there is no sock structure, so the socket locking and backlog
techniques performed by SCTP at the lower layer do not apply.
When the STREAMS SCTP implementation receives a socket
buffer from the network layer, it tests the receive side of the
Stream for flow control and, when not flow controlled, allocates a
STREAMS buffer using esballoc(9) and passes the buffer directly
to the upstream queue using putnext(9). When flow control is in
effect and the read queue of the driver is not full, a STREAMS
message block is still allocated and placed on the driver read
queue. When the driver read queue is full, the received socket
buffer is freed and the contents discarded. While different in
mechanism from the socket buffer and backlog approach taken
by Linux Sockets TCP, this bottom end receive mechanism is
similar in both complexity and behaviour.

Buffering. For Linux Sockets, when a send side socket buffer is
allocated, the true size of the socket buffer is added to the current
send buffer fill. After the socket buffer has been passed to the
IP layer, and the IP layer consumes (frees or orphans) the socket
buffer, the true size of the socket buffer is subtracted from the

10. For example, Fedora Core 6 on Porky churns out 12,000 packets per
second at 1 byte (Figure 4), whereas RedHat 7.2 on Pumbah churns out
15,000 packets per second at 1 byte (Figure 20).

14

current send buffer fill. When the resulting fill is less than 1/2
the send buffer maximum, sending processes blocked on send or
poll are woken up. When a send will not fit within the maximum
send buffer size considering the size of the transmission and the
current send buffer fill, the calling process blocks or is returned
an error (ENOBUFS). Processes that are blocked or subsequently
block on poll(2) will not be woken up until the send buffer fill
drops beneath 1/2 of the maximum; however, any process that
subsequently attempts to send and has data that will fit in the
buffer will be permitted to proceed.

STREAMS networking, on the other hand, performs queueing,
flow control and scheduling on both the sender and the receiver.
Sent messages are queued before delivery to the IP subsystem.
Received messages from the IP subsystem are queued before de-
livery to the receiver. Both side implement full hysteresis high
and low water marks. Queues are deemed full when they reach
the high water mark and do not enable feeding processes or sub-
systems until the queue subsides to the low water mark.

Scheduling. Linux Sockets schedule by waking a receiving pro-
cess whenever data is available in the receive buffer to be read,
and waking a sending process whenever there is one-half of the
send buffer available to be written. While accomplishing buffer-
ing on the receive side, full hysteresis flow control is only per-
formed on the sending side. Due to the way that Linux handles
the loop-back interface, the full hysteresis flow control on the
sending side is defeated.

STREAMS networking, on the other hand, uses the queueing,
flow control and scheduling mechanism of STREAMS. When mes-
sages are delivered from the IP layer to the receiving stream head
and a receiving process is sleeping, the service procedure for the
reading stream head ’s read queue is scheduled for later execution.
When the STREAMS scheduler later runs, the receiving process
is awoken. When messages are sent on the sending side they are
queued in the driver’s write queue and the service procedure for
the driver’s write queue is scheduled for later execution. When
the STREAMS scheduler later runs, the messages are delivered to
the IP layer. When sending processes are blocked on a full driver
write queue, and the count drops to the low water mark defined
for the queue, the service procedure of the sending stream head
is scheduled for later execution. When the STREAMS scheduler
later runs, the sending process is awoken.

Linux Fast-STREAMS is designed to run tasks queued to the
STREAMS scheduler on the same processor as the queueing pro-
cessor or task. This avoid unnecessary context switches.

The STREAMS networking approach results in fewer blocking
and wakeup events being generated on both the sending and re-
ceiving side. Because there are fewer blocking and wakeup events,
there are fewer context switches. The receiving process is per-
mitted to consume more messages before the sending process is
awoken; and the sending process is permitted to generate more
messages before the reading process is awoken.

Result The result of the differences between the Linux NET
and the STREAMS approach is that better flow control is be-
ing exerted on the sending side because of intermediate queueing
toward the IP layer. This intermediate queueing on the sending
side, not present in BSD-style networking, is in fact responsi-
ble for reducing the number of blocking and wakeup events on
the sender, and permits the sender, when running, to send more
messages in a quantum.

On the receiving side, the STREAMS queueing, flow control
and scheduling mechanisms are similar to the BSD-style software
interrupt approach. However, Linux does not use software inter-
rupts on loop-back (messages are passed directly to the socket
with possible backlogging due to locking). The STREAMS ap-
proach is more sophisticated as it performs backlogging, queueing

and flow control simultaneously on the read side (at the stream
head).

6.2 Caveats

The following limitations in the test results and analysis must be
considered:

6.2.1 Loop-back Interface

Tests compare performance on loop-back interface only. Several
charactersitics of the loop-back interface make it somewhat dif-
ferent from regular network interfaces:

1. Loop-back interfaces do not require checksums.

One of the major disadvantages of SCTP over TCP from
a protocol performance perspective is the increased cost of
the CRC-32C checksum used by SCTP over the Fletcher32
checksum used by TCP. Using the loop-back interface avoids
this checksum comparison as both TCP and SCTP do not
perform checksum on loop-back.

2. Loop-back interfaces have a null hard header.

This means that there is less difference between putting each
data chunk in a single packet versus putting multiple data
chunks in a packet.

3. Loop-back interfaces have negligible queueing and emission
times, making RTT times negligible.

4. Loop-back interfaces do not normally drop packets.

This, in fact, provides an advantage to TCP. Even a light
degree of packet loss impacts TCP’s performance to a far
greater degree than SCTP.

5. Loop-back interfaces preserve the socket buffer from sending
to receiving interface.

This also provides an advantage to Sockets TCP. Because
STREAMS sctP cannot pass a message block along with
the socket buffer (socket buffers are orphaned before passing
to the loop-back interface), a message block must also be
allocated on the receiving side.

6.2.2 Effective Bandwidth

Tests compare performance of two rather different implementa-
tions of TCP against a single implementation of SCTP. TCP and
SCTP have inherent differences in the protocol that affect the
efficiency at various load points.

For example, whereas TCP can coallesce many small writes
into a single contiguous segment for transmission in a single
TCP packet, SCTP must normally create individual data chunks
for each write. Some of the original iperf testing on the
OpenSS7 Linux Native Sockets version of SCTP used a spe-
cialized SOCK STREAM mode that ignored message boundaries and
only supported one SCTP stream. This is a far better compari-
son to TCP in this respect. The netperf package also takes this
approach by setting the T MORE bit on all calls to t snd(3).

Also, when message sizes are small, SCTP normally has signifi-
cant overheads in the protocol that consume available bandwidth
and reduce efficiency. For example, for messages of N bytes,
transmitted on the loop-back interface, for TCP this consists of
the IP header, the TCP header, and the data; for SCTP, the
IP header, the SCTP header, and one data chunk header (plus
the padding to pad the data to the next 32-bit boundary) for
each message bundled. Again, netperf sets the T MORE bit on
all calls to t snd(3) in an attempt to behave more like TCP for
comparison testing.

15

7 Conclusions

These experiments have shown that the Linux Fast-STREAMS
implementation of STREAMS SCTP, as well as STREAMS TCP
using XTIoS, networking outperforms the Linux Sockets TCP
implementation by a significant amount (approx. 200-300%).

The Linux Fast-STREAMS implementation of
STREAMS SCTP and TCP networking is superior
by a significant factor across all systems and kernels
tested.

All of the conventional wisdom with regard to STREAMS and
STREAMS networking is undermined by these test results for
Linux Fast-STREAMS.

• STREAMS is fast.

Contrary to the preconception that STREAMS must be
slower because it is more general purpose, in fact the reverse
has been shown to be true in these experiments for Linux
Fast-STREAMS. The STREAMS flow control and schedul-
ing mechanisms serve to adapt well and increase both code
and data cache as well as scheduler efficiency.

• STREAMS is more flexible and more efficient.

Contrary to the preconception that STREAMS trades flex-
ibility or general purpose architecture for efficiency (that
is, that STREAMS is somehow less efficient because it is
more flexible and general purpse), in fact has shown to be
untrue. Linux Fast-STREAMS is both more flexible and
more efficient. Indeed, the performance gains achieved by
STREAMS appear to derive from its more sophisticated
queueing, scheduling and flow control model.

• STREAMS better exploits parallelisms on SMP better than
other approaches.

Contrary to the preconception that STREAMS must be
slower due to complex locking and synchronization mech-
anisms, Linux Fast-STREAMS performed better on SMP
(hyperthreaded) machines than on UP machines and out-
performed Linux Sockets TCP by and even more significant
factor (about 40% improvement at most message sizes). In-
deed, STREAMS appears to be able to exploit inherent par-
allelisms that Linux Sockets is unable to exploit.

• STREAMS networking is fast.

Contrary to the preconception that STREAMS networking
must be slower because STREAMS is more general pur-
pose and has a rich set of features, the reverse has been
shown in these experiments for Linux Fast-STREAMS. By
utilizing STREAMS queueing, flow control and scheduling,
STREAMS SCTP and TCP indeed performs better than
Linux Sockets TCP.

• STREAMS networking is neither unnecessarily complex nor
cumbersome.

Contrary to the preconception that STREAMS networking
must be poorer because of use of a complex yet general pur-
pose framework has shown to be untrue in these experiments
for Linux Fast-STREAMS. Also, the fact that STREAMS
and Linux conform to the same standard (POSIX), means
that they are no more cumbersome from a programming per-
spective. Indeed a POSIX conforming application will not
known the difference between the implementation (with the
exception that superior performance will be experienced on
STREAMS networking).

8 Future Work

Local Transport Loop-back

UNIX domain sockets are the advocated primary interprocess
communications mechanism in the 4.4BSD system: 4.4BSD
even implements pipes using UNIX domain sockets [MBKQ97].
Linux also implements UNIX domain sockets, but uses the
4.1BSD/SVR3 legacy approach to pipes. XTI has an equiva-
lent to the UNIX domain socket. This consists of connection-
less, connection oriented, and connection oriented with orderly
release loop-back transport providers. The netperf program has
the ability to test UNIX domain sockets, but does not currently
have the ability to test the XTI equivalents.

BSD claims that in 4.4BSD pipes were implemented using sock-
ets (UNIX domain sockets) instead of using the file system as
they were in 4.1BSD [MBKQ97]. One of the reasons cited for
implementing pipes on Sockets and UNIX domain sockets using
the networking subsystems was performance. Another paper re-
leased by the OpenSS7 Project [SS7] shows that experimental re-
sults on Linux file-system based pipes (using the SVR3 or 4.1BSD
approaches) perform poorly when compared to STREAMS-based
pipes. Because Linux uses a similar approach to file-system based
pipes in implementation of UNIX domain sockets, it can be ex-
pected that UNIX domain sockets under Linux will also perform
poorly when compared to loop-back transport providers under
STREAMS.

Sockets interface to STREAMS

There are several mechanisms to providing BSD/POSIX Sockets
interfaces to STREAMS networking [VS90] [Mar01]. The ex-
periments in this report indicate that it could be worthwhile to
complete one of these implementations for Linux Fast-STREAMS
[Soc] and test whether STREAMS networking using the Sockets
interface is also superior to Linux Sockets, just as it has been
shown to be with the XTI/TPI interface.

9 Related Work

A separate paper comparing the STREAMS-based pipe imple-
mentation of Linux Fast-STREAMS to the legacy 4.1BSD/SVR3-
style Linux pipe implementation has also been prepared. That
paper also shows significant performance improvements for
STREAMS attributable to similar causes.

A separate paper comparing a STREAMS-based UDP imple-
mentation of Linux Fast-STREAMS to the Linux NET4 Sockets
approach has also been prepared. That paper also shows signif-
icant performance improvements for STREAMS attributable to
similar causes.

References

[GC94] Berny Goodheart and James Cox. The magic gar-
den explained: the internals of UNIX System V Re-
lease 4, an open systems design / Berny Goodheart
& James Cox. Prentice Hall, Australia, 1994. ISBN
0-13-098138-9.

[Jon07] Rick Jones. Network performance with netperf – An
OpenSS7 Modified Version. http://www.openss7.-
org/download.html, 2007.

[LfS] Linux Fast-STREAMS – A High-Performance SVR
4.2 MP STREAMS Implementation for Linux.
http://www.openss7.org/download.html.

[LiS] Linux STREAMS (LiS). http://www.openss7.org/-
download.html.

16

[LML] Linux Kernel Mailing List – Frequently Asked
Questions. http://www.kernel.org/pub/linux/docs/-
lkml/#s9-9.

[Mar01] Jim Mario. Solaris sockets, past and present. Unix
Insider, September 2001.

[MBKQ97] Marshall Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. Quaterman. The design and
implementation of the 4.4BSD operating system.
Addison-Wesley, third edition, November 1997. ISBN
0-201-54979-4.

[OG] The Open Group. http://www.opengroup.org/.

[RBD97] Vincent Roca, Torsten Braun, and Christophe Diot.
Demultiplexed architectures: A solution for efficient
STREAMS-based communications stacks. IEEE
Network, July/August 1997.

[Rit84] Dennis M. Ritchie. A Stream Input-output Sys-
tem. AT&T Bell Laboratories Technical Journal,
63(8):1897–1910, October 1984. Part 2.

[Soc] Sockets for linux fast-streams. http://www.openss7.-
org/download.html.

[SS7] The OpenSS7 Project. http://www.openss7.org/.

[SUS95] Single UNIX Specification, Version 1. Open Group
Publication, The Open Group, 1995. http://www.-
opengroup.org/onlinepubs/.

[SUS98] Single UNIX Specification, Version 2. Open Group
Publication, The Open Group, 1998. http://www.-
opengroup.org/onlinepubs/.

[SUS03] Single UNIX Specification, Version 3. Open Group
Publication, The Open Group, 2003. http://www.-
opengroup.org/onlinepubs/.

[TLI92] Transport Provider Interface Specification, Revision
1.5. Technical Specification, UNIX International,
Inc., Parsipanny, New Jersey, December 10 1992.
http://www.openss7.org/docs/tpi.pdf.

[TPI99] Transport Provider Interface (TPI) Specification,
Revision 2.0.0, Draft 2. Technical Specification, The
Open Group, Parsipanny, New Jersey, 1999. http://-
www.opengroup.org/onlinepubs/.

[VS90] Ian Vessey and Glen Skinner. Implementing Berkeley
Sockets in System V Release 4. In Proceedings of the
Winter 1990 USENIX Conference. USENIX, 1990.

[XNS99] Network Services (XNS), Issue 5.2, Draft 2.0. Open
Group Publication, The Open Group, 1999. http://-
www.opengroup.org/onlinepubs/.

[XTI99] XOpen Tranport Interface (XTI). Technical Stan-
dard XTI/TLI Revision 1.0, X Programmer’s Group,
1999. http://www.opengroup.org/onlinepubs/.

17

A Netperf Benchmark Script

One script was used to generate normal data for all implemen-
tations. Following is a listing of the netperf benchmark script
used to generate raw data points for analysis:

#!/bin/bash
set -x
(

sudo killall netserver
sudo netserver >/dev/null </dev/null 2>/dev/null &
sleep 3
netperf_sctp_range --mult=2 -x /dev/sctp_t \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
netperf_tcp_range --mult=2 \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
netperf_tcp_range --mult=2 -x /dev/tcp \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
sudo killall netserver

) 2>&1 | tee ‘hostname‘.‘date -uIminutes‘.log

Another script was used to generate artificial process priorities
for TCP Socket data. Following is a listing of the netperf nice2

script used to generate raw data points for analysis:

#!/bin/bash
set -x
(

sudo killall netserver
sudo nice -n 19 netserver >/dev/null </dev/null 2>/dev/null &
sleep 3
sudo nice -n -20 netperf_tcp_range --mult=2 \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
sudo nice -n -20 netperf_tcp_range --mult=2 -x /dev/tcp \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
sudo nice -n -20 netperf_sctp_range --mult=2 -x /dev/sctp_t \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
sudo killall netserver

) 2>&1 | tee ‘hostname‘.‘date -uIminutes‘.log

B Raw Data

Following are the raw data points captured using the
netperf benchmark script:

Table 1 lists the raw data from the netperf program that was
used in preparing graphs for Fedora Core 6 (i386) on Porky.

Table 2 lists the raw data from the netperf program that was
used in preparing graphs for CentOS 4 on Porky.

Table 3 lists the raw data from the netperf program that was
used in preparing graphs for SuSE OSS 10 on Porky.

Table 4 lists the raw data from the netperf program that was
used in preparing graphs for Ubuntu 7.04 on Porky.

Table ?? lists the raw data from the netperf program that was
used in preparing graphs for RedHat 7.2 on Pumbah.

Table ?? lists the raw data from the netperf program that
was used in preparing graphs for Fedora Core 6 (x86 64) HT on
Daisy.

Table 7 lists the raw data from the netperf program that was
used in preparing graphs for SuSE 10.0 OSS on Mspiggy.

Msg TCP XTIoS SCTP XTI Sockets (N) Sockets (A)
Size Tx Rx Tx Rx Tx Rx Tx Rx

1 1159849 1159849 985536 985536 427906 427906 1838370 1838370
2 1151023 1151023 988000 988000 428911 428911 1724348 1724348
4 1154867 1154867 989624 989624 428147 428147 1676809 1676809
8 1143217 1143217 983939 983939 426783 426783 1614072 1614072

16 1125275 1125275 980890 980890 424960 424960 1601554 1601554
32 1128981 1128981 985902 985902 429033 429033 1589172 1589172
64 1101200 1101200 975575 975575 426793 426793 1566994 1566994

128 1058599 1058599 977760 977760 421511 421511 1531398 1531398
256 983766 983766 972058 972058 418119 418119 1427194 1427194
512 885757 885757 922080 922080 411923 411923 1259498 1259498

1024 755090 755090 799680 799680 463988 463988 968138 968138
2048 575955 575955 629764 629764 437400 437400 663761 663761
4096 388472 388472 408505 408505 372535 372535 408223 408223
8192 262348 262348 289960 289960 333611 333611 248790 248790

16384 186284 186284 176092 176092 274833 274833 140657 140657

Table 1: FC6 on Porky Raw Data

Msg TCP XTIoS SCTP XTI Sockets (N) Sockets (A)
Size Tx Rx Tx Rx Tx Rx Tx Rx

1 1364620 1364620 1203447 1203447 488139 488139 2047905 2047905
2 1362356 1362356 1203841 1203841 486477 486477 1884331 1884331
4 1358177 1358177 1196858 1196858 486114 486114 1834986 1834986
8 1333106 1333106 1190781 1190781 487920 487920 1785688 1785688

16 1343312 1343312 1174897 1174897 486965 486965 1761354 1761354
32 1325970 1325970 1196167 1196167 485464 485464 1761113 1761113
64 1317137 1317137 1205860 1205860 481714 481714 1718639 1718639

128 1258475 1258475 1212792 1212792 480424 480424 1672210 1672210
256 1191616 1191616 1185418 1185418 476034 476034 1561106 1561106
512 1055471 1055471 1090139 1090139 468590 468590 1345495 1345495

1024 878106 878106 983178 983178 507169 507169 1011463 1011463
2048 678733 678733 793133 793133 475515 475515 620730 620730
4096 455788 455788 493888 493888 406640 406640 389039 389039
8192 326908 326908 334676 334676 355857 355857 262913 262913

16384 223135 223135 230284 230284 292729 292729 142018 142018

Table 2: CentOS on Porky Raw Data

Msg TCP XTIoS SCTP XTI Sockets (N) Sockets (A)
Size Tx Rx Tx Rx Tx Rx Tx Rx

1 1006583 1006583 915368 915368 439922 439922 1376226 1376226
2 1006782 1006782 914641 914641 442092 442092 1329413 1329413
4 1004712 1004712 917314 917314 441085 441085 1306239 1306239
8 995951 995951 914113 914113 446082 446082 1291276 1291276

16 994443 994443 919517 919517 442389 442389 1280033 1280033
32 990631 990631 920822 920822 442626 442626 1275191 1275191
64 948700 948700 925600 925600 441098 441098 1253906 1253906

128 959196 959196 949517 949517 440469 440469 1238290 1238290
256 916726 916726 942804 942804 431868 431868 1160232 1160232
512 823708 823708 909330 909330 425150 425150 1039639 1039639

1024 722228 722228 829716 829716 465298 465298 845664 845664
2048 584745 584745 688489 688489 441046 441046 604536 604536
4096 416112 416112 487168 487168 388701 388701 387125 387125
8192 309676 309676 351264 351264 349797 349797 247468 247468

16384 190270 190270 282432 282432 243425 243425 140259 140259

Table 3: SuSE on Porky Raw Data

18

Msg TCP XTIoS SCTP XTI Sockets (N) Sockets (A)
Size Tx Rx Tx Rx Tx Rx Tx Rx

1 1919955 1919955 1454549 1454549 596044 596044 3320562 3320562
2 1929907 1929907 1507194 1507194 596055 596055 3197381 3197381
4 1928627 1928627 1510299 1510299 597056 597056 3150297 3150297
8 1883607 1883607 1503457 1503457 595376 595376 2805778 2805778

16 1891068 1891068 1505280 1505280 594741 594741 2747410 2747410
32 1881287 1881287 1512486 1512486 592212 592212 2767590 2767590
64 1827200 1827200 1526600 1526600 590804 590804 2779697 2779697

128 1744017 1744017 1600200 1600200 586460 586460 2672735 2672735
256 1607224 1607224 1555750 1555750 577130 577130 2374032 2374032
512 1390792 1390792 1427619 1427619 569271 569271 1993970 1993970

1024 1176572 1176572 1176774 1176774 606248 606248 1393740 1393740
2048 801656 801656 887619 887619 565686 565686 857393 857393
4096 536607 536607 517264 517264 475933 475933 482003 482003
8192 336493 336493 390888 390888 404821 404821 287576 287576

16384 240334 240334 261424 261424 320299 320299 157594 157594

Table 4: Ubuntu on Porky Raw Data

Msg TCP XTIoS SCTP XTI Sockets (N) Sockets (A)
Size Tx Rx Tx Rx Tx Rx Tx Rx

1 1487391 1487391 1299066 1299066 785896 785896 2053453 2053453
2 1477331 1477331 1296171 1296171 787870 787870 1954151 1954151
4 1498000 1498000 1295513 1295513 789527 789527 1870593 1870593
8 1496916 1496916 1306058 1306058 785417 785417 1853853 1853853

16 1482747 1482747 1302501 1302501 786693 786693 1826834 1826834
32 1476759 1476759 1311354 1311354 786711 786711 1806797 1806797
64 1446800 1446800 1303624 1303624 788717 788717 1779218 1779218

128 1370687 1370687 1329321 1329321 773130 773130 1738258 1738258
256 1297649 1297649 1298275 1298275 760501 760501 1615250 1615250
512 1153941 1153941 1252839 1252839 732871 732871 1385621 1385621

1024 965640 965640 1126673 1126673 747633 747633 1088448 1088448
2048 718914 718914 873625 873625 671029 671029 763770 763770
4096 504928 504928 552977 552977 533349 533349 473762 473762
8192 343355 343355 449116 449116 430065 430065 279581 279581

16384 210356 210356 366916 366916 315475 315475 152971 152971

Table 5: RedHat 7.2 on Pumbah Raw Data

Msg TCP XTIoS SCTP XTI Sockets (N) Sockets (A)
Size Tx Rx Tx Rx Tx Rx Tx Rx

1 537894 537894 1507754 1507754 530271 530271 4000488 4000488
2 538587 538587 1513008 1513008 526868 526868 3827553 3827553
4 536886 536886 1507753 1507753 515001 515001 3754113 3754113
8 539140 539140 1509625 1509625 529006 529006 3753260 3753260

16 540883 540883 1502556 1502556 525746 525746 3857426 3857426
32 537277 537277 1504196 1504196 524605 524605 4199442 4199442
64 529188 529188 1504607 1504607 519086 519086 4139794 4139794

128 524924 524924 1496666 1496666 516056 516056 4166290 4166290
256 502111 502111 1412554 1412554 520030 520030 3861920 3861920
512 443904 443904 1373139 1373139 581477 581477 3252110 3252110

1024 467082 467082 1190510 1190510 593941 593941 2353643 2353643
2048 429993 429993 967822 967822 584436 584436 1460241 1460241
4096 365776 365776 763228 763228 546152 546152 829584 829584
8192 275454 275454 446314 446314 493871 493871 505873 505873

16384 207719 207719 211762 211762 429703 429703 326267 326267

Table 6: Fedora Core 6 on Daisy Raw Data

Msg TCP XTIoS SCTP XTI Sockets (N) Sockets (A)
Size Tx Rx Tx Rx Tx Rx Tx Rx

1 659556 659556 565257 565257 245146 245146 1028581 1028581
2 661049 661049 563824 563824 244002 244002 961781 961781
4 661009 661009 568400 568400 244579 244579 918068 918068
8 648681 648681 559273 559273 242212 242212 879112 879112

16 645369 645369 559123 559123 243221 243221 863951 863951
32 641812 641812 569891 569891 242555 242555 840722 840722
64 635102 635102 570400 570400 240886 240886 811724 811724

128 605405 605405 578742 578742 236768 236768 781586 781586
256 575741 575741 580136 580136 236547 236547 716701 716701
512 500477 500477 556189 556189 229565 229565 638458 638458

1024 422162 422162 502356 502356 250385 250385 512218 512218
2048 317378 317378 420964 420964 230706 230706 369249 369249
4096 215656 215656 292934 292934 193080 193080 237092 237092
8192 143879 143879 208137 208137 154140 154140 147300 147300

16384 85080 85080 134818 134818 102834 102834 79644 79644

Table 7: SuSE 10.0 OSS on Mspiggy Raw Data

19

