
RTP Forwarding and Transcoding

Design for Linux Fast-STREAMS

Brian F. G. Bidulock∗

OpenSS7 Corporation

July 4, 2011

Abstract

Contents

Abstract 1

1 Background 1
1.1 Demand for Forwarding 1

1.1.1 Gateway Forwarding 1
1.2 Demand for Transcoding 1

1.2.1 Gateway Transcoding 2

2 Objective 2
2.1 General Requirements 2
2.2 Forwarding Requirements 2
2.3 Transcoding Requirements 2

3 Description 2
3.1 SIP Stack . 3
3.2 H.248 Stack . 3
3.3 MG Stack . 3

3.3.1 Channel Mutliplexing (CH-MUX) Driver . 4
3.3.2 Transcoding (XC) Module 4
3.3.3 RTP Multiplexing (RTP-MUX) Driver . . . 4
3.3.4 UDP Driver 4

4 Method 4
4.1 Multi-Stream Interfaces 4
4.2 Performance Improvements 4

4.2.1 Disadvantages of Current Approaches . . . 5
4.2.2 Advantages of the Proposed Approach . . . 5
4.2.3 SIP Implementation 6

4.3 Transparent Adaptive Jitter Buffering 6
4.4 RTCP Packets . 7
4.5 DTMF Digits and Tones 7
4.6 Symmetric RTP . 7
4.7 STUN Packets . 7
4.8 Early Media . 8
4.9 Redundant Media 8
4.10 Carrier Grade Redundancy 8

4.10.1 Redundancy Architecture 8
4.11 MEGACO/H.248 Considerations 10

4.11.1 Ephemeral Termination Points 10
4.12 Invoking Forwarding vs. Transcoding 11
4.13 Usage Record Collection 11

5 Results 11

6 Analysis 11

7 Conclusions 11

8 Future Work 11

9 Related Work 11

10 Acronyms and Abbreviations 12

References 12

A Examples 12

1 Background

1.1 Demand for Forwarding

Supplying VoIP telephony has evolved into a ecosystem of
providers. Tier 1 providers (other than incumbent telephone
companies) are dominated by resellers that provide network ac-
cess but rely on both local and long distance carriers for providing
PSTN network access. When these Tier 1 VARs provide network
connectivity to larger and more sophisticated customers (IP-PBX
owners), their customers can use the IP addresses at the other
end of a SIP connection or RTP connection to determine which
wholesaler is providing network connectivity to the VAR, result-
ing in these customers negotiating directly with the wholesale
network provided for reduced rates.

This has cause a need for such VARs to obscure the IP ad-
dresses of their wholesale network providers. The SIP IP ad-
dresses can be obfuscated easily with SIP proxies; however, the
IP addresses of the RTP endpoints cannot so easily be obscured.
This has created a need for simple forwarding of RTP packets
with IP address and port number translation so that the VAR’s
customers do not see the IP addresses of the VAR’s wholesaler.

1.1.1 Gateway Forwarding

Although there is a demand for forwarding to accommodate IP
address obfuscation, there is a basic requirement for forwarding
that is required by a regular Media Gateway (one that converts
from TDM to IP). The ability to rapidly marshal G.711 encoded
audio samples from the TDM interface to RTP payload is a basic
requirement of such a media gateway. Therefore, any develop-
ment performed for the purpose of a forwarding IP-IP gateway,
can be reused in a regular TDM-IP gateway.

1.2 Demand for Transcoding

Wireless LTE (Long Term Evolution) and WiMAX networks use
primarily VoIP to process telephone calls. This avoids the addi-
tional GSM infrastructure that would otherwise be required for
the processing of telephone calls. This permits a data-only ser-
vice to be provided which is less onerous and capital intensive
than voice networks.

To minimize the bandwidth requirements for voice calls, pri-
marily on the on-the-air interface, LTE and WiMAX network
operators use low-bit-rate codecs such as G.729 Annex A with
Annex B comfort noise. This creates a demand for media gate-
ways that support G.729 and other low-bit-rate codecs. However,
PSTN carriers primarily use G.711 codecs for transport of voice
calls. Many installed media gateways lack the ability to provide

∗bidulock@openss7.org

1

G.729 and would required significant investment in DSP add-on
equipment. Further compounding matters is that existing MGs
have primarily been purchased on grey markets and do not have
the warranty support necessary for upgrade to G.729.

This generates a market demand for transcoding equipment.
This demand will continue to increase as additional WiMAX and
LTE networks are rolled out.

1.2.1 Gateway Transcoding

Although there is a demand for transcoding to accommodate
LTE/WiMAX network evolution, there is a basic requirement
for transcoding that is requried by a regular Media Gateway (one
that converts from TDM to IP). The ability to rapidly transcode
G.711 encoded audio samples from the TDM interface to RTP
payloads other than G.711 is a basic requirement of such a media
gateway. Therefore, any development performed for the purpose
of a transcoding IP-IP gateway, can be reused in a regular TDM-
IP gateway.

2 Objective

The objective of this RTP Forwarding and Transcoding imple-
mentation is to provide an large-scale, integrated, carrier class,
solution for performing forwarding and transcoding.

2.1 General Requirements

In particular, for transcoding applications for LTE and WiMAX,
it can be expected that the PSTN carrier will have antiquated
equipment for internal MGC/MGs. (See the MGC and MG ar-
rangement in relation to the S-SBG/D-SBG of Figure 1, page 2.)
Some assumptions are as follows:

• The MGs likely only support G.711, mu-law, with a 20 or
30 millisecond payload.

• The MGCs and MGs likely do not support DTMF and Tone
RTP payloads.

• The MGCs likely do not support sophisticated early media
(such as the PRACK or UPDATE methods).

SIP

H.323

BICC

RTP

RTCP

RTP

RTCP

Q.1950 CBC

H.248/MEGACO

32,256 Circuits

4 x OC−12

32,256 Circuits 32,256 Circuits

4 x OC−12

Q.1920 BICC

4 x OC−12

Y.1452 VToIP

Y.1453

96,768 Circuits

G.707

G.711

G.707

G.711

G.707

G.711

MG MG MG D−SBG

MGC MGC S−SBG

Figure 1: Session Border Gateway

2.2 Forwarding Requirements

Forwarding needs of VARs can be met with an decomposed or
integrated S-SBG (Signalling Session Border Gateway) and D-
SBG (Data Session Border Gateway), where the S-SBG acts as

an outgoing and incoming SIP proxy and the D-SBG acts as
an IP-IP Media Gateway. The positioning of such a gateway is
illustrated in Figure 1.

It is fully expected that the integrated S-SBG/D-SBG appli-
ance be capable of completely replacing any SBC (Session Border
Controller) equipment at the boundary to the administrative do-
main.

2.3 Transcoding Requirements

The transcoding needs of providers to LTE and WiMAX networks
can be met with a decomposed or integrated S-SBG (Signalling
Session Border Gateway) and D-SBG (Data Session Border Gate-
way), where the S-SBG acts as an outgoing and incoming SIP
proxy and the D-SBG acts as an IP-IP Media Gateway. The
positioning of such a gateway is illustrated in Figure 1.

It is fully expected that the integrated S-SBG/D-SBG appli-
ance be capable of completely replacing any SBC (Session Border
Controller) equipment at the boundary to the administrative do-
main.

3 Description

The overall solution architecture has been designed and revised
may times during the evolution of The OpenSS7 Project. An
MG (Media Gateway) stack has been previously defined in detail.
The relationship between the STREAMS drivers and modules
that make up the MG solution architecture and related com-
ponents are illustrated in Figure 2. The figure illustrates the
software components necessary for implementation of a complete
H.248/MEGACO based Media Gateway (MG). The upper level
components (that are outside the scope of this document) consist
of:

H.248/MGCP Media Gateway Controller (H248) Driver: The
H248 drivers is a multiplexing driver that is used to
communicate with a remote Media Gateway Controller
(MGC) using H.248/MEGACO over UDP, TCP or SCTP.
This driver parses messages and performs control of the
MG Driver that provides the actual MG function.

Implementing this as a STREAMS driver is not necessary.
The XGCP library H.248 stack implementation can be used
to affect the same ends. The XGCP library interfaces with
the underlying STREAMS UDP, TCP and SCTP pseudo-
device drivers; however, the handling of H.248 messages is
performed within the library in user-space.

Media Gateway (MG) Driver: The MG driver provides H.248-
like internal control of the software switching matrix and
associated media stacks. It uses the Media Gateway Inter-
face (MGI) [MGI11]. It is also responsible for the generation
of tones, playing of audio files, etc; however, its primary
function is to control and manage the software switching
matrix.

Note that rather than directly communicating with the H248
driver; the control of the MG driver can be performed using
the XGCP user-space library with a local (instead of remote)
context.

Software Switching Matrix (MATRIX) Multiplexing Driver:
The MATRIX implements a software switching matrix that
switches media and control messages between the upper
and lower multiplex interfaces.

Media Stacks: The media stacks make up the lower levels of the
architecture. Media stacks exist for PDH, SDH and RTP.
(Media stacks also exist for ATM and VToIP, but are not
illustrated.)

The primary component of concern to the current work is the
RTP media stack, shown in insert in Figure 3, page 3.

2

CHI CHI CHI

CHI CHICHI

driver

UDP Driver

UDP

/dev/udp2

driver

NPI or TPI

driver

NPI or TPI

TCP Driver

TCP

/dev/tcp

SCTP Driver

SCTP

/dev/sctp

MGI

MGI (Management Only)

driver

UDP Driver

UDP

/dev/udp2

NPI or TPI

CHI

mux

CHIMXI

MXI (SDH)

MXI (G.704)

Software Switching Matrix Multiplexing Driver

MATRIX

/dev/matrix

driver

SONET/SDH Driver

SX

/dev/on248

MX

/dev/v401p

Multiplex Device Driver

driver

Channel Device Driver

CHI

/dev/acb56

driver

SONET/SDH Multiplex Driver

MX

mux

/dev/smux

H.248/MGCP Media Gateway Controller Driver

H248

/dev/h248−mgc, /dev/mgcp−mgc

mux

mux

Media Gateway Driver

MG

/dev/mg

RTP Multiplexing Driver

RTP−MUX

/dev/rtp−mux

mux

NPI or TPI

CHI

XC XC

Transcode Transcode Transcode

xcxc xc

XC

mux

Channel Multiplex Driver

CH−MUX

/dev/ch−mux

Figure 2: Solution Architecture

3.1 SIP Stack

The SIP stack features the sofia SIP libraries. These libraries
have been (or will be) modified for performance as outlined in
Section 4.2.3, page 6.

Note also that to provide abstraction of the control interface
to the sofia SIP stack, the XCC XOM-based API can be used
instead. The permits swapping the underlying SIP implementa-
tion out for some other component at some point. Also, it can
provide a homogeneous interface for SIP call control, H.323 call
control, ISUP call control, and ISDN call control.

3.2 H.248 Stack

There are no stand-along open source H.248 Stack implementa-
tions. Erlang provides an open source licensed H.248 Stack, but it
requires the entire Erlang environment. Some other projects have
integrated H.248 capability but it is meager and not worth prop-
agating. Unfortunately, this means that the OpenSS7 project
must develop its own H.248 stack.

The H.248 libraries utilize a XOM-based interface for the
generation and receipt of H.248/MEGACO messages called the
XGCP. The messages of this interface can be used for the MGC
side of H.248 communications, for the MG side of H.248 com-
munications, and for local MG control, depending on the context
selected when the API is initialized. Because the identical service
interface and API is used both for MGC remote control as well
as MG local control, the same interface can be used for both.
That is, applications using the XGCP can be made unaware of
whether the MG services are local or remote.

This permits, for example, issuing an identical set of requests
against a remote mated MG as are requested of the local MG,
permitting synchronization of the mated MGs.

3.3 MG Stack

The general organization of STREAMS drivers and modules is
illustrated in Figure 3. The primary components of the media
stack, illustrated in Figure 3, are as follows:

CHI CHI CHI

CHI CHICHI

driver

UDP Driver

UDP

/dev/udp2

RTP Multiplexing Driver

RTP−MUX

/dev/rtp−mux

mux

NPI or TPI

CHI

XC XC

Transcode Transcode Transcode

xcxc xc

XC

mux

Channel Multiplex Driver

CH−MUX

/dev/ch−mux

Figure 3: STREAMS Drivers and Modules

3

Channel Multiplex Driver (CH-MUX): The channel multiplex
driver (CH-MUX) sits at the top of the forward-
ing/transcoding media stack. The CH-MUX is described
in more detail in Section 3.3.1, page 4.

Transcode Modules (XC): The transcoding modules (XC) are
specialized modules that sit in an interior multiplexed
Stream within the media stack. The XC modules are de-
scribed in more detail in Section 3.3.2, page 4.

RTP Multiplexing Driver (RTP-MUX): The RTP (Real-Time
Transport Protocol) multiplexing driver (RTP-MUX) sits
and beneath the transcoding Streams and provides a switch-
ing nexus for dispatching packets to and from the appropri-
ate transcoding Streams. The RTP-MUX is described in
more detail in Section 3.3.3, page 4.

UDP Driver: The UDP (User Datagram Protocol) driver sits at
the bottom of the media stack and is responsible for dis-
tributing packets to the network and discriminating packets
received from the network. The UDP driver is described in
more detail in Section 3.3.4, page 4.

3.3.1 Channel Mutliplexing (CH-MUX) Driver

The channel multiplexing driver sits at the top of the RTP for-
warding/transcoding media stack. It provides a Channel Inter-
face (CHI) [CHI11] service interface at the upper boundary. It
is responsible for providing control of the RTP forwarding and
transcoding performed by the media stack beneath it. This driver
has the capability of being interfaced with the Media Gateway
Driver (MG), or an upper layer user application that controls the
RTP stack.

The CH-MUX driver is responsible for cross-connecting a
transcoded media stream between RTP termination points. The
media format at the upper interface is audio/pcmu/8000/1,
audio/pcma/8000/1 or audio/l16/8000/1.

The CH-MUX driver is also responsible for providing transpar-
ent adaptive jitter buffering of downward data streams. Trans-
parent adaptive jitter buffering is described in detail in Section
4.3, page 6.

3.3.2 Transcoding (XC) Module

The transcoding modules provide all of the heavy lifting (com-
putationally intense operations) necessary for transcoding from
the PCMU, PCMA or L16 upstream format, to a specific codec’s
native downstream format, and vise versa.

The use of STREAMS modules for transcoding provides for
several performance gains: Instruction Cache Acceleration de-
scribed in Section 4.2.2.1, page 5; Pipelining, Section 4.2.2.2, page
6; and, Super Scalar Execution, Section 4.2.2.3, page 6.

The RTP payload provided from above is not necessarily in se-
quence and may be lossy. The RTP payloads provided from below
are also not necessarily in sequence and may also be lossy. The
specific XC module is responsible for sequencing and handling
lost payloads as necessarily to the specific encoding or decoding
process. This is performed using a technique called Transparent
Adaptive Jitter Buffering that is detailed in Section 4.3, page 6.

3.3.3 RTP Multiplexing (RTP-MUX) Driver

The RTP multiplexing driver sits toward the bottom of the RTP
forwarding/transcoding media stack. It provides a Channel In-
terface (CHI) [CHI11] service interface at the upper boundary,
and a Network Provider Interface (NPI) [NPI92] service inter-
face at the lower boundary. It is responsible for interfacing the
transcoding modules above it to the UDP driver beneath it. It is
also responsible for performing RTP forwarding.

The primary function of the RTP-MUX driver is to dispatch
RTP packets arriving from the UDP driver to the appropriate
decoding stack (transcoding modules).

The RTP-MUX driver is also responsible for providing trans-
parent adaptive jitter buffering of upward data streams. Trans-
parent adaptive jitter buffering is described in detail in Section
4.3, page 6.

3.3.4 UDP Driver

The UDP driver sits at the bottom of the RTP forward-
ing/transcoding media stack. It provides a Network Provider
Interface (NPI) [NPI92] service interface at the upper boundary
and interfaces with Linux networking at the lower (internal) in-
terface. It is responsible for sending and receiving RTP, RTCP
and STUN packets to and from the network.

4 Method

This section describes some of the methods that are used to
achieve large scale operation and maximum performance.

4.1 Multi-Stream Interfaces

The Multi-Stream Interface technique is used to provide large-
scale RTP forwarding and transcoding using STREAMS. Typi-
cal STREAMS interfaces such as the Network Provider Interface
(NPI) [NPI92] provide a single stream for each network relation
(connection between local transport address and remote trans-
port address). While this is suitable for a number of network
connections on the order of tens or hundreds, it does not scale
under Linux to the thousands, tens of thousands, or even hun-
dreds of thousands. Because the intended scale of the appliance
is 10,000 to 500,000 channels of forwarding and transcoding, and
because the Linux operating system only supports several thou-
sand open file descriptors system-wide, another approach became
necessary.

In an attempt to reuse existing service interfaces such as the
Network Provider Interface (NPI), a general approach to convert-
ing an existing per-Stream interface to a Multi-Stream Interface
was devised. The approach provides a separate device or clone
minor that can be opened that provides the multi-Stream inter-
face from the primary device or clone minor that provides the
per-Stream interface. Message primitives that are passed on the
multi-Stream interface have a 64-bit token prefixed to each mes-
sage primitive. This 64-bit token identifies the individual virtual
Stream within the multi-Stream interface. There are a pair of 64-
bit tokens defined: one defined by the user of the service interface;
the other by the provider. For the most part, message primi-
tives that are passed from user to provider are prefixed with the
provider’s tag; message primitives passed from provider to user,
the user’s tag. However, the first transaction (one that “opens”
the virtual Stream) has the user tag provided on the user prim-
itive and provider tag on provider primitive. This mechanism
provides for the initial exchange of tag values. Tag size was se-
lected at 64-bits to permit either the user or provider to use a
memory address as the tag.

For the RTP forwarding/transcoding media stack, all interfaces
use the Multi-Stream Interface approach.1

4.2 Performance Improvements

Software codecs and transcoding is not a new concept. However,
most software codec implementations do not perform well, and
the vast majority of implementations are based on dedicated DSP
(Digital Signal Processor) hardware.

Product literature available on the web indicates that software
codecs and transcoding can only accommodate a maximum of
about 1000 channels, and even then only for the less complex or
computationally intense codecs. Even dedicated DSP approaches

1. Note that this Multi-Stream Interface approach is quite applicable to
any situation where management of multiplexing drivers become difficult
due to the need to dynamically allocate lower stream resources.

4

yields only about 1000 to 2000 channels per large form-factor
module populated with a DSP farm. Some network processors
(NP) appear to provides larger scale implementation; however,
costs are high and scalability is still low.

In fitting with the objective of providing transcoding support
on a single host of between 10,000 and 500,000 simultaneous chan-
nels of G.729/G.711 transcoding, performance improvements over
the approaches taken by other software transcoding implementa-
tions is necessary.

4.2.1 Disadvantages of Current Approaches

The disadvantages of other software transcoding approaches ap-
pear to be as follows:

1. Reference implementation. Many transcoding implementa-
tions actually use copies of the ITU-T Reference implemen-
tation C-language code as their implementations. The C-
language code reference implementations were written with
correctness and off-line verification in mind and not any
manner of performance.

2. Poor scheduling. Because reference implementations of
codecs are designed for off-line verification, they are single-
threaded. This results in poor processor core utilization
when used to attempt real-time processing of multiple chan-
nels.

3. Context switching. Most software transcoding implemen-
tations are user-space implementations. This causes addi-
tional context switches and scheduling difficulties for each
packet transcoded.

4. Unpinned memory. As user space implementations base
on the off-line reference implementation, most software
transcoding implementations do not utilize pinned memory
(locked memory) and a subject to the whims of memory
swapping.

4.2.2 Advantages of the Proposed Approach

The advantages of the proposed approach are:

1. Kernel implementation rather than user space. Performing
encoding and transcoding using the STREAMS framework
within the kernel provides for light-weight process schedul-
ing with a significant reduction in context switching.2 Also,
the STREAMS scheduler schedules light-weight processes
on a different basis that the Linux process scheduler pro-
cesses heavy-weight processors or threads, particularly as re-
gards processor persistence and cache heat. The Linux Fast-
STREAMS scheduler promotes more efficient batch process-
ing, whereas, the main scheduler favours low latency single-
shot execution over batch processing. This is described in
more detail in Section 4.2.2.1, page 5.

2. Utilization of the STREAMS framework.

The STREAMS framework can be used for

This is described in more detail in Section 4.2.2.1, page 5
and Section 4.2.2.2, page 6.

3. Utilization of specialized SIMD instruction sets on modern
processors.

This is described in more detail in Section 4.2.2.3, page 6.

4.2.2.1 Instruction Cache Acceleration. Instruction
Cache Acceleration is a byproduct of the STREAMS framework,
provided that some design principles are followed when writing
STREAMS drivers and modules.

Much ado has been made about data cache heat and efficiency
in the Linux operating system; however, general processor de-
sign and implementation over the last 20 or 30 years dictates

that instruction cache heat and efficiency has a much larger im-
pact on system performance. There are several characteristics
of the STREAMS framework that provide for instruction cache
efficiency:

Light Weight Processes:– STREAMS provides the ability to
chain modules and drivers along a Stream to break complex
tasks into smaller more manageable pieces. These modules
are independent of each other (execution is asynchronous),
yet without requiring an expensive context switch between
modules.

Service Procedures:– STREAMS provides the ability to defer
processing of messages until a later point in time. Event
driven soft-real-time systems have the difficulty that event
showers can occur, overwhelming the system. Hard real-
time synchronous systems (such as DSP) have the problem
that excess capacity (the processing capacity not needed to
meet a deadline) remains inaccessible. Service procedures
in STREAMS cause event showers to be handled through
queuing and flow control. Queuing causes multiple events of
a similar nature to be queued together, so that they can be
processed within the service procedure in a hard loop (with-
out any context switch). This causes increased instruction
(and even data) cache efficiency during event showers, in-
creasing the stability and efficiency of the system.

Processor Persistence:– Not really a characteristic of
STREAMS, but a characteristic of Linux Fast-STREAMS,
processor persistence is a situation where events scheduled
for execution on adjacent queues, callbacks or call-outs are
scheduled on the same processor that invoked them. While
one might think that better performance could be achieved
by scheduling them on any available processor, both data
and instruction cache ping-pong can result unless processor
persistence is applied. Also, processor persistence reduces
lock contention on multiprocessor systems. Processor
persistence is also conducive to “batching” of messages:
when a batch of messages is being processed in a service
procedure that passes messages up or down stream, those
messages will not be processed until the service procedure
returns (completes its batch). This keeps other service
procedures from being scheduled too early, and allows the
batch to flow through the STREAMS framework, increasing
instruction and data cache efficiency further.

Considering these characteristics of the STREAMS framework
and Linux Fast-STREAMS implementation, several principles
can be used in the design of drivers and modules to accelerate
instruction cache (and data cache) efficiency, as follows:

1. Always provide service procedures except for the most simple
of modules. Providing service procedures and using them
wisely increases the performance through batch processing,
improved instruction cache efficiency, and pipelining.

2. Always queue normal priority messages for processing by the
service procedure. Messages should always be queued quickly
for processing by the service procedure. The only exception
is some messages that have to be responded to immediately
(like M FLUSH), and potentially some messages that termi-
nate on the module and do not result in messages being
passed up or down stream.

3. Always process fast-path messages out of the service proce-
dure. The data fast-path should always be processed out the
service procedure for maximum performance and increased
stability in the face of event showers.

2. Here “context switching” is not just the switch in processor context,
but the also the penalty incurred by cache misses and lock contention.

5

4. Keep fast-path service loops within the service procedure
small and tight. Processing of data in the fast-path out of
the service procedures should be small and tight as possible
so that instruction cache efficiency can provide maximum
benefits.

5. Break long compute-intensive tasks down into smaller units
and pipeline them in a chain of modules. Breaking larger
tasks down into smaller and tighter units chained together in
a stream of modules (pipelining) provides better instruction
cache and data cache efficiency and provides more degrees of
freedom and opportunities for multiple processors to operate
along different portions of the stream.

4.2.2.2 Pipelining. Pipelining can be achieved by proper or-
ganization and interconnection of STREAMS drivers and mod-
ules. In general, where functions performed on messages passed
(upstream or downstream) differ, a separate Stream should be
used for each function.

For example, the IP driver intercepts packets that are bound
for the D-SBG function. Packets can be processed as media-aware
transcoding, or media-agnostic forwarding. Because these two
functions utilize different fast-paths, the IP driver discriminates
between the two and passes packets for transcoding to one upper
Stream and packets for forwarding to another.

As another example, the RTP module processes RTP packets
for transcoding. The transcoding is always performed between
G.711 or 16-bit linear PCM. Because the functions performed
depends on the coding of the RTP payload, the RTP driver dis-
tinguishes between payloads and passed the packets to the ap-
propriate upper module chain responsible for transcoding that
specific payload. This is illustrated in Figure 3, page 3.

Pipelining in this fashion improves both instruction and data
cache efficiency by batching together packets upon which like
functions are performed in service procedures.

4.2.2.3 Super Scalar Execution. Super-scalar execution
(SSE) and related processing approaches (MMX, etc.) provide a
library accessing special purpose super-scalar execution instruc-
tions in modern processors. For the most part these are SIMD
(Single Instruction Multiple Data) instructions that provide a
2-wide, 4-wide, or 8-wide data path with a single instruction
pipeline. For algorithms that are amenable to these approaches,
execution performance can be increased by a factor of the data
path width (2, 4 or 8) on a single processor.

Although these approaches are well known, most software
codec implementations simply utilize the off-line coded reference
implementations of the codecs rather than attempting to opti-
mize them in any way. This, of course, leads to much poorer
performance than is possible.

It has been stated that one of the advantages of using DSP
over general purpose RISC or CISC processors is that DSP can
retrieve an entire block of data at the same time and perform op-
erations on that data in parallel. Some DSP are MIMD (Multiple
Instruction Multiple Data) architectures. By utilizing the SIMD
(Single Instruction Multiple Data) capabilities of modern gen-
eral purpose processors, and by utilizing pipelining (see Section
4.2.2.2, page 6), multiple cores can be invoked to achieve greater
calculation performance than that achievable using DSPs. This
is because digital signal processors often have significantly lower
clock and memory speeds and do not perform caching in the nor-
mal sense: therefore, DSP cannot take advantages of cache ac-
celeration techniques such as those described under Instruction
Cache Acceleration: Section 4.2.2.1, page 5.

4.2.3 SIP Implementation

The SIP implementation intended on being used is the sofia SIP
stack. The sofia SIP implementation is principally a shared-

object library that is used in a main event loop by an application
program that implements the SIP state machine. Several per-
formance improvements need to be made to the sofia libraries as
follows:

1. The sofia code base does not version its symbols. Proper
library versioning needs to be added.

2. The sofia code base does not address cancellation points
for threaded programs. Proper cancellation treatment for
asynchronous thread cancellation needs to be added.

3. The sofia code base does not organize functions by code heat.
Functions need to be organized by code heat.

4. The sofia code base compiles without profiling. The code
base needs to be profiled and branch prediction included in
the code base.

5. The sofia code base uses Linux sockets for UDP, TCP and
SCTP. The OpenSS7 STREAMS implementations of these
are more efficient and provide a performance increase due to
batching and reduced context switching. The sockets inter-
face to UDP and SCTP need to be substituted for XTI inter-
face to the OpenSS7 STREAMS implementations of these.

Unfortunately, the libsofia-sip libraries have been added to
recent major distributions (such as Debian, Mageia, Fedora),
largely in support of the telepathy package. This means that
there is little opportunity to properly repackage the library. On
the other hand, it may be possible to repackage the library as a
different implementation of the same interface with proper library
versioning.

Note that the sofia SIP implementation is not a full blown
application, but is, rather, a set of libraries and event handlers
that can be used to build a SIP application.

4.3 Transparent Adaptive Jitter Buffering

Adaptive and non-adaptive jitter buffering is a technique whereby
the playback of audio data is buffered and played back as a de-
layed program in an attempt to alleviate any out of sequence
arrival or jitter between inter-arrival times for RTP packets. The
normal form of jitter buffering is only performed at the termi-
nation of an audio stream and is not as necessary within the
network.

For transcoding, most codecs provide some constraints on the
ordering of data chunks in the stream and require all adjacent
packets before transcoding a given segment can occur. To accom-
modate transcoding, it is necessary to perform some resequencing
and buffering of segments to perform the transcoding function.
However, because playback is not being performed, and because
most codecs permit segments interior to the data stream to be en-
coded without consideration for the signal outside the pertinent
segment range, some actions performed by normal terminating
jitter buffering are not required.

The actions of normal jitter buffering that do not need to be
performed to accomplish transcoding are as follows:

Loss Detection:– The transparent adaptive jitter buffer does not
have to determine when packets are lost by imposing a max-
imum delay as is performed with normal jitter buffering.

Avoiding Early Delivery:– Because playback is not being per-
formed, transparent adaptive jitter buffering does not have
to worry about early delivery. As soon as a packet is avail-
able for transmission, it can be transmitted regardless of the
order in which the packets are processed.

Equal Payload:– Normal jitter buffering typically requires play-
back at a constant rate and requires that each playback seg-
ment be of the same size and delivered synchronous with the

6

playback clock. This is not the case for transparent adap-
tive jitter buffering that can coalesce multiple segments into
a larger payload (up to maxptime) to more efficiently utilize
the network. This can help with jitter reduction as well as
compensating for network congestion upstream by reducing
packet overheads downstream.

Transparent adaptive jitter buffering works as follows:

1. Packet payloads are added to the buffer using an insertion
sort.

2. When the addition of a packet results in a contiguous seg-
ment sufficient for encoding, a maximally sized segment is
struck from the buffer and encoded.

3. When an excessive amount of segment fragments exist in the
buffer, the oldest segment fragments that constitute the ex-
cess are struck. Depending on the codec, loss reports might
be generated for the struck segments.

4. Where one incoming packet maps to an integral number of
segments, the buffer is simply bypassed.

Transparent jitter buffering, therefore, has the following char-
acteristics that are different from normal non-adaptive or adap-
tive jitter buffering:

• Segments are delivered as soon as they become available.

• Jitter is maintained across the buffer to the greatest extent
possible considering the ordering needs of the encoding.

Note that most implementations perform normal RTP termi-
nation instead of adaptive jitter-buffering.

4.4 RTCP Packets

When forwarding RTP and RTCP packets, RTCP packets are
treated the same as any other UDP packets and are simply IP
address and port translated and forwarded. Transcoding, on the
other hand, is more complex and requires that RTCP packets
be transcoded to some degree as well, particularly as regards SR
(Sender Report) and XR (Extended Report) messages.

In the same spirit as adaptive jitter-buffering, the D-SBG is
transcoding the RTP stream and is not terminating it. As a
result, the adaptive jitter buffering is considered part of the
network. RTCP reports are not generated by the transcoding:
transmitted RTCP packets are simply 1:1 translated versions of
received RTCP packets.

4.5 DTMF Digits and Tones

Many low bit-rate (LBR) codecs are incapable of successfully
encoding DTMF digits. This is primarily because LBR codecs
make assumptions that the media content is voice. Transport of
DTMF digits can be performed in two ways: 1), specification of
DTMF digits as signalling events using SIP; and, 2), specification
of DTMF digits using a, possibly redundant, RTP payload.

From the perspective of forwarding, any RTP stream that is
forwarded will also contain DTMF RTP payloads when necessary.

From a transcoding perspective, however, some codecs (e.g.
G.711) will carry the DTMF digits in-band; whereas other (e.g.
G.729) will carry them out of band using one of the methods
above. When transcoding, there is a point at which the out-
of-band DTMF digits must be played and mixed in-band; and,
a point at which DTMF digits must be detected in-band and
converted to out-of-band signals.

For the most part, for the LTE/WiMAX transcoding applica-
tion, DTMF digits will originate from mobile stations in the mo-
bile network (out-of-band beside G.728 or G.729 codecs) rather
than the PSTN. So when transcoding from G.728 or G.729 to
G.711 for PSTN use, the out-of-band DTMF digits will have to

be played and juxtaposed with the media stream when transcod-
ing from G.729 (for example) to G.711. The question is one of
functional placement within the transcoding media stack. Two
positions are opportune: at the top of the DTMF digit media
transcoding stream before delivering PCMU, PCMA or L16 me-
dia data to the top of the CH-MUX multiplexing driver; or, at the
top of the G.711 media transcoding stream (on the way down).
The former cannot handle DTMF digits out-of-band within the
MG driver or application above the CH-MUX; the later can.

Because the MG application or module above the CH-MUX
driver must be able to handle DTMF digit events separate from
the media stream, it is necessary to choose the second positioning
(DTMF digit media generation is handled at the top of the G.711
codec media stack on way down).

In the other direction, the top of the G.711 codec media stack
will also require DTMF detection to be performed at the last
stage and out-of-band DTMF digit events reported to the top
of the CH-MUX and possibly to the MG application or module
above. The MG application or module, of course, needs to specify
whether DTMF digit detection is required or not, as part of the
transcoding of the stream.

Tones, on the other hand, are more likely to originate from
the PSTN and require delivery to the LTE/WiMAX network us-
ing out-of-band tones. With SS7 connectivity of the carrier’s
internal MGC/MG complex, however, the MGC should indicate
most conditions using SIP signalling rather than attempting to
indicate those with in-band tones.

4.6 Symmetric RTP

For general purpose RTP handling in the face of NAT and NAPT,
the remote IP address and port associated with the RTCP packet
stream may be different from the recommendations of RFC 3550.3

There are two ways to handle NAT/NAPT: ICE [ICE10] (us-
ing STUN [STU03]) and latching. With ICE, STUN messages are
sent by the remote system to the D-SBG’s RTP and RTCP ports
to determine the appropriate IP addresses and port number for
NAT/NAPT traversal. The remote system will then report an
appropriate IP address and port combination for RTP and RTCP
in the SDP Answer. To accommodate this, the D-SBG should de-
multiplex and respond appropriately to STUN messages received
on the RTP and RTCP ports. ICE/STUN has many problems
and impacts post-dial delay and early media and should not be
used in gateway scenarios.

With latching, RTP/RTCP streams are only half-formed (have
only a local IP address and port number) until a message is re-
ceived on each port from the remote system. The D-SBG then
latches to the source address contained in the first messages re-
ceived from the remote system. These messages, of course, must
pass validation. To accommodate this approach, the D-SBG
should support such latching.

Nevertheless, in the configuration most expected for LTE or
WiMAX operation, or in the case of VAR RTP forwarding, calls
are expected to progress from the S-SBG/D-SBG to an internal
MGC/MG network, or pass out over the internet to a remote
S-SBG/D-SBG proxy. In both cases, there should be not need
for NAT/NAPT. Any NAT/NAPT that needs to be performed
is performed by the D-SBG itself.

4.7 STUN Packets

Interactive Connectivity Establishment (ICE) is described in
RFC 5245 [ICE10]. Simple traversal of UDP through NATs
(STUN), is described in RFC 3489 [STU03]. ICE sends STUN

3. RFC 3550 states that the RTCP port number should be odd and one
higher than the corresponding RTP port number, and with the same IP
address. This is not necessarily the case when NAT and NAPT middle-
boxes exist in the path.

7

packets to RTP and RTCP ports on remote systems expecting
a response. See the RFCs for details. Because STUN responses
also need to be sent from UDP addresses and ports different from
the normal RTP and RTCP port numbers (to detect full or par-
tial cone), STUN packets need to be demultiplexed at the UDP
driver and processed independent of the media stack. This is
true for both the forwarding and transcoding scenarios, because
STUN packets need to terminate on the D-SBG.

4.8 Early Media

As discussed briefly in Section 2.1, page 2, the carrier’s
LTE/WiMAX MGC/MG complex may be outdated and without
warranty. This means that neither software nor hardware up-
grades are necessarily available. Handling of early media by such
systems might be non-optimal. Provisional reliable response and
update methods for early media might not be available. There-
fore, the media stack must be prepared to receive candidate pay-
load as early media. Typically, and for security considerations,
this is likely only internal to the boundary formed by the S-
SBG/D-SBG: that is, facing the legacy MGC/MG complex. Ex-
ternal interconnect can have stricter requirements. Therefore,
the media stack, and in particular the UDP driver at the bot-
tom, must be capable of being instructed to permit early media
on a termination point by termination point basis.

Note that this issue is related to latching as described in Sec-
tion 4.6, above.

4.9 Redundant Media

4.10 Carrier Grade Redundancy

Because the LTE and WiMAX application would typically be
housed within a incumbent carrier or CLEC’s network, and due
to the large scale planned for the device, carrier grade redundancy
will likely be necessary. Link failures can easily be accommodated
with Ethernet Bonding, or by using APS (Automatic Protection
System) for 10Gig Ethernet. Node failures, on the other hand,
must be handled by the system architecture and design.

MGI MGIH.248

H.248

H.248

Each

MGC controls

both MGs.

Call state sharing

between platforms.

SIP

H.248 MGC

H.248 MG

MG MG

H.248 MG

H.248 MGC

SIP

Connection state

sharing between platforms.

MGI

MGIMGI

MGI

Figure 4: Carrier Grade Redundancy

Design for redundancy consists of decomposing the S-SBG and
D-SBG functions within the integrated platform, and providing
multiple platforms that can handle both functions for any failed
platform within the cluster. This can be performed in a 1+1 or
N+1 arrangement. A 1+1 arrangement is illustrated in Figure 4,
above.

To maintain D-SBG synchronization between mated D-SBG,
an H.248 interface can be exposed between mated D-SBG. When
the S-SBG function establishes connectivity through the D-SBG,
the mated D-SBG can be sent the same connectivity instructions
using H.248 over an inter-D-SBG link. SCTP (Stream Control
Transmission Protocol) with binary H.248 encoding should be
used for this purpose. This synchronization results in a switching
matrix with the mated D-SBGs that is identical. To handle D-
SBG node failures, then, consists of performing an IP takeover
(gratuitous ARP) or APS fail-over between nodes.

Barring the availability of an H.248 interface to the D-SBG
(primarily due to the lack of a suitable stack), a custom protocol
can be implemented between mated D-SBG. SCTP could also be
used for transport of this protocol. The protocol could be a sim-
ple transaction update, where a checkpoint state is transmitted
between MG implementations. It could also be a simple transport
of the MGI interface from one machine to another. The MG im-
plementation used, illustrated in blue in Figure 4, is the OpenSS7
MG Driver. This is a kernel-space STREAMS implementation.

To maintain S-SBG synchronization, a custom protocol can be
implemented between mated S-SBG. SCTP could also be used for
transport of this protocol. The protocol would be a simple trans-
action update, where a checkpoint state is transmitted between
SIP implementations. The SIP implementation used, illustrated
in red in Figure 4, is the sofia SIP stack. This is a user-space SIP
implementation.

4.10.1 Redundancy Architecture

Figure 5 illustrates the basic redundancy architecture.

Working

MGC

Proxy

MGC/MG

Virtual

MG

Virtual

MG

Proxy

MGC/MG

Working

MGC

Protect

MGC

Proxy

MGC/MG

Virtual

MG

Virtual

MG

Proxy

MGC/MG

Protect

MGC

Physical

MGC

Physical

MGC

Physical

MG

Physical

MG

Proxy

MGC/MG

Proxy

MGC/MG

Figure 5: Redundancy Architecture

4.10.1.1 MG Features. The redundancy architecture has
the following MG features:

Virtual MGs (VMG) have a working copy on one physical MG,
and a redundant copy on zero or more other physical MGs. A
Proxy MGC/MG (MG Cluster Controller, or MGCC) is used ei-
ther collocated with a physical MG or physical MGC. The MGCC
is responsible for acting like a single, reliable, MG toward an
MGC, and replicating state across the redundant copies. Virtual
MG (VMG) copies normally communicate through the MGCC
on the primary (working) physical MG, for that VMG.

8

MGCs have a working copy on one physical MGC, and a re-
dundant copy on zero or more other physical MGCs. This need
not be a full virtual MGC, but can be a partition within the
working MGC for the physical MGC. When a physical MG fails,
its redundant copy on another physical MG will eventually de-
tect the loss of communications with the working physical MG.
Because it loses communication, it attempts to first contact the
MGCC at the working MGC. When the communications attempt
is successful, the working MGC MGCC will have more informa-
tion concerning the health of the working physical MG because
it either communicates with it or not. When a protect VMG
looses communication with the working VMG’s MGCC and can-
not communicate with the working MGC, it fails over to attempt-
ing communications with the protect MGC. Again, the protect
MGC will have more information concerning th health of the
physical MG containing the working VMG because it either com-
municates with it or not.

4.10.1.2 MGC Features. The redundancy architecture has
the following MGC features:

Each MGC cluster has a working copy on one physical MGC,
and a redundant copy on zero or more other physical MGC. This
need not be a full virtual MGC, but can be a partition within
the working MGC for the physical MGC. Working and Protect
MGC partitions do not necessarily communicate direct with each
other. Some mechanism (such a HACMP IP takeover) is used for
switchover of call control sessions (e.g. SIP messaging); however,
MEGACO/H.248 service ports are different.

Communications linkages between MGC and MG use SCTP
(Stream Control Transmission Protocol) for best link failure de-
tection, multi-homing, flow control, and CMT. Communications
linkages between all necessary entities are maintained at all times.
This provides an indication of the health of physical MGC/MG
entities at the other end of the SCTP association, and some in-
dication of the health of other entities.

MGC do not necessarily have to provide any means for direct
state sharing between the on-line (Working) and off-line (Protect)
copies of the MGC. Because the MGCs cannot function correctly
(except to simply release calls) without a functional MG anyway,
MGC checkpoint state is saved on the VMG images using the
MGC information package.[MEG06].

Unfortunately, the MGC information package will only store
128 octets per termination, meaning that complete session state
information (aside from what information is already stored on
the MG) must be contained within 256 octets. Also, 128 octets
of information can be saved on the root termination. This infor-
mation could contain information about the last active VMG.

4.10.1.2.1 MGC Failover. When the Working MGC fail-
ure is detected by the Protection MGC, the MGC perform what-
ever IP takeover is necessary to acquire all of the SIP commu-
nications that was destined for the old system. In addition, the
Protect MGC begins to initiate actions necessary to assume con-
trol of the associated VMG.

Because each MGC expects to have SCTP associations formed
for communications at all times (regardless of the ServiceChange
state of the MG), the Protection MGC can easily determine
whether the various VMG images are accessible. Further, when a
VMG registers with the Protection MGC, additional information
can be determined from the ServiceChangeMethod, which is one
of:

• Graceful: indicates that the specified terminations will be
taken out of service after the specified service change de-
lay; established connections are not yet affected, but the
MGC should refrain from establishing new connections and
should attempt to gracefully tear down existing connections

on the termination(s) affected by the service change com-
mand. The MG should set the termination’s service state
at the expiry of the service change delay or the removal of
the termination from the active context (whichever is first),
to “out of service.”

• Forced: indicates that the specified terminations were taken
abruptly out of service and any established connections as-
sociated with them may be lost. For non-Root terminations,
the MGC is responsible for cleaning up the context (if any)
with which the failed termination is associated. At a mini-
mum, the terminations shall be subtracted from the context.
The termination’s service state should be “out of service”.
For the root termination, the MGC can assume that all con-
nections are lost on the MG and thus can consider that all
terminations have been subtracted.

• Restart: Indicates that service will be restored on the speci-
fied terminations after expiration of the service change delay.
The service state should be set to in-service upon expiry of
the service change delay.

• Disconnected: always applied with the root termina-
tion identifier, indicates that the MG lost communication
with the MGC, but it was subsequently restored to the
same MGC (possibly after trying other MGCs on a pre-
provisioned) list). Since MG state may have changed, the
MGC may wish to use the Audit command to resynchronize
its state with the MG’s.

• Handoff: sent from the MGC to the MG, this reason indi-
cates that the MGC is going out of service and a new MGC
association must be established. Sent from the MG to the
MGC, this indicates that the MG is attempting to establish
a new association in accordance with a Handoff received
from the MGC with which it was previously associated.

• Failover: sent from the MG to MGC to indicates the pri-
mary MG is out of service and secondary MG is taking over.
This service change method is also sent from the MG to the
MGC when the MG detects that MGC has failed.

• (Other mutually understood value):

4.10.1.3 Change-over of VMG. H.248.1[MEG05] says that
an MG will attempt to contact the primary MGC, and then the
secondary list in turn until it registers with an MGC. This is not
a good way to provide carrier grade redundancy. The VMGs will
attempt to register with a

¯
ll MGCs, and will maintain registration

with each. If communications should be lost with an MGC, the
VMG will attempt to reestablish communications until it is suc-
cessful. If it should receive a hand-off from an MGC, it will still
maintain communications with that MGC. The MG will persist
in forming SCTP associations with all MGC. The inability to
form an SCTP association between an MG and any of the MGCs
will be deemed a failure of the MGC.

4.10.1.3.1 Cold Start. The following steps are taken by
an MGC upon registration with an MG:

1. Each MGC image will alway accept establishment of a con-
trol association with each of the VMG images.

2. On an intial (cold start) of a VMG, the VMG will register
with service change method ‘Restart.’ When the MGC is
the active MGC image, and there is an active VMG image
registered, the MGC will begin synchronizing state with the
cold starting VMG image to bring it from cold-standby to
hot-standby. The standby status of the VMG remains cold-
standby until this process completes, and then it moves to
hot-standby. When the MGC is a protecting image, no fur-
ther action is taken.

9

3. If a VMG should become disconnected from an MGC, it
will reconnect and register with service change method ‘Dis-
connected’. When the MGC is the active MGC image, the
MGC will begin synchronizing state between the MGC and
the MG by applying all updates that occurred during the
period of loss of communication (typically only the release
of sessions that could not be released during the control as-
sociation outage). This is the case regardless of whether the
VMG image was active or standby. During the resynchro-
nization process, the standby status of a protection VMG
is cold-standby. After synchronization the protecting VMG
moves to hot-standby status. If the VMG was active and is
still the active image, it will be marked with an availability
status of degraded. When the MGC is a protecting image,
no further action is taken.

4.10.1.3.2 Fail Over. When the MG detects a failure, the
MG can send service changes on the root terminations to indicate
the failure as follows:

1. The MG, when it detects the failure of the active MG, will
send a service change on the root termination with method
‘Failover’ to the active MGC. The service change address
will identify the failed MG. The MGC may have already de-
tected failure of the identified MG through other means (e.g.
the loss of an SCTP association or control association to the
identified MG). If the VMG was in cold-standby (active syn-
chronization), the VMG will move on-line with a degraded
availability status.

2. The MG, when it detects the failure of the active MGC, will
send a service change on the root termination with method
‘Failover’ to the standby MGC. The service change address
will identify the failed MGC. The MGC may have already
detected failure of the identified MGC through other means
(e.g. HACMP hearbeat). The MGC will begin state syn-
chronization with the MG to recover MGC state with the
VMG. When the VMG is a standby VMG, the MGC will
prefer to synchronize with the active VMG image instead of
its standby images. The standby status of the MGC will be
cold-standby prior to this event, and will move to providing-
service.

4.10.1.3.3 Switch Over. Manual or forced switch-over
from an active MG to a protecting MG is performed for a number
of reasons. The most common reason is for maintenance activ-
ity on the working MG, such as hardware or software upgrades.
Manual switch-over from an active MG is performed local to the
element (at the EMS), or from a management station (NMS).
The Optranex10G supports both. Switch over invoked by NMS
is performed using SNMP.

A given physical MG will typically be provisioned with working
VMG images as well as protection VMG images. Switch-over
is only applicable to the working images, whereas, lock-out is
applicable to the protection images, (see Section 4.10.1.3.4).

Although all control associations are established and main-
tained at all times, the MG can send service changes on the root
termination to indicate switch-over conditions as follows:

1. When a manual or forced switch-over is invoked on an active
VMG, the active VMG will send a service change on the root
termination with service method ‘Handoff’ and the service
change address of the MG to which the switchover should
occur. The MGC may accept or refuse the switch-over by its
response (error or success). Some reasons for refusing the
switch-over are: the VMG to which to switch has a cold-
standby standby status instead of hot-standby (it is in the
process of being synchronized); or, the VMG is not currently
accessible to the MGC.

4.10.1.3.4 Lock Out. Lock out is a condition that is used
instead of switch-over for a protecting VMG. That is, to lock
out an off-line, protection VMG image. The locked out condi-
tion keep other VMG and MGC from switching to the protection
VMG image. Again, the most common reason for lock out is for
maintenance activity on the protection MG, such as hardware
or software upgrades. Lock out of a standby MG is performed
local to the element (at the EMS), or from a management sta-
tion (NMS). The Optranex10G supports both; however, the local
EMS uses the same SNMP interface as the management station
(NMS).

A given physical MG will typically be provisioned with working
VMG images as well as protection VMG images. Lock out is
only applicable to the protection images, whereas, switch-over is
applicable to the working images, (see Section 4.10.1.3.3).

To indicate that it is requesting lock-out, an MG may send a
service change on the root termination to the MGC to indicate
lock-out conditions as follows:

1. When a manual or forced lock-out is invoked on an active
VMG, the active VMG will send a service change on the root
termination with service method ‘Handoff’ and the service
change address of the active MG (if it is known, otherwise
no service change address). The MGC may accept or refuse
the lock-out by its response (error or success). Some reasons
for refusing the switch-over are: the VMG to be locked out
is the only VMG that is synchronized with the MGC; or, no
other VMG is accessible.

4.10.1.3.5 Shut Down. At some times it may be necessary
to shut down parts or all of a VMG. This can be invoked at the
MG using local EMS or remotely via NMS. A service change
command is sent to all MGC to indicate the shut down condition
as follows:

1. Shutdown of part of all of a VMG (all images) is performed
using the administrative state of the terminations invoked.
Shutting down the entire VMG (all images) can be graceful
or forced.4

2. For a abortive shutdown of all or part of the VMG (all im-
ages), a service change on the appropriate terminations with
service change method ‘Forced’ is performed. For a graceful
shutdown of all or part of the VMG (all images), a service
change on the appropriate terminations with service change
method ‘Graceful’ is performed.

4.10.1.4 Change-over of MGC.

4.10.1.5 Partitioned systems. Difficulties can, of course,
occur with a completely partitioned system. That is, if the sys-
tem in Figure 5 has its communications network severed vertically
down the middle. Therefore, some reliable mechanism must be
provided to maintain reliable communication across the vertical
that will indicate the health of each partition to the other.

4.11 MEGACO/H.248 Considerations

A MEGAGO/H.248 stack[MEG05] is implemented in accordance
with ITU-T Recommendation H.248.1 (09/2005) and a number
of packages. The basic profile is the D-SBG profile specified by
ETSI[BGF06] and the MSF:[MSF07] ETSI ES 283 018 version
2.6.7.

4. Graceful shutdown is performed by setting the administrative state to
shutting-down; forced shutdown is performed by setting the administrative
state to locked.

10

4.11.1 Ephemeral Termination Points

The SBG is an IP-IP gateway. Ephemeral termination points
are normally chosen by the D-SBG. The S-SBG only speci-
fies the IP realm or group (e.g. ‘ip/<group>/$’); however,
for redundancy purposes, it is necessary for the MG clus-
ter controller to be able to synchronize context state in re-
dundant Virtual MGs. Therefore, ephemeral terminations
will by given an orderly naming that specifies the IP inter-
face, address and port combination. The SBG profile requires
that D-SBG label terminations ‘ip/<group>/<interface>/<id>’,
so for our purposes, termination points will be labelled
‘ip/<realm>/<interface>/<addrindex>/<port>’. This way
the S-SBG can request ‘ip/<realm>/$’, or simply ‘$’
with a ‘ipr=<realm>’ in the termination point descriptor.
Once the active D-SBG image chooses an IP address and
port number, it returns the termination point identifier
‘ip/<realm>/<interface>/<addrindex>/<port>’ which can be
used to establish the identical context on the protecting D-SBG
images.

4.12 Invoking Forwarding vs. Transcoding

As illustrated in Figure 2 and 3, RTP forwarding is performed at
a different level in the OpenSS7 media stack than RTP transcod-
ing. This is because RTP forwarding is media-unaware, media-
transparent and media-neutral; does not require termination of
RTP media streams, and can most efficiently be handled directly
at the UDP driver.

4.13 Usage Record Collection

For usage record collection for billing, it likely that the car-
rier’s existing MGC/MG solution provides sufficient usage record
collection for the purposes of billing. Nevertheless, antiquated
MGC/MG networks likely do not provide all of the mechanisms
necessary for performing interconnect reconciliation. Therefore,
the S-SBG/D-SBG appliance should provide a mechanism for
usage record collection for the purposes of interconnect reconcil-
iation and operational measurements and OSS.

VARs, on the other hand, likely have usage record collection
adequate for both billing and reconciliation on their more modern
MGC/MG configurations. Therefore, for the forwarding applica-
tion, it is not necessary to perform usage record collection for the
purpose of reconciliation. Nevertheless, usage record collection
should be performed for the purpose of operational measurements
and OSS.

5 Results

6 Analysis

7 Conclusions

8 Future Work

9 Related Work

11

10 Acronyms and Abbreviations

The following acronyms and abbreviations are used throughout
this document.

ANSI American National Standards Institute
APS Automatic Protection Switching
ARP Address Resolution Protocol
CHI Channel Interface [CHI11]
CLEC Competitive Local Exchange Carrier
D-SBG Data SBG
DSP Digital Signal Processor
DTMF Dual Tone Multi-Frequency
EIA Electronics Industry Association
ETSI European Telecommunications Standards Institute
GSM General Services Mobile
ICE Interactive Communications E...
IP Internet Protocol
ITU International Telecommunications Union
ITU-T ITU Telecommunications Sector
LBR Low Bit-Rate
LTE Long Term Evolution
MEGACO Media Gateway Control
MG Media Gateway
MGC Media Gateway Controller
MGCP Media Gateway Control Protocol
NAPT Network Address and Port Translation
NAT Network Address Translation
NPI Network Provider Interface [NPI92]
OSS Operational Support System
PCM Pulse Code Modulation
PCMA PCM A-Law
PCMU PCM mu-Law
PSTN Public Switched Telephone Network
RTCP Real-Time Transport Control Protocol
RTP Real-Time Transport Protocol
S-SBG Signalling SBG
SBG Session Border Gateway
SCTP Stream Transmission Control Protocol
SDP Session Description Protocol
SIMD Single Instruction Multiple Data
SIP Session Initiation Protocol
SR Sender Report
SS7 Signalling System No. 7
SSE Super Scalar Execution
STUN Simple Traversal of UDP through NATs
TIA Telecommunications Industry Association
UDP User Datagram Protocol
VAR Value Added Reseller
XR Extended Report

References

[BGF06] H.248 Profile for controlling Border Gateway Functions
(BGF) in the Resource and Admission Control Subsys-
tem (RACS); Protocol Specification. ETSI Standard
ES 283 018, European Telecommunications Standards
Institute, June 2006.

[CHI11] Channel Interface (CHI) Specification. Interface Speci-
fication CHI Revision 1.1.2, The OpenSS7 Project, Ed-
monton, Alberta, July 4 2011. http://www.openss7.-
org/.

[ICE10] Interactive Connectivity Establishment (ICE): A Pro-
tocol for Network Address Translator (NAT) Traversal
for Offer/Answer Protocols. RFC 5245, The Internet
Society, April 2010. http://www.ietf.org/.

[MEG05] Gateway control protocol: Version 3. ITU-T Recom-
mendation H.248.1, Iternational Telecommunications
Union, Telecom Sector, September 2005.

[MEG06] Gateway control protocol: MGC information pack-
age. ITU-T Recommendation H.248.45, Iternational
Telecommunications Union, Telecom Sector, May
2006.

[MGI11] Media Gateway Interface (MGI) Specification. Inter-
face Specification MGI Revision 1.1.2, The OpenSS7
Project, Edmonton, Alberta, July 4 2011. http://-
www.openss7.org/.

[MSF07] S-SBG/P-CSC to D-SBG Interface Implementation
Agreement; H.248 Profile for Distributed Session Bor-
der Gateways. Implementation Agreement MSF-IA-
MEGACO.009-FINAL, MultiService Forum, Septem-
ber 2007.

[NPI92] Network Provider Interface (NPI) Specification, Re-
vision 2.0.0. Technical Specification, UNIX Interna-
tional, Inc., Parsippany, New Jersey, August 17 1992.
http://www.openss7.org/docs/npi.pdf.

[STU03] Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs). RFC
3489, The Internet Society, March 2003. http://www.-
ietf.org/.

A Examples

12

