Call Control Interface (CCI) Specification

Call Control Interface (CCI)

Specification
Version 1.1 Edition 7.20141001
Updated October 25, 2014
Distributed with Package openss7-1.1.7.20141001
Copyright © 2008-2014 Monavacon Limited
All Rights Reserved.
Abstract:

This document is a Specification containing technical details concerning the implemen-
tation of the Call Control Interface (CCI) for OpenSS7. It contains recommendations
on software architecture as well as platform and system applicability of the Call Con-
trol Interface (CCTI). It provides abstraction of the Call Control (CC) interface to these
components as well as providing a basis for Call Control control for other Call Control
protocols.

Brian Bidulock <bidulock@openss7.org> for
The OpenSS7 Project <http://www.openss7.org/>

mailto:bidulock@openss7.org
http://www.openss7.org/

Published by:

OpenSS7 Corporation

1469 Jefferys Crescent
Edmonton, Alberta T6L 6T1
Canada

Copyright (©) 2008-2014 Monavacon Limited
Copyright (© 2001-2008 OpenSS7 Corporation
Copyright (©) 1997-2000 Brian F. G. Bidulock

All Rights Reserved.
Unauthorized distribution or duplication is prohibited.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled [GNU Free Documentation License], page 309.
Permission to use, copy and distribute this documentation without modification, for any purpose
and without fee or royalty is hereby granted, provided that both the above copyright notice and
this permission notice appears in all copies and that the name of OpenSS7 Corporation not be
used in advertising or publicity pertaining to distribution of this documentation or its contents
without specific, written prior permission. OpenSS7 Corporation makes no representation about
the suitability of this documentation for any purpose. It is provided “as is” without express or
implied warranty.

Notice:

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all im-
plied warranties of merchantability, fitness for a particular purpose, non-infringement, or title; that
the contents of the document are suitable for any purpose, or that the implementation of such
contents will not infringe on any third party patents, copyrights, trademarks or other rights. In no
event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential dam-
ages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with any use of this
document or the performance or implementation of the contents thereof.

http://www.openss7.com/
http://www.monavacon.com/
http://www.openss7.com/
mailto:bidulock@openss7.org

Short Contents

Prefaceo 5)
1 Introduction.......... ... 9
2 The Call Control Layer..........o i, 11
3 CCI Services Definition............ ..., 17
4 CCIPrimitives. ... e 55
5 Diagnostics Requirements L. 189
Addendum for Q.931 Conformance.............................. 191
Addendum for Q.764 Conformance.............................. 219
Addendum for ETSI EN 300 356-1 V3.2.2 Conformance 263
A Mapping of CCI Primitives to Q.931........................ 267
B Mapping of CCI Primitives to Q.764........................ 269
C State/Event Tables.................. . i 271
D Primitive Precedence Tables............... 273
E CCI Header File Listing ..., 275
GloSSATY . ..t 293
ACTONYIMS . o o 295
References. 297
LACenSes . 299

Table of Contents

Preface. 5
N O IO vt e 5
ADSETACE .« ottt 5

PUurpOSE . o oo 5
Intent . ..o 5
AUdIENCE . o ot 5
Revision HiStory 5
Version Control.uii 6
ISO 9000 ComplANCEeo vuee et 6
DaASClaImIer . . 6
U.S. Government Restricted Rightso oot 6
Acknowledgements 6

1 Introduction............ 9

1.1 Related Documentationooiiiiiiiiiiiiiiiiiiiiannn. 9
111 ROLe. oo 9
1.2 Definitions, Acronyms, Abbreviations 9

2 The Call Control Layer................................... 11
2.1 Model of the CCI. ... e 11
2.2 CCI SOIVICES . o ottt ettt e e et 11

2.2. 0 UNI .. 11
2.2.1.1 Address Formats ..., 12
2.2.2 NN .. 14
2.2.2.1 Address Formats ...t 14
2.2.3 Local Management 15

3 CCI Services Definition 17

3.1 Local Management Services Definition..................... 18
3.1.1 Call Control Information Reporting Service 18
3.1.2 CCS Address Serviceovuuiient i 18
3.1.3 CCS User Bind Serviceoovuiiiiiieiiiiiiiiieeeannns 19
3.1.4 CCS User Unbind Service..........cooiiiiiiiiiiiiiiniienn.. 19
3.1.5 Receipt Acknowledgement Service............cooooiiiiiiiia... 20
3.1.6 Options Management Servicec..ccovuiiiniineae.n. 20
3.1.7 Error Acknowledgement Service............... ..o, 21

3.2 User-Network Interface Services Definition 22
3.2.1 Call Setup Phaseo 23

3.2.1.1 User Primitives for Successful Call Setup................... 23
3.2.1.2 Provider Primitives for Successful Call Setup............... 24
3.2.2 Call Establishment Phase.............. 26
3.2.2.1 User Primitives for Successful Call Establishment 26
3.2.2.2 Provider Primitives for Successful Call Establishment 26
3.2.2.3 Provider Primitives for Successful Call Setup............... 27
3.2.3 Call Established Phase. ..., 27

3.2.3.1 Suspend ServicCeuuuiiii i 27

iii

iv Call Control Interface (CCI)

3.2.3.2 ReSume ServiCe.uiuuiiuiiniii i 29
3.2.4 Call Termination Phase............ 30
3.2.4.1 Call Reject Serviceovuiiiiiiii i 30
3.2.4.2 Call Failure Service............ooiiiiiiiiiiiiii i 31
3.2.4.3 Call Release Serviceo.eviuiiiiiiiiii i, 31
3.2.5 Call Managemento.ueueit i 34
3.2.5.1 User Primitives for Call Management 34
3.2.5.2 Provider Primitives for Call Management 34
3.3 Network-Network Interface Services Definition........................ 35
3.3.1 Call Setup Phase ... 35
3.3.1.1 User Primitives for Successful Call Setup................... 36
3.3.1.2 Provider Primitives for Successful Call Setup............... 36
3.3.2 Continuity Test Phaseooo i 38
3.3.2.1 Continuity Test Successful 38
3.3.2.2 Continuity Test Unsuccessful 41
3.3.3 Call Establishment Phase................ .o i i 42
3.3.3.1 User Primitives for Successful Call Establishment 43
3.3.3.2 Provider Primitives for Successful Call Establishment 43
3.3.4 Call Established Phase.......... i i 44
3.3.4.1 User Primitives for Established Calls....................... 44
3.3.4.2 Provider Primitives for Established Calls................... 44
3.3.5 Call Termination Phase...........o i .. 45
3.3.5.1 Call Reject Servicecouuiiriiiiiiiiiiiniiinnn.. 45
3.3.5.2 Call Failure Service............coiiiiiiiii i 46
3.3.5.3 Call Release Servicecooiiiiiiiii .. 46
3.3.6 Circuit Management Servicesc.ooiviiiiinienio... 48
3.3.6.1 Reset Serviceo 48
3.3.6.2 Blocking Service.........coueiiuiiiiiiiiiii i 50
3.3.6.3 Unblocking Servicec.cooiuiiiiiiiiiiiiiiiiiann. 51
3.3.6.4 QUETY SEIVICE ..ottt e i 52

4 CCI Primitives............... . 55
4.1 Management Primitives........ ... 56
4.1.1 Call Control Information Request 56
4.1.2 Call Control Information Acknowledgement 57
4.1.3 Protocol Address Request...... ..., 58
4.1.4 Protocol Address Acknowledgement 59
4.1.5 Bind Protocol Address Requestooiiiiiiiii.. 60
4.1.6 Bind Protocol Address Acknowledgement 63
4.1.7 Unbind Protocol Address Request............................... 65
4.1.8 Call Processing Options Management Request................... 66
4.1.9 Call Processing Options Management Acknowledgement......... 68
4.1.10 Error Acknowledgemento i 69
4.1.11 Successful Receipt Acknowledgements.......................... 71
4.2 Primitive Format and Rules.......... i i i, 72
4.2.1 Call Setup Phaseo 72
4.2.1.1 Call Control Setup Request..............o 72
4.2.1.2 Call Control Setup Indication........................o..... 76
4.2.1.3 Call Control Setup Response..............c.ooiiiiiii... 78
4.2.1.4 Call Control Setup Confirm........... ..., 80
4.2.1.5 Call Control Reattempt Indication......................... 82
4.2.2 Continuity Check Phase i 83

4.2.2.1 Call Control Continuity Check Request 83

4.2.2.2 Call Control Continuity Check Indication.................. 85

4.2.2.3 Call Control Continuity Test Request 86
4.2.2.4 Call Control Continuity Test Indication.................... 88
4.2.2.5 Call Control Continuity Report Request 89
4.2.2.6 Call Control Continuity Report Indication 91
4.2.3 Collecting Information Phaseo i 92
4.2.3.1 Call Control More Information Request 92
4.2.3.2 Call Control More Information Indication.................. 94
4.2.3.3 Call Control Information Request.......................... 94
4.2.3.4 Call Control Information Indication........................ 97
4.2.3.5 Call Control Information Timeout Indication............... 98
4.2.4 Call Establishment Phase..............o ... 99
4.2.4.1 Call Control Proceeding Request................ 99
4.2.4.2 Call Control Proceeding Indication 101
4.2.4.3 Call Control Alerting Request 102
4.2.4.4 Call Control Alerting Indication 104
4.2.4.5 Call Control Progress Request 105
4.2.4.6 Call Control Progress Indication.......................... 107
4.2.4.7 Call Control In-Band Information Request................ 108
4.2.4.8 Call Control In-Band Information Indication.............. 110
4.2.4.9 Call Control Connect Requestcooooiiiiii.. 111
4.2.4.10 Call Control Connect Indication......................... 113
4.2.4.11 Call Control Setup Complete Request.................... 114
4.2.4.12 Call Control Setup Complete Indication 116
4.2.5 Call Established Phase i 117
4.2.5.1 Forward Transfer Request 117
4.2.5.2 Forward Transfer Indication 119
4.2.5.3 Call Control Suspend Requestooiiii... 120
4.2.5.4 Call Control Suspend Indication 122
4.2.5.5 Call Control Suspend Response........................... 123
4.2.5.6 Call Control Suspend Confirmation....................... 125
4.2.5.7 Call Control Suspend Reject Request 126
4.2.5.8 Call Control Suspend Reject Confirmation................ 128
4.2.5.9 Call Control Resume Request............................. 129
4.2.5.10 Call Control Resume Indication.......................... 131
4.2.5.11 Call Control Resume Response 132
4.2.5.12 Call Control Resume Confirmation 134
4.2.5.13 Call Control Resume Reject Request..................... 135
4.2.5.14 Call Control Resume Reject Indication................... 137
4.2.6 Call Termination Phase............. i ... 138
4.2.6.1 Call Control Reject Requestt 138
4.2.6.2 Call Control Reject Indication.................... 140
4.2.6.3 Call Control Call Failure Indication....................... 141
4.2.6.4 Call Control Disconnect Request.......................... 142
4.2.6.5 Call Control Disconnect Indication........................ 144
4.2.6.6 Call Control Release Request 145
4.2.6.7 Call Control Release Indication........................... 147
4.2.6.8 Call Control Release Response..............coooviiio.. 149
4.2.6.9 Call Control Release Confirmation........................ 151
4.3 Management Primitive Formats and Rules 152
4.3.1 Interface Management Primitives 152
4.3.1.1 Interface Management Restart Request 152

4.3.1.2 Interface Management Restart Confirmation.............. 153

vi Call Control Interface (CCI)

4.3.2 Circuit Management Primitives................................ 154
4.3.2.1 Circuit Management Reset Request....................... 154
4.3.2.2 Circuit Management Reset Indication..................... 156
4.3.2.3 Circuit Management Reset Response...................... 157
4.3.2.4 Circuit Management Reset Confirmation.................. 159
4.3.2.5 Circuit Management Blocking Request.................... 160
4.3.2.6 Circuit Management Blocking Indication.................. 162
4.3.2.7 Circuit Management Blocking Response................... 163
4.3.2.8 Circuit Management Blocking Confirmation............... 165
4.3.2.9 Circuit Management Unblocking Request 166
4.3.2.10 Circuit Management Unblocking Indication.............. 168
4.3.2.11 Circuit Management Unblocking Response............... 169
4.3.2.12 Circuit Management Unblocking Confirmation........... 171
4.3.2.13 Circuit Management Query Request 172
4.3.2.14 Circuit Management Query Indication................... 174
4.3.2.15 Circuit Management Query Response.................... 175
4.3.2.16 Circuit Management Query Confirmation................ 177

4.3.3 Maintenance Primitives........... ..o 178
4.3.3.1 Maintenance Indication.................. 178

4.3.4 Circuit Continuity Test Primitives................. 179
4.3.4.1 Circuit Continuity Check Request 179
4.3.4.2 Circuit Continuity Check Indication 181
4.3.4.3 Circuit Continuity Test Request, 182
4.3.4.4 Circuit Continuity Test Indication........................ 184
4.3.4.5 Circuit Continuity Report Request........................ 185
4.3.4.6 Circuit Continuity Report Indication...................... 187

4.3.5 Collecting Information Phaseo 188

5 Diagnostics Requirements 189
5.1 Non-Fatal Error Handling Facility.........t 189
5.2 Fatal Error Handling Facility o it 189

Addendum for Q.931 Conformance 191
Primitives and Rules for Q.931 Conformance 191

Common Primitive Parameters 191
Call Control Addressesueiin i i 191
Optional Information Elements............. ... o iiiii.. 193

Local Management Primitives o il 194
COINFO_ACK . e e 194
CCBIND_REQttt e 194
CC_BIND _ACK . . e e 195
CC_OPTMGMT_REQ ..t ei i e 195

Call Setup Primitives.ot 195
Call Type and Flagsot 195
CCSETUP_REQ i e 199
CC_SETUP_IND ..t e e 200
CC_SETUP _RES . ..o e 201
CC_SETUP _CON . .. e 202
CC_CALL_REATTEMPT_IND ... 202
CC_SETUP_COMPLETE_ REQ.ot 202
CC_SETUP_COMPLETE_IND ..ot 202

Continuity Check Primitives....... i 202

vii

CC_CONT_CHECK_REQ ...ttt 202
CC_CONT_TEST_REQ.oiiiiii i 202
CC_CONT_REPORT_REQo 203
Call Establishment Primitives i, 203
CC_MORE_INFO_REQot 203
CC_MORE_INFO_IND ... o e 203
CC_INFORMATION_REQt 203
CC_INFORMATION_IND 203
CC_INFO_TIMEOUT_IND 204
CC_PROCEEDING_REQccoiiiii i 204
CC_PROCEEDING_INDo 204
CC_ALERTING_REQ ... i 204
CC_ALERTING_IND ... i 204
CC_PROGRESS_REQo e 204
CC_PROGRESS_IND e 205
CC_IBILREQ . .ttt e 205
COIBIIND . .o 205
Call Established Primitives............... . e .. 205
CC_SUSPEND_REQo 205
CC_SUSPEND_IND ... 206
CC_SUSPEND_RES ...\ 206
CC_SUSPEND _CON ... it 206
CC_SUSPEND_REJECT_REQ.......ccciiii i 206
CC_SUSPEND_REJECT_INDo 206
CC_RESUME_REQ.o e 206
CC_RESUMELCLIND 207
CC_RESUME_RES e 207
CC_RESUME _CON. ... e 207
CC_RESUME_REJECT_REQ. ... 207
CC_RESUME_REJECT_IND ... 208
Call Termination Primitives i, 208
Cause Values. 208
CC_REJECT_REQ ...t e 211
CC_REJECT _IND . ..ottt e 211
CC_CALL_FAILURE_IND ... 212
CC_DISCONNECT _REQ . ..o 212
CC_DISCONNECT _IND 212
CC_RELEASE REQot 213
CC_RELEASE _INDttt 213
CC_RELEASE _RES ...\ 213
CC_RELEASE _CON ... 213
Management Primitives......... ... 213
CC_RESTART_REQo 213
CC_RESTART _CON. ... 214

Q.931 Header File Listing........c..ouuiiiiiiiiii i 214

viii Call Control Interface (CCI)

Addendum for Q.764 Conformance........................ 219
Primitives and Rules for Q.764 Conformance 219
Common Primitive Parametersoooiiiiiiiiiii... 219
Call Control Addresses.uuiiiii i 219
Optional Parameters....... ... 221
Local Management Primitives it 222
CCINFO_ACK . .. e 222
CC_BIND_REQ. ..\ttt e 222
CO_BIND _ACK . . 224
CC_OPTMGMT_REQ ... it 224
Call Setup Primitives......... ... 224
CC_SETUP_REQ\t e 224
CC_SETUPLIND ..ot e e 227
CC_SETUP_RES . ..\t 228
CO_SETUP _CON . ..ot 229
CC_CALL_REATTEMPT_.IND ... 229
CC_SETUP_COMPLETE_REQ. ... 230
CC_SETUP_COMPLETE_INDo 230
Continuity Check Phaseco i 231
CC_CONT_CHECK_REQ ...t 231
CC_CONT_CHECK_INDot 231
CC_CONT_TEST_REQ. ..ot 232
CC_CONT_TEST_IND ...ttt e 232
CC_CONT_REPORT_REQcooiiiiii i 233
CC_CONT_REPORT_IND ..ottt 233
Call Establishment Primitives 234
CC_MORE_INFO_REQoiiiii i 234
CC_MORE_INFO_IND 234
CC_INFORMATION_REQ.....ooiii e 234
CC_INFORMATION_INDttt i 235
CC_INFO_TIMEOUT_IND ...t i 235
CC_PROCEEDING_REQot 235
CC_PROCEEDING_INDot 237
CC_ALERTING_REQ ... e 237
CC_ALERTING_IND ...t e 237
CC_PROGRESS_ REQci i e 237
CC_PROGRESS_IND e 238
CC_IBILREQ ... e 239
COIBIIND . .o 239
Call Established Primitives. 239
CC_SUSPEND_REQttt 239
CC_SUSPENDL_IND ... 239
CC_SUSPEND _RES 240
CC_SUSPEND_REJECT_REQ. ...t 240
CC_RESUME _REQ.iii e 240
CC_RESUMELCLIND . ..o e 240
CC_RESUME_RES i 241
CC_RESUME_REJECT_REQ. ..ot 241
Call Termination Primitives i .. 241
CC_REJECT_REQo e 241
CC_CALL_FAILURE_IND ... e 241
CC_DISCONNECT_ REQ ...\ttt 242

CC_RELEASE REQo 242

CC_RELEASE_IND. e 245
Management Primitives........ 246
CC_RESTART REQ. ..o e 246
CC_RESET _REQ e 246
CC_RESET_IND e 246
CC_RESET_RES ... e 246
CC_RESET _CON .. 247
CC_BLOCKING_REQttt 247
CC_BLOCKING_IND e 248
CC_BLOCKING_RES e 248
CC_BLOCKING_CON 249
CC_UNBLOCKING_REQ. ... ettt 249
CC_UNBLOCKING_IND ...t 250
CC_UNBLOCKING_RES e 250
CC_UNBLOCKING_CON ... e 251
CC_QUERY_REQ ... e 251
CC_QUERY_IND e 251
CC_QUERY _RES e 252
CC_QUERY_CON . ..o e 252
Q.764 Header File Listing..... ... 253

Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

.. 263
Primitives and Rules for ETSI EN 300 356-1 V3.2.2 Conformance 263
Local Management Primitives o i i 263

Call Setup Primitives.o 263
CC_SETUP_REQ ...« et 263
CC_SETUPL_IND 263

ETSI EN 300 356-1 V3.2.2 Header File Listing 266
Appendix A Mapping of CCI Primitives to Q.931 267
Appendix B Mapping of CCI Primitives to Q.764 269
Appendix C State/Event Tables......................... 271
Appendix D Primitive Precedence Tables............... 273
Appendix E CCI Header File Listing 275
GloSSary 293
ACronyms 295
References 297

ix

X Call Control Interface (CCI)

Licenses 299
GNU Affero General Public Licenseo ... 299
Preamble. ... 299

How to Apply These Terms to Your New Programs................... 308

GNU Free Documentation Licenseouiiiiiiiininn... 309

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Release
Figure 3.26:
Figure 3.27:
Figure 3.28:
Figure 3.29:
Figure 3.30:
Figure 3.31:

Figure 3.33:
Figure 3.34:

List of Figures

Model of the CCI
UNI Data Model
NNI Data Model

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence
Sequence
Sequence
Sequence

Call Control Interface (CCI)

of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:

of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:

of Primitives:
of Primitives:
of Primitives:
of Primitives:

Table of Contents

.. 11
... 13
... 15
Call Control Information Reporting Service 18
Call Control User Address Service 19
Call Control User Bind Serviceccc..... 19
Call Control User Unbind Service...................... 20
Call Control Receipt Acknowledgement Service 20
Call Control Options Management Service 21
Call Control Error Acknowledgement Service........... 21
Call Control UNI OQuverviewcooeeuiiiaeon.. 23
Call Control Call Setup Service 25

Call Control Token Request Service 25

Call Reattempt - CCS Provider 25

Call Reattempt - Dual Seizure, 26

Call Control Successful Call Establishment Service 27

Call Control Network Suspend Service: Successful 28

Call Control Network Suspend Service: Unsuccessful .. 28

Call Control User Suspend Service.................... 29
Call Control Resume Service: Successful 29
Call Control Resume Service: Unsuccessful............ 30
Call Control User Resume Service 30
Rejecting a Call Setup i . 31
Call Failureo i 31
CCS User Invoked Release..............cccovuuiiii.n. 33
Stmultaneous CCS User Invoked Release 33
CCS Provider Invoked Release 33
Simultaneous CCS User and CCS Provider Invoked
... 34
Call Control NNI Overviewcc.couvuieuinnn.n. 35
Call Control Call Setup Service: Overlap Sending 37
Call Control Token Request Service 37
Call Reattempt - CCS Provider 38
Call Reattempt - Dual Seizure, 38

Sequence
Sequence

Sequence
Sequence

of Primitives:
of Primitives:

of Primitives:
of Primitives:

Call Setup Continuity Test Service: Required: Successful

.. 40
: Call Setup Continuity Test Service: Previous: Successful

.. 40

Continuity Test Service: Successful 41

Call Setup Continuity Test Service: Unsuccessful. 42

Continuity Test Service: Unsuccessful................. 42

Figure 3.35:
Figure 3.36:
Figure 3.37:
Figure 3.38:
Figure 3.39:
Figure 3.40:
Figure 3.41:
Figure 3.42:

2014-10-25

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:
of Primitives:

Call Control Successful Call Establishment Service 44

Call Control Suspend and Resume Service 45
CCS User Rejection of a Call Setup Attempt.......... 45
Call Failure 46
CCS User Invoked Release............ccooiieeiiainn. 47
Simultaneous CCS User Invoked Release 47
CCS Provider Invoked Release 48

1

Figure 3.43:

Release
Figure 3.44:
Figure 3.45:
Figure 3.46:
Figure 3.47:

Figure 3.48:
Figure 3.49:

Sequence

Sequence
Sequence

of Primitives:

of Primitives:
of Primitives:

Simultaneous CCS User and CCS Provider Invoked

... 48
CCS User Invoked Reset...........cccouiiiiiuien.. 49
Simultaneous CCS User Invoked Reset................ 49
CCS Provider Invoked Reset.......................... 50

Sequence
Sequence

Sequence
Sequence

of Primitives:
of Primitives:

of Primitives:
of Primitives:

Simultaneous CCS user and CCS Provider Invoked Reset

.. 50
Successful Blocking Service 51
Successful Unblocking Service 52
Successful Query Service.......... 53

Figure 3.50:

Sequence

of Primitives:

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Table of Contents

List of Tables

Table 3.1: CCI Service Primitivest e ettt e ettt 17
Table A.1: Mapping of CCI primitives to Q.931 Primitivesc.ccuiiiiiiiinno.. 267
Table B.1: Mapping of CCI primitives to Q.764 Primitivescccciiiiiiiiiin. 269

2014-10-25 3

Call Control Interface (CCI) Preface

Preface

Notice

Software in this document and related software is released under the AGPL (see [GNU Affero General
Public License], page 299). Please note, however, that there are different licensing terms for some
of the manual package and some of the documentation. Consult permission notices contained in the
documentation of those components for more information.

This document is released under the FDL (see [GNU Free Documentation License|, page 309) with
no invariant sections, no front-cover texts and no back-cover texts.

Abstract

This document is a Specification containing technical details concerning the implementation of the
Call Control Interface (CCI) for OpenSS7. It contains recommendations on software architecture as
well as platform and system applicability of the Call Control Interface (CCI).

This document specifies a Call Control Interface (CCI) Specification in support of the OpenSS7
Integrated Service Digital Network (ISDN) and ISDN User Part (ISUP) protocol stacks.! It provides
abstraction of the call control interface to these components as well as providing a basis for call
control for other call control signalling protocols.

Purpose

The purpose of this document is to provide technical documentation of the Call Control Interface
(CCI). This document is intended to be included with the OpenSS7 STREAMS software package
released by OpenSS7 Corporation. It is intended to assist software developers, maintainers and
users of the Call Control Interface (CCI) with understanding the software architecture and technical
interfaces that are made available in the software package.

Intent

It is the intent of this document that it act as the primary source of information concerning the Call
Control Interface (CCI). This document is intended to provide information for writers of OpenSS7
Call Control Interface (CCI) applications as well as writers of OpenSS7 Call Control Interface (CCI)
Users.

Audience

The audience for this document is software developers, maintainers and users and integrators of the
Call Control Interface (CCI). The target audience is developers and users of the OpenSS7 SS7 and
ISDN stack.

Revision History

Take care that you are working with a current version of this documentation: you will not be
notified of updates. To ensure that you are working with a current version, check the OpenSS7
Project website for a current version.

A current version of this specification is normally distributed with the OpenSS7 package, openss7-
1.1.7.20141001.2

As a future extension to the interface, H.225, BSSAP, and SIP will be supported.
http://www.openss7.org/repos/tarballs/openss7-1.1.7.20141001.tar.bz2

2014-10-25 5

http://www.openss7.org/
http://www.openss7.org/
http://www.openss7.org/repos/tarballs/openss7-1.1.7.20141001.tar.bz2

Preface

Version Control

Although the author has attempted to ensure that the information in this document is complete and
correct, neither the Author nor OpenSS7 Corporation will take any responsibility in it. OpenSS7
Corporation is making this documentation available as a reference point for the industry. While
OpenSS7 Corporation believes that these interfaces are well defined in this release of the document,
minor changes may be made prior to products conforming to the interfaces being made available.
OpenSS7 Corporation reserves the right to revise this software and documentation for any reason,
including but not limited to, conformity with standards promulgated by various agencies, utilization
of advances in the state of the technical arts, or the reflection of changes in the design of any
techniques, or procedures embodied, described, or referred to herein. OpenSS7 Corporation is under
no obligation to provide any feature listed herein.

$Log: cci.texi,v $

Revision 1.1.2.2 2011-02-07 02:21:37 brian

- updated manuals

Revision 1.1.2.1 2009-06-21 10:52:47 brian
- added files to new distro

ISO 9000 Compliance

Only the TEX, texinfo, or roff source for this maual is controlled. An opaque (printed, postscript or
portable document format) version of this manual is a UNCONTROLLED VERSION.

Disclaimer

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all im-
plied warranties of merchantability, fitness for a particular purpose, non-infrincement, or title; that
the contents of the manual are suitable for any purpose, or that the implementation of such con-
tents will not infringe on any third party patents, copyrights, trademarks or other rights. In no
event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential dam-
ages or any damages whatsoever resulting from loss of use, data or profits, whether in an action or
contract, negligence or other tortious action, arising out of or in connection with any use of this
documentation or the performance or implementation of the contents thereof.

U.S. Government Restricted Rights

If you are licensing this Software on behalf of the U.S. Government ("Government"), the following
provisions apply to you. If the Software is supplied by the Department of Defense ("DoD"), it is clas-
sified as "Commercial Computer Software" under paragraph 252.227-7014 of the DoD Supplement
to the Federal Aquisition Regulations ("DFARS") (or any successor regulations) and the Govern-
ment is acquiring only the license rights granded herein (the license rights customarily provided to
non-Government users). If the Software is supplied to any unit or agency of the Government other
than DoD, it is classified as "Restricted Computer Software" and the Government’s rights in the
Software are defined in paragraph 52.227-19 of the Federal Acquisition Regulations ("FAR") (or any
successor regulations) or, in the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplerment
to the FAR (or any successor regulations).

Acknowledgements

The OpenSS7 Project was funded in part by:

6 Version 1.1 Rel. 7.20141001

http://www.openss7.org/

Call Control Interface (CCI) Preface

e Monavacon Limited

e OpenSS7 Corporation
Thanks to the subscribers to and sponsors of The OpenSS7 Project. Without their support, open
software like this would not be possible.

As with most open source projects, this project would not have been possible without the valiant
efforts and productive software of the Free Software Foundation, the Linux Kernel Community, and
the open source software movement at large.

2014-10-25 7

http://www.monavacon.com/
http://www.openss7.com/
http://www.openss7.org/
http://www.fsf.org/
http://www.kernel.org/

Call Control Interface (CCI) Introduction

1 Introduction

This document specifies a STREAMS-based kernel-level instantiation of the ITU-T Call Control
Interface (CCI) definition. The Call Control Interface (CCI) enables the user of a call control
service to access and use any of a variety of conforming call control service providers without specific
knowledge of the provider’s protocol. The service interface is designed to support any network
call control protocol and user call control protocol. This interface only specifies access to call
control service providers, and does not address issues concerning call control and circuit management,
protocol performance, and performance analysis tools.

This specification assumes that the reader is familiar with ITU-T state machines and call control
interfaces (e.g., Q.764, Q.931), and STREAMS.

1.1 Related Documentation

— 1993 ITU-T Q.764 Recommendation
— 1993 ITU-T Q.931 Recommendation

— System V Interface Definition, Issue 2 - Volume 3

1.1.1 Role

This document specifies an interface that supports the services provided by the Integrated Services
Digital Network (ISDN) and ISDN User Part (ISUP) for ITU-T applications as described in ITU-T
Recommendation Q.931 and ITU-T Recommendation Q.764.! These specifications are targeted for
use by developers and testers of protocol modules that require call control service.

1.2 Definitions, Acronyms, Abbreviations

Application Context
Object Identifier
Calling Party
The Calling Party.

Called Party
The Called Party.

Operations Class
One of 5 ISO/OSI Transport Protocol Classes.

MAP Mobile Applications Part

TCAP Transaction Capabilities Application Part
SCCP Service Connection Control Part

MTP Message Transfer Part

TR Transaction Sub-Layer

TC Component Sub-Layer

IMSI International Mobile Station Identifier

MSISDN Mobile Station ISDN Directory Number (E.164)

In a later version of this document H.225, BSSAP, and SIP will also be supported.

2014-10-25 9

Chapter 1: Introduction

ITU International Telecommunications Union

ITU-T International Telecommunications Union — Telecom Sector
OSI Open Systems Interconnect

ISO International Organization for Standardization

MAP User A user of the Mobile Application Part (MAP) Interface.

MAP Provider
A provider of the Mobile Application Part (MAP) Interface.

MAPI The Mobile Application Part (MAP) Interface.
MS Mobile Station.
Components

Transaction components as defined in ITU-T Recommendation Q.771.
QoS Quality of Service

STREAMS A communication services development facility first available with UNIX System V
Release 3.

10 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) The Call Control Layer

2 The Call Control Layer

The Call Control Layer provides the means to manage the connection and disconnection of calls.
It is responsible for the routing and management of call control signalling between call control-user
entities.

2.1 Model of the CCI

The CCI defines the services provided by the call control layer to the call control-user at the boundary
between the call control provider and the call control user entity. The interface consists of a set of
primitives defined as STREAMS messages that provide access to the call control layer services, and
are transferred between the CCS user entity and the CCS provider. These primitives are of two
types; ones that originate from the CCS user, and others that originate from the CCS provider. The
primitives that originate from the CCS user make requests to the CCS provider, or respond to an
indication of an event of the CCS provider. The primitives that originate from the CCS provider
are either confirmations of a request or are indications to the CCS user that an event has occurred.
Figure 2.1 shows the model of the CCI.

(7

Call Control User
Request/Response
Primitives

Indication/Confirmation
Primitives

Call Control Provider

Figure 2.1: Model of the CCI
- J

The CCI allows the CCS provider to be configured with any call control layer user (such as an
ISDN user call control application) that also conforms to the CCI. A call control layer user can also
be a user program that conforms to the CCI and accesses the CCS provider via putmsg(2s) and
getmsg(2s) system calls.

2.2 CCI Services

The features of the CCI are defined in terms of the services provided by the CCS provider, and the
individual primitives that may flow between the CCS user and the CCS provider.

The services supported by the CCI are based on three distinct modes of communication, user-
network interface (UNI) User mode, user-network interface (UNI) Network mode, and network-
network interface (NNI). In addition, the CCI supports services for local management.

2.2.1 UNI

The main features of the User-Network Interface mode of communication are:

2014-10-25 11

http://www.openss7.org/man2html?putmsg(2s)
http://www.openss7.org/man2html?getmsg(2s)

Chapter 2: The Call Control Layer

1. It is call oriented.

2. It employs facility associated signalling in that the signalling interface and circuits that are
controlled by that signalling interface are bound by physical configuration. (For example,
23B+D, 2B+D).

3. The protocol has two aspects to the interface: one side of the interface follows the User protocol
whereas the other side of the interface follows the Network protocol.

4. The user side of the protocol has no formal maintenance or monitoring procedures and therefore
reports most if not all system events to the user.

5. The network side of the protocol has formal maintenance and monitoring procedures and there-
fore reports most if not all system events to maintenance.

2.2.1.1 Address Formats

Addresses specifying all the calls and channels known to the provider are specified with scope ISDN_
SCOPE_DF and identifier zero (0).

Customer/Provider Group

A customer /provider group has a different interpretation on the User and Network side of the call
control interface. In User mode, the provider group is a group of all equipment groups that are
serviced by the same network provider. In Network mode, the customer group is a group of all
equipment groups to which the same service is provided to the same customer by the network.

Customer/provider groups are identifier using a unique customer/provider group identifier within
the CCS provider. Addresses specifying all of the equipment groups in a customer/provider group
and specified with scope ISDN_SCOPE_XG and the customer/provider group identifier.

Equipment Group

An equipment group is a group of all transmission groups (B- and D-channels) terminating at the
same location. For User mode this corresponds to all the B- and D-channels terminating on the
same network provider exchange. For Network mode this corresponds to all the B- and D-channels
terminating on the same customer site.

Equipment groups are identified using a unique equipment group identifier within the CCS provider.
Addresses specifying all of the B- and D-channels making up an equipment group are specified with
scope ISDN_SCOPE_EG and the equipment group identifier.

Facility Group

A facility group is a group of D-channels (data links) controlling a set of B-channels. This corresponds
to the signalling interface. For regular interfaces, a signalling relation consists of a single signalling
interface. Where multiple signalling interfaces are used to control the same range of channels (e.g.
primary and backup interfaces), all signalling interfaces belong to the same facility group.

The B-channels that make up a facility group are channels that share the same dial plan and routing
characteristics for telephone calls. A facility group is associated with an equipment group.

Facility groups are identified using a unique facility group identifier within the CCS provider. Ad-
dresses specifying all of the channels in a facility group are specified with scope ISDN_SCOPE_FG and
the facility group identifier.

An ISDN Channel Identifier is only unique within a facility group.

12 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) The Call Control Layer

Transmission Group

A transmission group is the group of all D- and B-Channels associated with a given Q.931 signalling
interface. For example, a typical PRI interface would consist of 23B+D, where there is one signalling
interface (the D-Channel) with 23 B-Channels associated with the D-Channel. The 1 D-Channel
and 23 B-Channels form a single transmission group associated with the physical interface. Every
D- or B-Channel belongs to one transmission group and occupies a single time slot within that
transmission group.

Transmission groups are identified using a unique transmission group identifier within the CCS
provider. Addresses specifying all of the channels in a transmission group are specified with scope
ISDN_SCOPE_TG and the transmission group identifier. Transmission groups can also be specified
using scope ISDN_SCOPE_FG and the Channel Identifier of one of the channels in the facility group.

Channel
A channel refers to a specific B-Channel within a transmission and facility group.

Channels are identified using a unique channel identifier within the CCS provider. Addresses specify-
ing a specific channel are specified with scope ISDN_SCOPE_CH and the channel identifier. Channels
can also be specified using scope ISDN_SCOPE_FG, the facility group identifier, and the Channel
Identity of the channel within the facility group.

Data Link

A data link corresponds to a specific D-channel used for the control of channels. Data links can be
grouped into facility groups.

Data links are identified using a unique data link identifier within the CCS provider. Addresses
specifying all of the channels controlled by a data link are specified with scope ISDN_SCOPE_DL and
the data link identifier.

~
Customer/
Provider
Group
Equipment Equipment
Group Group
Facility Facility
Group . o - . Group
Transmission Transmission Transmission Transmission
Group Group Group Group
Data Links Channels Channels Channels Channels Data Links
Figure 2.2: UNI Data Model

\

2014-10-25 13

Chapter 2: The Call Control Layer

2.2.2 NNI
The main features of the Network-Network Interface mode of communication are:
1. Tt is circuit oriented.
2. It employs quasi-associated signalling in that the path taken by signalling and the path taken
by the circuits are not necessarily related.
3. The protocol has one aspect and is peer-to-peer: that is, both sides of a signalling interface
follow the same protocol in the same way.

4. The network side of the protocol has formal maintenance and monitoring procedures and there-
fore reports most if not all system events to maintenance.

2.2.2.1 Address Formats

Addresses specifying all of the circuits known to the provider are specified with scope ISUP_SCOPE_DF
and identifier zero (0).

Signalling Points

A signalling point is the SS7 signalling point (central office) that the provider represents. A CCS
provider can represent more than one signalling point.

A signalling point is identifier using a unique signalling point identifier within the CCS provider.
Addresses specifying all of the circuits in signalling point are specified with scope ISUP_SCOPE_SP
and the signalling point identifier.

Signalling Relations

A signalling relation is a relationship between a local signalling point and a remote signalling point.
A signalling relation consists of a single signalling interface.

Signalling relations are identified using a unique signalling relation identifier within the CCS provider.
Addresses specifying all of the circuits in a signalling relation are specified with scope ISUP_SCOPE_SR
and the signalling relation identifier.

An ISUP Circuit Identification Code is only unique within a signalling relation.

Trunk Groups

A trunk group is a group of circuits that share the same routing characteristics for telephone calls.
A trunk group is associated with a signalling relation. For the NNI, a signalling relation is the
combination of local MTP Point Code and remote MTP Point Code.

A trunk group is identified using a unique trunk group identifier within the CCS provider. Addresses
specifying all of the circuits in a trunk group are specified with scope ISUP_SCOPE_TG and the trunk
group identifier.

Circuit Groups

A circuit group is a group of circuits that share the same common transmission facility (e.g, E1 span)
and is therefore impacted by any failure of the transmission facility. All of the individual channels
of an E1 span that are used to carry calls are members of the circuit group.

Circuits groups are identified using a unique circuit group identifier within the CCS provider. Ad-
dresses specifying all of the circuits within a circuit group are specified with scope ISUP_SCOPE_CG
and the circuit group identifier. Circuit groups can also be specified using scope ISUP_SCOPE_SR
and the Circuit Identification Code of one of the circuits within the circuit group.

14 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

Circuits

A circuit refers to a specific time slot within a digital facility.
Circuits are identified using a unique circuit identifier within the CCS provider. Addresses specifying
a specific circuit are specified with scope ISUP_SCOPE_CT and the circuit identifier. Circuits can also
be specified using scope ISUP_SCOPE_CG, the circuit group identifier, and the Circuit Identification
Code of the circuit within the group. Circuits can also be specified using scope ISUP_SCOPE_SR, the
signalling relation identifier, and the Circuit Identification Code of the circuit within the signalling

relation.

The Call Control Layer

-

Figure 2.3: NNI Data Model
N

Signalling
Point
Message Message
Transfer Transfer
Part Part
Signalling Signalling
Relation Relation
Cicuit Circuit
G Gi
roup Trunk Trunk Trunk Trunk roup
Group Group Group Group
Circuits Circuits

2.2.3 Local Management

The CCI specifications also define a set of local management functions that apply to UNI and NNI
modes of communication. These services have local significance only. Tables 1, 2 and 3 summarizes
the CCI service primitives by their state and service.

2014-10-25

15

Call Control Interface (CCI)

CCI Services Definition

3 CCI Services Definition

This section describes the services of the CCI primitives. Time-sequence diagrams that illustrate
the sequence of primitives are included. (Conventions for the time-sequence diagrams are defined in

ITU-T X.210.) The format of the primitives will be defined later in this document.

Local Management Both | CC_INFO_REQ, CC_INFO_ACK, CC_BIND_REQ, CC_BIND_ACK,
CC_UNBIND_REQ, CC_ADDR_REQ, CC_ADDR_ACK, CC_OPT-
MGMT_REQ, CC_OPTMGMT_ACK, CC_OK_ACK, CC_ERROR_ACK
Call Setup Both | CC_SETUP_REQ, CC_SETUP_IND, CC_CALL_REATTEMPT_IND,
CC_MORE_INFO_REQ, CC_MORE_INFO_IND, CC_INFORMA-
TION_REQ, CC_INFORMATION_IND, CC_SETUP_RES, CC_SET-
UP_CON
UNI | CC_INFO_TIMEOUT_IND
NNI | CC_CONT_REPORT_REQ, CC_CONT_REPORT_IND
Call Establishment Both | CC_PROCEEDING_REQ, CC_PROCEEDING_IND, CC_ALERT-
ING_REQ, CC_ALERTING_IND, CC_PROGRESS_REQ,
CC_PROGRESS_IND, CC_CONNECT_REQ, CC_CONNECT_IND
Call Established Both | CC_SUSPEND_REQ, CC_SUSPEND_RES, CC_SUSPEND_IND,
CC_SUSPEND_CON, CC_RESUME_REQ, CC_RESUME_RES,
CC_RESUME_IND, CC_RESUME_CON
UNI CC_SUSPEND_REJECT_REQ, CC_SUSPEND_REJECT_IND,
CC_RESUME_REJECT_REQ, CC_RESUME_REJECT_IND
Call Termination Both | CC_CALL_FAILURE_IND, CC_IBI_REQ, CC_IBI_IND,
CC_RELEASE_REQ, CC_RELEASE_IND, CC_RELEASE_RES,
CC_RELEASE_CON
UNI | CC_DISCONNECT_REQ, CC_DISCONNECT_IND
Provider Management | UNI CC_RESTART_REQ, CC_RESTART_CON
NNI | CC_RESET_REQ, CC_RESET_IND, CC_RESET_RES,

CC_RESET_CON, CC_BLOCKING_REQ, CC_BLOCKING_IND,
CC_BLOCKING_RES, CC_BLOCKING_CON, CC_UNBLOCK-
ING_REQ, CC_UNBLOCKING_IND, CC_UNBLOCKING_RES,
CC_UNBLOCKING_CON, CC_QUERY_REQ, CC_QUERY_IND,
CC_QUERY_RES, CC_QUERY_CON

CC_CONT_CHECK_REQ, CC_CONT_CHECK_IND,
CC_CONT_TEST_REQ, CC_CONT_TEST_IND,
CC_CONT_REPORT_REQ, CC_CONT_REPORT_IND

Table 3.1: CCI Service Primitives

2014-10-25

17

Chapter 3: CCI Services Definition

3.1 Local Management Services Definition

The services defined in this section are outside the scope of international standards. These ser-
vices apply to UNI (User and Network), and NNI modes of communication. They are invoked for
the initialization/de-initialization of a stream connected to the CCS provider. They are also used
to manage options supported by the CCS provider and to report information on the supported
parameter values.

3.1.1 Call Control Information Reporting Service

This service provides information on the options supported by the CCS provider.

e CC_INFO_REQ: This primitive request that the CCS provider return the values of all the sup-
ported protocol parameters. This request may be invoked during any phase.

e CC_INFO_ACK: This primitive is in response to the N_.INFO_REQ primitive and returns the
values of the supported protocol parameters to the CCS user.

The sequence of primitive for call control information management is shown in Figure 3.1.

CC_INFO_REQ \

CC_INFO_ACK /

Figure 3.1: Sequence of Primitives: Call Control Information Reporting Service

3.1.2 CCS Address Service

This service allows a CCS user to determine the bound call control address and the connected call
control address for a given call reference associated with a stream. It permits the CCS user to not
necessarily retain this information locally, and allows the CCS user to determine this information
from the CCS provider at any time.

e CC_ADDR_REQ: This primitive requests that the CCS provider return information concerning
which call control address the CCS user is bound as well as the call control address upon which
the CCS user is currently engaged in a call for the specified call reference.

e CC_ADDR_ACK: This primitive is in response to the CC_ADDR_REQ primitive and indicates to the
CCS user the requested information.

The sequence of primitives is shown in Figure 3.2.

18 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

-

CC_ADDR_REQ \

CC_ADDR_ACK /

Figure 3.2: Sequence of Primitives: Call Control User Address Service
N

~

3.1.3 CCS User Bind Service

This service allows a call control address to be associated with a stream. It allows the CCS user
to negotiate the number of setup indications that can remain unacknowledged for that CCS user (a
setup indication is considered unacknowledged while it is awaiting a corresponding setup response
or release request from the CCS user). This service also defines a mechanism that allows a stream
(bound to a call control address of the CCS user) to be reserved to handle incoming calls only. This
stream is referred to as the listener stream.

e CC_BIND_REQ: This primitive request that the CCS user be bound to a particular call control
address and negotiate the number of allowable outstanding setup indications for that address.

e CC_BIND_ACK: This primitive is in response to the CC_BIND_REQ primitive and indicates to the
user that the specified CCS user has been bound to a call control address.

The sequence of primitives is shown in Figure 3.3 .

-

CC_BIND_REQ \

CC_BIND_ACK /

Figure 3.3: Sequence of Primitives: Call Control User Bind Service
N

3.1.4 CCS User Unbind Service
This service allows the CCS user to be unbound from a call control address.

e CC_UNBIND_REQ: This primitive request that the CCS user be unbound from the call control
address that it had previously been bound to.

The sequence of primitives is shown in Figure 3.4.

2014-10-25 19

Chapter 3: CCI Services Definition

(7

CC_UNBIND_REQ

\
CC_OK_ACK /

Figure 3.4: Sequence of Primitives: Call Control User Unbind Service
N

3.1.5 Receipt Acknowledgement Service

e CC_OK_ACK: This primitive indicates to the CCS user that the previous (indicated) CCS user
originated primitive was received successfully by the CCS provider.

An example showing the sequence of primitives for successful receipt acknowledgement is depicted
in Figure 3.5.

(B

,
CC_SETUP_REQ
\ CC_SETUP_RES
CC_ALERTING_REQ
CC_PROCEEDING_REQ
CC_PROGRESS_REQ
CC_CONT_REPORT_REQ
CC_SETUP_COMPLETE_REQ
/ CC_RELEASE_REQ

CC_OK_ACK CC_RELEASE_IND

CC_SUSPEND_REQ
CC_RESUME_REQ

Figure 3.5: Sequence of Primitives: Call Control Receipt Acknowledgement Service
N J

3.1.6 Options Management Service

This service allows the CCS user to manage options parameter values associated with the CCS
provider.

e CC_OPTMGMT_REQR: This primitive allows the CCS user to select default values for options pa-
rameters within the range supported by the CCS provider.

Figure 3.6 shows the sequence of primitives for call control options management.

20 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CCI Services Definition

-

CC_OPTMGMT_REQ \

CC_OK_ACK /

Figure 3.6: Sequence of Primitives: Call Control Options Management Service

N

~

3.1.7 Error Acknowledgement Service

e CC_ERROR_ACK: This primitive indicates to the CCS user that a non-fatal error has occurred in

the last CCS user originated request or response primitive (listed in Figure 3.7), on the stream.

Figure 3.7 shows the sequence or primitives for the error management primitive.

-

REQ/RES Primitive * \

CC_ERROR_ACK /

CC_SETUP_REQ
CC_SETUP_RES
CC_PROCEEDING_REQ

CC_PROGRESS_REQ
CC_CONT_REPORT_REQ
CC_MORE_INFO_REQ
CC_SETUP_COMPLETE_REQ
CC_SUSPEND_REQ
CC_RESUME_REQ
CC_RELEASE_REQ
CC_RELEASE_RES

Figure 3.7: Sequence of Primitives: Call Control Error Acknowledgement Service

-

2014-10-25

21

Chapter 3: CCI Services Definition

3.2 User-Network Interface Services Definition

This section describes the required call control service primitives that define the UNI interface.

The queue model for UNI is discussed in more detail in ITU-T Q.931. For Q.931 specific conformance
considerations, see [Addendum for Q.931 Conformance], page 191.

The queue model represents the operation of a call control connection in the abstract by a pair of
queues linking the two call control addresses. There is one queue for each direction of signalling
transfer. The ability of a user to add objects to a queue will be determined by the behaviour of the
user removing objects from that queue, and the state of the queue. The pair of queues is considered
to be available for each potential call. Objects that are entered or removed from the queue are
either as a result of interactions at the two call control addresses, or as the result of CCS provider
initiatives.

e A queue is empty until a setup object has been entered and can be returned to this state, with
loss of its contents, by the CCS provider.

e Objects may be entered into a queue as a result of the action of the source CCS user, subject
to control by the CCS provider.

e Objects may also be entered into a queue by the CCS provider.

o Objects are removed from the queue under the control of the receiving CCS user.

e Objects are normally removed under the control of the CCS user in the same order as they
were entered except:

e if the object is of a type defined to be able to advance ahead of the preceding object, or

e if the following object is defined to be destructive with respect to the preceding object on
the queue. If necessary, the last object on the queue will be deleted to allow a destructive
object to be entered \- they will therefore always be added to the queue. For example,
"release" objects are defined to be destructive with respect to all other objects.

Table B.1 shows the ordering relationship among the queue model objects.

22 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

-

CC_SETUP_REQ
\ SETUP
.

N

CC_SETUP_IND
CC_MORE_INFO_REQ

/ . \\\

CC_MORE_INFO_IND
CC_INFORMATION_REQ

CC_OK_ACK

CC_INFORMATION_REQ ___ INFORMATION
P INFORMATION \
CCLOK ACK * | ---------"--- > \ CC_INFORMATION_IND
CC_OK_ACK * CALL PROCEEDING CC_INFORMATION_IND

ALERTING
PROGRESS
CONNECT

CC_SETUP_RES

CC_SETUP_CON CC_OK_ACK

CC_PROCEEDING_REQ

RN

CC_PROCEEDING_IND CC_OK_ACK

CC_ALERTING_REQ

RN

CC_ALERTING_IND CC_OK_ACK

CC_PROGRESS_REQ

RN

CC_PROGRESS_IND CC_OK_ACK

CC_CONNECT_REQ

NN N NN

CC_CONNECT_IND X

CC_SETUP_COMPLETE_REQ
(Network Side Only) \ _CONNECT ACKNOWLEDGE

s \

CC_OK_ACK

CC_OK_ACK CC_SETUP_COMPLETE_IND

(User Side Only)

Figure 3.8: Sequence of Primitives: Call Control UNI Overview
N

~

3.2.1 Call Setup Phase

A pair of queues is associated with a call between two call control addresses (facility group and
channel(s)) when the CCS provider receives a CC_SETUP_REQ primitive at one of the call control
addresses resulting in a setup object being entered into the queue. The queues will remain associated
with the call until a CC_RELEASE_REQ or CC_RELEASE_IND (resulting in a release object) is either
entered into or removed from a queue. Similarly, in the queue from the called CCS user, objects can
be entered into the queue only after the setup object associated with the CC_SETUP_RES has been
entered into the queue. Alternatively, the called CCS user can enter a release object into the queue
instead of the setup object to terminate the call.

The call establishment procedure will fail if the CCS provider is unable to establish the call, or if the
destination CCS user is unable to accept the CC_SETUP_IND (see call failure and call reject primitive
definitions).

3.2.1.1 User Primitives for Successful Call Setup

2014-10-25 23

Chapter 3: CCI Services Definition

CC_SETUP_REQ: This primitive requests that the CCS provider setup a call to the specified
destination (called party number).

CC_MORE_INFO_REQ: This primitive requests that the CCS provider provide more information
to establish the call. This primitive is not issued for en bloc signalling mode.

CC_INFORMATION_REQ: This primitive requests that the CCS provider provide more information
(digits) in addition to the destination (called party number) already specified in the CC_SETUP_
REQ and subsequent CC_INFORMATION_REQ primitives. This primitive is not issued for en block
signalling mode.

CC_SETUP_RES: This primitive requests that the CCS provider accept a previous call setup
indication on the specified stream.

3.2.1.2 Provider Primitives for Successful Call Setup

CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that an event has
caused call setup to fail on the selected address and that a reattempt should be made (or has
been made) on another call control address (facility group and channel(s)). This primitive is
only issued by the CCS provider if the CCS user is bound at the channel level rather than the
facility group or equipment group levels.

CC_SETUP_IND: This primitive indicates to the CCS user that a call setup request has been
made by a user at the specified call control address (facility group and channel(s)).

CC_MORE_INFO_IND: This primitive indicates to the CCS user that more information is required
to establish the call. This primitive is not issued for en block signalling mode.

CC_INFORMATION_IND: This primitive indicates to the CCS user more information (digits) in
addition to the destination (called party number) already indicated in the CC_SETUP_IND and
subsequent CC_INFORMATION_IND primitives. This primitive is not issued for en block signalling
mode.

CC_INFO_TIMEQUT_IND: This primitive indicates to the called CCS user that a timeout occurred
while waiting for additional information (called party number). The receiving CCS User should
determine whether sufficient address digits have been received and either disconnect the call
with the CC_DISCONNECT_REQ primitive or continue the call with CC_SETUP_RES. This primitive
is not issued for en block signalling mode.

CC_SETUP_CON: This primitive indicates to the CCS user that a call setup request has been
confirmed on the indicated call control address (channel(s)).

The sequence of primitives in a successful call setup is defined by the time sequence diagram shown
in Figure 3.9. The sequence of primitives for the call response token value determination is shown
in Figure 3.10 (procedures for call response token value determination are discussed in section 4.1.3
and 4.1.4.)

24

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

(7

\ SETUP
,,,,,,,,,,,,, -

CC_SETUP_REQ

N

CC_SETUP_IND
CC_MORE_INFO_REQ
SETUP ACKNOWLEDGE /
/ ST
CC_MORE_INFO_IND
CC_INFORMATION_REQ

CC_INFORMATION_REQ INFORMATION

,,,,,,,,,,,,, =

INFORMATION \
,,,,,,,,,,,,, =

T302 \

CC_INFORMATION_IND
CC_INFORMATION_IND

CC_INFO_TIMEOUT_IND
CC_SETUP_RES

CONNECT
/ - - <
CC_SETUP_CON N CC_OK_ACK
CC_SETUP_COMPLETE_REQ
CONNECT ACKNOWLEDGE
””””””” = \
CC_OK_ACK * CC_SETUP_COMPLETE_IND

Figure 3.9: Sequence of Primitives: Call Control Call Setup Service
N J

(7

CC_BIND_REQ

(swith TOKEN_REQUEST sel\

CC_BIND_ACK

(returns cc_token_value)

Figure 3.10: Sequence of Primitives: Call Control Token Request Service
N J

If the CCS provider is unable to establish a call, it indicates this to the request by a CC_CALL_
REATTEMPT_IND. This is shown in Figure 3.11.

(N

CC_SETUP_REQ \

e

CC_REATTEMPT_IND

Figure 3.11: Sequence of Primitives: Call Reattempt - CCS Provider
N J

2014-10-25 25

Chapter 3: CCI Services Definition

The sequence of primitives for call reattempt on dual seizure are shown in Figure 3.12.

-

N

CC_SETUP_REQ .~ CC_SETUP_REQ
\ SETUP P
. 4‘——'1——‘_‘"’:::::>
P
CC_SETUP_IND SETUP
/ 7777777777777 = \
CC_REATTEMPT_IND CC_SETUP_IND
CC_SETUP_RES
CONNECT
/ ST ooo <
CC_SETUP_CON N cC_oK_ACK
Figure 3.12: Sequence of Primitives: Call Reattempt - Dual Seizure

3.2.2 Call Establishment Phase

During the call establishment phase, a pair of queues has already been associated with the call
between the selected call control addresses (facility group and channel(s)) during the setup phase.

3.2.2.1 User Primitives for Successful Call Establishment

CC_PROCEEDING_REQ: This primitive requests that the CCS provider indicate to the call control
peer that the call is proceeding and that all necessary information has been received.

CC_ALERTING_REQ: This primitive requests that the CCS provider indicate to the call control
peer that the terminating user is being alerted.

CC_PROGRESS_REQ: This primitive requests that the CCS provider indicate to the call control
peer that the specified progress event has occurred.

CC_IBI_REQ (CC_DISCONNECT_REQ): This primitive requests that the CCS provider indicate to
the call control peer that in-band information is now available. This will also invite the peer
to release the call.

CC_CONNECT_REQ: This primitive requests that the CCS provider indicate to the call control
peer that the call has been connected.

CC_SETUP_COMPLETE_REQ: This primitive request that the CCS provider complete the call
setup.

3.2.2.2 Provider Primitives for Successful Call Establishment

26

CC_PROCEEDING_IND: This primitive indicates to the CCS user that the call control peer is
proceeding and that all necessary information has been received.

CC_ALERTING_IND: This primitive indicates to the CCS user that the terminating user is being
alerted.

CC_PROGRESS_IND: This primitive indicates to the CCS user that the specified progress event
has occurred.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

e CC_IBI_IND (CC_DISCONNECT_IND): This primitive indicates to the CCS user that in-band
information is now available. It also invites the CCS user to release the call.

e CC_CONNECT_IND: This primitive indicates to the CCS user that the call has been connected.
e CC_SETUP_COMPLETE_IND: This primitive indicates to the CCS user that the call has completed

setup.
3.2.2.3 Provider Primitives for Successful Call Setup

The sequence of primitives in a successful call establishment is defined by the time sequence diagrams
as shown in Figure 3.13.

-

CC_PROCEEDING_REQ
CALL PROCEEDING /
, CALLPROCEEDING

AN

CC_PROCEEDING_IND CC_OK_ACK

CC_ALERTING_REQ

AN

CC_ALERTING_IND CC_OK_ACK

CC_PROGRESS_REQ

AN

CC_PROGRESS_IND CC_OK_ACK
CC_IBI_REQ

DISCONNECT /

N
CC_IBI_IND CC_OK_ACK

CC_CONNECT_REQ

NN N N N

CC_CONNECT_IND ~

CC_SETUP_COMPLETE_REQ
(Network Side Only) \ _CONNECT ACKNOWLEDGE

e \

CC_OK_ACK

CC_OK_ACK CC_SETUP_COMPLETE_IND

(User Side Only)

Figure 3.13: Sequence of Primitives: Call Control Successful Call Establishment Service
N

3.2.3 Call Established Phase

Flow control of the call is done by management of the queue capacity, and by allowing objects of
certain types to be inserted to the queues, as shown in Table X.

3.2.3.1 Suspend Service

User Primitives for Suspend Service

e CC_SUSPEND_REQ: This primitives requests that the CCS provider temporarily suspend a call
at the network, or indicate user suspension of a call.

e CC_SUSPEND_RES: This primitive indicates to the CCS provider that the CCS user (Network)
is accepting the request for suspension of the call.

e CC_SUSPEND_REJECT_REQ: This primitive indicates to the CCS provider that the CCS user
(Network) is rejecting the request for suspension of the call, and the cause for rejection.

2014-10-25 27

Chapter 3: CCI Services Definition

Provider Primitives for Suspend Service

e CC_SUSPEND_IND: This primitive indicates to the CCS user that an established call has been
temporarily suspended at the network, or by the remote user.

e CC_SUSPEND_CON: This primitive confirms to the requesting CCS user (User) that the call has
been temporarily suspended at the network.

e CC_SUSPEND_REJECT_IND: This primitive indicates to the requesting CCS user (User) that the
request to suspend the call has been rejected by the network, and the cause for rejection.
Figure 3.14 and Figure 3.15 show the sequence of primitives for suspend service. The sequence of

primitives may remain incomplete if a CC_RESET or a CC_RELEASE primitive occurs.

The sequence of primitives to suspend a call is defined in the time sequence diagram as shown in
Figure 3.14 and Figure 3.15.

p
CC_SUSPEND_REQ
\ SUSPEND
************* = \
CC_SUSPEND_IND
CC_SUSPEND_RES
SUSPEND ACKNOWLEDGE
/ D N
CC_SUSPEND_CON "\ CC_OK_ACK

Figure 3.14: Sequence of Primitives: Call Control Network Suspend Service: Successful
k J

CC_SUSPEND_REQ
\ SUSPEND

,,,,,,,,,,,,, - I

CC_SUSPEND_IND

CC_SUSPEND_REJECT_REQ

T -

CC_SUSPEND_REJECT_IND - CC_OK_ACK

Figure 3.15: Sequence of Primitives: Call Control Network Suspend Service: Unsuccessful
-

28 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

(7

CC_SUSPEND_REQ
\ NOTIFY
7777777777777 = \

CC_SUSPEND_CON # CC_SUSPEND_IND
CC_SUSPEND_RES

e

Figure 3.16: Sequence of Primitives: Call Control User Suspend Service
N J

3.2.3.2 Resume Service

User Primitives for Resume Service

e CC_RESUME_REQ: This primitive request that the CCS provider resume a previously network
suspended call, or indicates that the user has resumed a call.

e CC_RESUME_RES: This primitive indicates to the CCS provider that the CCS user (Network) is
accepting the request for resumption of the call.

e CC_RESUME_REJECT_REQ: This primitive indicates to the CCS provider that the CCS user
(Network) is rejecting the request for resumption of the call, and the cause for rejection.

Provider Primitives for Resume Service

e CC_RESUME_IND: This primitive indicates to the CCS user that a previously suspended call has
been resumed at the network, or by the remote user.
e CC_RESUME_CON: This primitive confirms to the requesting CCS user (User) that the call has
been resumed at the network.
e CC_RESUME_REJECT_IND: This primitive indicates to the requesting CCS user (User) that the
request to resume the call has been rejected by the network, and the cause for rejection.
Figure 3.17 and Figure 3.18 show the sequence of primitives for resume service. The sequence of
primitives may remain incomplete if a CC_RESET or a CC_RELEASE primitive occurs.
The sequence of primitives to resume a call is defined in the time sequence diagram as shown in
Figure 3.17 and Figure 3.18.
(N

CC_RESUME_REQ
\ RESUME

,,,,,,,,,,,,, - I~

CC_RESUME_IND

CC_RESUME_RES
RESUME ACKNOWLEDGE

- - = — — — — - — — — — —
<
/ ~

CC_RESUME_CON "8 CC_OK_ACK

Figure 3.17: Sequence of Primitives: Call Control Resume Service: Successful
- J

2014-10-25 29

Chapter 3: CCI Services Definition

CC_RESUME_REQ
\ RESUME

,,,,,,,,,,,,, - |~

CC_RESUME_IND

CC_RESUME_REJECT_REQ

P -

CC_RESUME_REJECT_IND - CC_OK_ACK

Figure 3.18: Sequence of Primitives: Call Control Resume Service: Unsuccessful
N

CC_RESUME_REQ
\ NOTIFY
D B >
s \

CC_RESUME_CON CC_RESUME_IND

/ CC_RESUME_RES

Figure 3.19: Sequence of Primitives: Call Control User Resume Service
N

The sequence of primitives as shown above may remain incomplete if a CC_RESET or CC_RELEASE
primitive occurs (see Table 3). A CCS user must not issue a CC_RESUME_REQ primitive if no CC_
SUSPEND_REQ has been sent previously. Following a reset procedure (CC_RESET_REQ or CC_RESET_
IND), a CCS user may not issue a CC_RESUME_REQ to resume a call suspended before the reset
procedure was signalled.

3.2.4 Call Termination Phase
3.2.4.1 Call Reject Service

User Primitives for Call Reject Service
e CC_REJECT_REQ: This primitive indicates that the CCS user receiving the specified CC_SETUP_
IND requests that the specified call indication be rejected.

Provider Primitives for Call Reject Service

e CC_REJECT_IND: This primitive indicates to the calling CCS user that the call has been rejected.

The sequence of events for rejecting a call setup attempt at the UNI is defined in the time sequence
diagram shown in Figure 3.20.

30 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CCI Services Definition

a N
CC_SETUP_REQ
N e L
CC_SETUP_IND
CC_REJECT_REQ
RELEASE COMPLETE /
/ T TTTTo o N
CC_REJECT_IND % CC_OK_ACK
Figure 3.20: Sequence of Primitives: Rejecting a Call Setup
\ J
3.2.4.2 Call Failure Service
Provider Primitives for Call Failure Service
e CC_CALL_FAILURE_IND: This primitive indicates to the called CCS user that an event has
caused the call to fail and indicates the reason for the failure and the cause value associated
with the failure. The CCS user is required to release the call using the indicated cause value
in a CC_DISCONNECT_REQ primitive.
The sequence of events for error indications is described in the time sequence diagram shown in
Figure 3.21.
(" 2
RESTART
STATUS
_DL_ESTABLISH CON _ _
CC_CALL_FAILURE_IND /
CC_DISCONNECT_REQ
NG| L _oscomeor
\ CC_DISCONNECT_IND
Figure 3.21: Sequence of Primitives: Call Failure
N J

3.2.4.3 Call Release Service

The call release procedure is initialized by the insertion of a release object (associated with a CC_
DISCONNECT_REQ, CC_RELEASE_REQ, or CC_REJECT_REQ) in the queue. As shown in Table 3, the
release procedure is destructive with respect to other objects in the queue, and eventually results in

the emptying of queues and termination of the call.

The Release procedure invokes the following interactions:

A. A CC_DISCONNECT_REQ from the CCS user, followed by a CC_RELEASE_IND from the CCS

provider and a subsequent CC_RELEASE_RES from the CCS user; or

2014-10-25

Chapter 3: CCI Services Definition

B. A CC_DISCONNECT_IND from the CCS provider, followed by a CC_RELEASE_REQ from the CCS
user and a subsequent CC_RELEASE_CON from the CCS provider.

The sequence of primitive depends on the origin of the release action. The sequence may be:

1. invoked by the CCS user, with a request from that CCS user, leading to interaction (A) with
that CCS user and interaction (B) with the peer CCS user;

2. invoked by both CCS users, with a request from each of the CCS users, leading to interaction
(A) with both CCS users;

3. invoked by the CCS provider, leading to interaction (B) with both CCS users.

4. invoked independently by one CCS user and the CCS provider, leading to interaction (A) with
the originating CCS user and (B) with the peer CCS user.

User Primitives for Release Service

e CC_DISCONNECT_REQ: This primitive request that the CCS provider disconnect the B-Channel
or indicate tones and announcements present. Tones and announcements should be requested
in the CC_IBI_REQ primitive rather than the CC_DISCONNECT_REQ primitive.

e CC_RELEASE_REQ: This primitive requests that the CCS provider disconnect the B-Channel (if
not already disconnected) and release the call reference.

e CC_RELEASE_RES: This primitive indicates to the CCS provider that the CCS user has accepted
a release indication and has released the call reference.

Provider Primitives for Release Service

e CC_DISCONNECT_IND: This primitive indicates that the remote CCS user or provider has dis-
connected the B-Channel or has made tones and announcements available. The CCS provider
should indicate tones and announcements present only with the CC_IBI_IND primitive rather
than the CC_DISCONNECT_IND primitive.

e CC_RELEASE_IND: This primitive indicates that the remote CCS has disconnected the B-
Channel and released the call reference.

e CC_RELEASE_CON: This primitive confirms that the remove CCS has disconnected the B-Channel
and released the call reference.

The sequence of primitives as shown in Figure 3.22, Figure 3.23, Figure 3.24, and Figure 3.25 may
remain incomplete if a CC_RESTART primitive occurs.

A CCS user can release a call establishment attempt by issuing a CC_DISCONNECT_REQ. The sequence
of events is shown in Figure 3.22, Figure 3.23, Figure 3.24, and Figure 3.25.

32 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CCI Services Definition

(7
CC_DISCONNECT_REQ
\ DISCONNECT
\ CC_DISCONNECT_IND
CC_RELEASE_REQ
RELEASE /
/ oo
CC_RELEASE_IND
CC_RELEASE_RES
\ RELEASE COMPLETE
CC_OK_ACK *” \ CC_RELEASE_CON
Figure 3.22: Sequence of Primitives: CCS User Invoked Release
N J
(N
CC_DISCONNECT_REQ CC_DISCONNECT_REQ
\ __ DISCONNECT _ __ /
e 77 B s
.~ RELEASE ~«
/ g - \
CC_RELEASE_CON CC_RELEASE_CON
Figure 3.23: Sequence of Primitives: Simultaneous CCS User Invoked Release
N
(N
DISCONNECT
CC_DISCONNECT_IND / \ CC_DISCONNECT_IND
CC_RELEASE_REQ CC_RELEASE_REQ
/ =7 RELase ™ \
CC_RELEASE_CON CC_RELEASE_CON
Figure 3.24: Sequence of Primitives: CCS Provider Invoked Release
- J
2014-10-25 33

Chapter 3: CCI Services Definition

-

CC_DISCONNECT_REQ \

e

CC_RELEASE_CON

~~ _ _DISCONNECT __ -~

i RELEASE S

/S N/

CC_DISCONNECT_IND
CC_RELEASE_REQ

CC_RELEASE_CON

Figure 3.25: Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release

-

J

3.2.5 Call Management

3.2.5.1 User Primitives for Call Management

e CC_RESTART_REQ: This primitive requests the CCS provider to restart all the call control ad-

dresses (signalling interface and channels) for the UNI interface.

3.2.5.2 Provider Primitives for Call Management

e CC_RESTART_CON: This primitive confirms to the requesting CCS user that all call control
addresses (signalling interface and channels) for the UNI interface have been restarted and all

calls are in the CCS_IDLE state.

e CC_MAINT_IND: This primitive indicates to CCS user that various events have occurred requiring

maintenance notification (e.g., restart indication).

34

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

3.3 Network-Network Interface Services Definition
This section describes the required call control service primitives that define the NNI interface.

The queue model for NNT is discussed in more detail in ITU-T Q.764. For Q.764 specific conformance
considerations, see [Addendum for Q).764 Conformance], page 219. For ETSI EN 300 356-1 V3.2.2
specific conformance considerations, see [Addendum for ETSI EN 300 356-1 V3.2.2 Conformance],
page 263.

-

CC_SETUP_REQ

\
s
z

CC_MORE_INFO_IND # CC_SETUP_IND
CC_MORE_INFO_REQ

CC_INFORMATION_REQ

/N S/

CC_INFORMATION_REQ ~ N | ______27_____ =
> SAM
A o
CC_OK_ACK e CC_INFORMATION_IND
CC_OK_ACK # CC_INFORMATION_IND

CC_SETUP_RES

* CC_OK_ACK

CC_PROCEEDING_REQ
ACM /
-

CC_SETUP_CON

* CC_OK_ACK
CC_ALERTING_REQ

CC_PROCEEDING_IND

N CC_OK_ACK

CC_PROGRESS_REQ
ACM/CPG /
oo PEMETE

~

* CC_OK_ACK

CC_IBI_REQ
ACM/CPG

CC_ALERTING_IND

CC_PROGRESS_IND

NN N NN

CC_IBLIND . CC_OK_ACK
CC_CONNECT_REQ
CON/ANM /
CC_CONNECT_IND / cC_OK_ACK

Figure 3.26: Sequence of Primitives: Call Control NNI Overview
-

3.3.1 Call Setup Phase

A pair of queues is associated with a call between the two call control addresses when the CCS
provider receives a CC_SETUP_REQ primitive at one of the call control addresses resulting in a setup
object being entered into the queue. The queues will remain associated with the call until a CC_
RELEASE_REQ (resulting in a release object) is either entered into or removed from a queue. Similarly,
in the queue from the called CCS user, objects can be entered into the queue only after the setup
object associated with the CC_SETUP_RES has been entered into the queue. Alternatively, the called
CCS user can enter a release object into the queue instead of the setup object to terminate the call.

2014-10-25 35

Chapter 3: CCI Services Definition

The call establishment procedure will fail if the CCS provider is unable to establish the call, or if the
destination CCS user is unable to accept the CC_SETUP_IND (see call release primitive definition).

3.3.1.1 User Primitives for Successful Call Setup

CC_SETUP_REQR: This primitive requests that the CCS provider setup a call to the specified
destination (called party address).

CC_MORE_INFO_REQ: This primitive requests that the CCS provider provide more information
to establish the call. This primitive is not issued for en block signalling mode.

CC_INFORMATION_REQ: This primitive requests that the CCS provider provide more information
(digits) in addition to the destination (called party number) already specified in the CC_SETUP_
REQ and subsequent CC_INFORMATION_REQ primitives. This primitive is not issued for en block
signalling mode.

CC_SETUP_RES: This primitive requests that the CCS provider accept a previous call setup
indication on the specified stream.

3.3.1.2 Provider Primitives for Successful Call Setup

CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that an event has
caused call setup to fail on the selected address and that a reattempt should be made (or has
been made) on another call control address (signalling interface and circuit(s)). This primitive
is only issued by the CCS provider if the CCS user is bound at the circuit level rather than the
circuit group or trunk group level.

CC_SETUP_IND: This primitive indicates to the CCS user that a call setup request has been
made by a user at the specified call control address (circuit(s)).

CC_MORE_INFO_IND: This primitive indicates to the CCS user that more information is required
to establish the call. This primitive is not issued for en block signalling mode.

CC_INFORMATION_IND: This primitive indicates to the CCS user more information (digits) in
addition to the destination (called party number) already indicated in the CC_SETUP_IND and
subsequent CC_INFORMATION_IND primitives. This primitive is not issued for en block signalling
mode.

CC_INFO_TIMEQUT_IND: This primitive indicates to the called CCS user that a timeout occurred
while waiting for additional information (called party number). The receiving CCS User should
determine whether sufficient address digits have been received and either disconnect the call
with the CC_DISCONNECT_REQ primitive or continue the call with CC_SETUP_RES.

CC_SETUP_CON: This primitive indicates to the CCS user that a call setup request has been
confirmed on the indicated call control address (circuits(s)).

The sequence of primitives in a successful call setup is defined by the time sequence diagrams as
shown in (undefined) [(undefined)], page (undefined) and Figure 3.27.

The sequence of primitives for the call response token value determination is shown in Figure 3.28
(procedures for call response token value determination are discussed in section 4.1.3 and 4.1.4.)

36

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CCI Services Definition

(7
CC_SETUP_REQ \
\ CC_SETUP_IND
/ CC_MORE_INFO_REQ
CC_MORE_INFO_IND /
CC_INFORMATION_REQ
CC_INFORMATION_REQ \ 7777777777777
CC_OK_ACK ~ L s\\ CC_INFORMATION_IND
CC_OK_ACK CC_INFORMATION_IND
CC_INFO_TIMEOUT_IND
CC_SETUP_RES
CC_SETUP_CON / \ cc oK _ACK
CC_SETUP_COMPLETE_REQ
CC_OK_ACK # \ CC_SETUP_COMPLETE_IND
Figure 3.27: Sequence of Primitives: Call Control Call Setup Service: Overlap Sending
\ J
(7
CC_BIND_REQ
(swith TOKEN_REQUESTm\
CC_BIND_ACK /
(returns cc_token_value)
Figure 3.28: Sequence of Primitives: Call Control Token Request Service
N J
If the CCS provider is unable to establish a call, it indicates this to the request by a CC_CALL_
REATTEMPT_IND. This is shown in Figure 3.29.
2014-10-25 37

Chapter 3: CCI Services Definition

-

CC_SETUP_REQ \

e

CC_REATTEMPT_IND

Figure 3.29: Sequence of Primitives: Call Reattempt - CCS Provider
N

The sequence of primitives for call reattempt on dual seizure are shown in Figure 3.30.

~

CC_SETUP_REQ \ _+ CC_SETUP_REQ
R N ”
| e T T
cc_SETuP_IND * 1AM
************* = \
CC_REATTEMPT_IND CC_SETUF_IND
CC_SETUP_RES
CON
/ S -
CC_SETUP_CON N CC_OK_ACK

Figure 3.30: Sequence of Primitives: Call Reattempt - Dual Seizure
N

3.3.2 Continuity Test Phase
The continuity test service is only applicable to the NNI.

During the continuity test phase, a pair of queues has already been associated with the call be-
tween the selected call control addresses (signalling interface and circuit(s)) during the setup phase.
The continuity test phase begins when the CCS provider returns a CC_CONT_TEST_IND primitive
in response to a CC_SETUP_REQ primitive that had the ISUP_NCI_CONT_CHECK_REQUIRED flag set in
the call flags. The continuity test phase also begins when the CCS user responds with a CC_CONT_
TEST_REQ primitive in response to a CC_SETUP_IND primitive that had the ISUP_NCI_CONT_CHECK_
REQUIRED flag set in the call flags.

Upon entering the continuity test phase, it is the responsibility of the CCS user to establish a loop
back on the call control address (signalling interface and circuit(s)) or to attach tone generation and
detection devices to the call control address (signalling interface and circuit(s)).

3.3.2.1 Continuity Test Successful
User Primitives for Successful Continuity Test

e CC_SETUP_REQ: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, requests
that the CCS provider setup a call and include a continuity check before the call is established.

38 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

e CC_CONT_CHECK_REQ: This primitive requests that the CCS provider perform a continuity check
on the specified call control address (signalling interface and circuit(s)). This primitive is only
necessary for performing continuity checks that are not in conjunction with a call.

e CC_CONT_TEST_REQ: This primitive requests that the CCS provider accept an outstanding call
setup indication. When the CC_SETUP_IND had the ISUP_NCI_CONT_CHECK_REQUIRED flag set,
it indicates to the CCS provider that the necessary loop back device has been install on the
call control address (signalling interface and circuit(s)).

e CC_CONT_REPORT_REQ: This primitive requests that the CCS provider indicate to the remote
CCS user that the continuity test has succeeded (cc_result is set to ISUP_COT_SUCCESS).

Provider Primitives for Successful Continuity Test

e CC_SETUP_IND: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, indicates
to the CCS user that a call setup including a continuity check is requested.

e CC_CONT_CHECK_IND: This primitive indicates to the CCS user that a continuity check was re-
quested on the specified call control address (signalling interface and circuit(s)). This primitive
is only necessary for performing continuity checks that are not in conjunction with a call.

e CC_CONT_TEST_IND: This primitive indicates that the remote CCS user has accepted a call
setup indication on the specified call control address (signalling interface and circuit(s)). When
the CC_SETUP_IND primitive had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it indicates to
the CCS user that the necessary loop back device has been installed on the remote end of the
call control address (signalling interface and circuit(s)). The CCS user receiving this primitive
must attach the necessary tone generation and detection devices to the circuit(s) and perform
the continuity test.

e CC_CONT_REPORT_IND: This primitive indicates to the CCS user that the continuity test was
successful.

The sequence of primitives in a successful continuity test associated with call setup when continuity
check is required on the circuit(s) is defined by the time sequence diagrams as shown in Figure 3.31.

2014-10-25 39

Chapter 3: CCI Services Definition

-

CC_SETUP_REQ
(with ISUP,NCLCDNT,CHECK,EEQQISED)

CC_INFORMATION_REQ
CC_INFORMATION_REQ \
o8
CC_OK_ACK ¥
CC_OK_ACK
CC_CONT_TEST_IND

(apply tone and check continuity)

CC_CONT_REPORT_REQ

(success)

N

>
-

CC_OK_ACK

CC_SETUP_CON

IAM
7777777777777 —
SAM
7777777777777 >~
SAM
7777777777777 —

(depending on protocol, the
CC_CONT_TEST_IND might be
returned from the local
CCS provider)

N

CC_SETUP_IND
with ISUP_NCI_CONT_CHECK_REQUIRED)

% (establish loopback)

CC_CONT_TEST_REQ
CC_INFORMATION_IND
CC_INFORMATION_IND

CC_CONT_REPORT_IND

(remove loopback)

CC_SETUP_RES

-

Figure 3.31: Sequence of Primitives: Call Setup Continuity Test Service: Required: Successful

The sequence of primitives in a successful continuity test associated with call setup when continuity
check is being performed on a previous circuit is defined by the time sequence diagrams as shown in

Figure 3.32.

-

CC_SETUP_REQ
(with ISUP_NCI_C()NT_CHECK_}R%ZUS)

CC_INFORMATION_REQ
CC_INFORMATION_REQ \

2

CC_OK_ACK ,~

CC_OK_ACK

CC_CONT_REPORT_REQ

(success)

CC_OK_ACK

CC_SETUP_CON

IAM
,,,,,,,,,,,,, —
SAM
,,,,,,,,,,,,, —
SAM
,,,,,,,,,,,,, —
coT
,,,,,,,,,,,,, —
CON

/

CC_SETUP_IND
with ISUP_NCI_CONT_CHECK_PREVIOUS)

CC_INFORMATION_IND
CC_INFORMATION_IND

v

CC_CONT_REPORT_IND
CC_SETUP_RES

N

Figure 3.32: Sequence of Primitives: Call Setup Continuity Test Service: Previous: Successful

The sequence of primitives in a successful continuity test not associated with call setup is defined

by the time sequence diagrams as shown in Figure 3.33.

40

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

(7

CC_CONT_CHECK_REQ \

CC_CONT_CHECK_IND
(establish loopback)

CC_CONT_TEST_REQ
LPA /
- m
/ (depending on protocol, the
CC_CONT_CHECK_CON might be
returned from the local
CCS provider)

CC_CONT_TEST_IND

(apply tone and check continuity)

CC_RELEASE_REQ

(success) \ REL
\ CC_RELEASE_IND

(remove loopback)

CC_RELEASE_RES

|

CC_RELEASE_CON

Figure 3.33: Sequence of Primitives: Continuity Test Service: Successful
- J

3.3.2.2 Continuity Test Unsuccessful

User Primitives for Unsuccessful Continuity Test

e CC_SETUP_REQ: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, requests
that the CCS provider setup a call and include a continuity check before the call is established.

e CC_CONT_TEST_REQ: This primitive requests that the CCS provider accept an outstanding call
setup indication. When the CC_SETUP_IND had the ISUP_NCI_CONT_CHECK_REQUIRED flag set,
it also indicates to the CCS provider that the necessary loop back device has been install on
the call control address (signalling interface and circuit(s)).

e CC_CONT_REPORT_REQ: This primitive requests that the CCS provider indicate to the remote
CCS user that the continuity test has failed (cc_result is set to ISUP_COT_FAILURE).

Provider Primitives for Unsuccessful Continuity Test

e CC_SETUP_IND: This primitive, with the ISUP_NCI_CONT_CHECK_REQUIRED flag set, indicates
to the CCS user that a call setup including a continuity check is requested.

e CC_CONT_TEST_IND: This primitive indicates that the remote CCS user has accepted a call
setup indication on the specified call control address (signalling interface and circuit(s)). When
the CC_SETUP_IND primitive had the ISUP_NCI_CONT_CHECK_REQUIRED flag set, it indicates to
the CCS user that the necessary loop back device hass been installed on the remote end of the
call control address (signalling interface and circuit(s)). The CCS user receiving this primitive
must attach the necessary tone generation and detection devices to the circuit(s) and perform
the continuity test.

e CC_CONT_REPORT_IND: This primitive indicates to the CCS user that the continuity test failed.

e CC_CALL_REATTEMPT_IND: This primitive indicates to the calling CCS user that the continuity
test failed and that a reattempt should be made (or has been made) on another call control
address (signalling interface and circuit(s)). This primitive is only issued by the CCS provider
if the CCS user is bound at the circuit level rather than the circuit group or trunk group level.

2014-10-25 41

Chapter 3: CCI Services Definition

The sequence of primitives for an unsuccessful continuity test associated with a call setup is defined
by the time sequence diagrams as shown in Figure 3.34.

(M

CC_SETUP_REQ
(with 15UP,NCI,CUNT,(‘HECK?RWD AM

CC_SETUP_IND
with ISUP_NCI_CONT_CHECK_REQUIRED)

(establish loopback)
LPA /

CC_CONT_TEST_REQ
O T
/ (depending on protocol, the

CC_CONT_TEST_IND CC_CONT_TEST_IND might be
(apply tone and check continuity) returned from the local
CC_CONT_REPORT_REQ CCS provider)
(failure) cot
D >
L \
CC_OK_ACK CC_CONT_REPORT_IND

CC_CALL_REATTEMPT_IND

/ (ailure)
CC_SETUP_REQ
(with ISUP,NCI,CUNT,(‘HECK?R@&QED

,,,,,,,,,,,,, - I

CC_SETUP_IND

(on a different circuit)

Figure 3.34: Sequence of Primitives: Call Setup Continuity Test Service: Unsuccessful
k J

The sequence of primitives for an unsuccessful continuity test not associated with a call setup is
defined by the time sequence diagrams as shown in Figure 3.35.

()

CC_CONT_CHECK_REQ \

CC_CONT_CHECK_IND
(establish loopback)

CC_CONT_TEST_REQ
LPA /
- m o~
/ (depending on protocol, the
CC_CONT_CHECK_CON might be
returned from the local
CCS provider)

CC_CONT_TEST_IND

(apply tone and check continuity)

CC_CONT_REPORT_REQ

(failure) \ cor

| mm e >
-

- (failure) \
CC_OK_ACK 4 CC_CONT_REPORT_IND

(remove loopback)

Figure 3.35: Sequence of Primitives: Continuity Test Service: Unsuccessful
= J

3.3.3 Call Establishment Phase

During the call establishment phase, a pair of queues has already been associated with the call
between the selected call control addresses (signalling interface and circuit(s)) during the setup phase.

42 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

The call establishment phase begins when the CCS provider returns a CC_SETUP_CON primitive (or
receives a CC_CONT_REPORT_REQ primitive) in response to a CC_SETUP_REQ primitive (that had the
ISUP_NCI_.CONT_CHECK_REQUIRED flag set). The call establishment phase also begins when
the CCS user responds with a CC_SETUP_RES primitive (or receives a CC_CONT_REPORT_IND primitive)
in response to a CC_SETUP_IND primitive (that had the ISUP_NCI_CONT_CHECK_REQUIRED flag set).

Upon entering the call establishment phase, it is the responsibility of the CCS user to remove
any loop back from the call control address (signalling interface and circuit(s)) or to remove tone
generation and detection devices from the call control address (signalling interface and circuit(s)).

3.3.3.1 User Primitives for Successful Call Establishment

e CC_PROCEEDING_REQ: This primitive requests that the CCS provider indicate to the call control
peer that the call is proceeding.

e CC_ALERTING_REQ: This primitive requests that the CCS provider indicate to the call control
peer that the terminating user is being alerted.

e CC_PROGRESS_REQ: This primitive requests that the CCS provider indicate to the call control
peer that the specified progress event has occurred.

e CC_IBI_REQ: This primitive requests that the CCS provider indicate to the call control peer
that interworking has been encountered and in-band information is now available. This will
also inform the peer CCS user that no connect indication is pending.

e CC_CONNECT_REQR: This primitive requests that the CCS provider indicate to the call control
peer that the call has been connected.

e CC_SETUP_COMPLETE_REQ: This primitive requests that the CCS provider complete the call
setup. This primitive is used in NNI mode for interworking with UNI mode.

3.3.3.2 Provider Primitives for Successful Call Establishment

e CC_PROCEEDING_IND: This primitive indicates to the CCS user that the call control peer is
proceeding.

e CC_ALERTING_IND: This primitive indicates to the CCS user that the terminating user is being
alerted.

e CC_PROGRESS_IND: This primitive indicates to the CCS user that the specified progress event
has occurred.

e CC_IBI_IND: This primitive indicates to the CCS user that interworking has been encountered
and in-band information is now available. It also indicates to the CCS user that no connect
indication is pending.

e CC_CONNECT_IND: This primitive indicates to the CCS user that the call has been connected.

e CC_SETUP_COMPLETE_IND: This primitive indicates to the CCS user that the call has completed
setup. This primitive is used in NNI mode for interworking with UNI mode.

The sequence of primitives in a successful call establishment is defined by the time sequence diagrams
as shown in Figure 3.36.

2014-10-25 43

Chapter 3: CCI Services Definition

(N
CC_PROCEEDING_REQ
\ ACM
P = \
CC_OK_ACK * CC_PROCEEDING_IND
CC_ALERTING_REQ
\ ACMICPG
Pl Ee = \
CC_OK_ACK * CC_ALERTING_IND
CC_PROGRESS_REQ
\ cPG
el R =
CC_OK_ACK *~ \
-OK_ CC_PROGRESS_IND
CC_IBI_REQ
\ ACM/CPG
el B =
=~ \
CC_OK_ACK CC_IBLIND
CC_CONNECT_REQ
\ ANM/CON
e >~
CC_OK_ACK =~ \
—OR CC_CONNECT_IND

Figure 3.36: Sequence of Primitives: Call Control Successful Call Establishment Service
N

3.3.4 Call Established Phase

Flow control of the call is done by management of the queue capacity, and by allowing objects of
certain types to be inserted to the queues, as shown in Table X.

3.3.4.1 User Primitives for Established Calls
e CC_SUSPEND_REQ: This primitives requests that the CCS provider temporarily suspend a call.

e CC_RESUME_REQ: This primitive request that the CCS provider resume a previously suspended
call.

3.3.4.2 Provider Primitives for Established Calls

e CC_SUSPEND_IND: This primitive indicates to the CCS user that an established call has been
temporarily suspended.

e CC_RESUME_IND: This primitive indicates to the CCS user that a previously suspended call has
been resumed.

Figure 3.37 shows the sequence of primitives for suspension and resumption of established calls.
The sequence of primitives may remain incomplete if a CC_RESET or a CC_RELEASE primitive occurs.
The sequence of primitives to successfully suspend and resume a call is defined in the time sequence
diagram as shown in Figure 3.37.

44 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CCI Services Definition

-

-

~
CC_SUSPEND_REQ
\ sUS
Pl = \
CC_OK_ACK * CC_SUSPEND_IND
CC_RESUME,_REQ
\ RES
ol = \
CC_OK_ACK © CC_RESUME_IND
Figure 3.37: Sequence of Primitives: Call Control Suspend and Resume Service
J

The sequence of primitives as shown above may remain incomplete if a CC_RESET or CC_RELEASE
primitive occurs (see Table 3). A CCS user must not issue a CC_RESUME_REQ primitive if no CC_
SUSPEND_REQ has been sent previously. Following a reset procedure (CC_RESET_REQ or CC_RESET_
IND), a CCS user may not issue a CC_RESUME_REQ to resume a call suspended before the reset

procedure was signalled.

3.3.5 Call Termination Phase

3.3.5.1 Call Reject Service

User Primitives for Call Reject Service

e CC_REJECT_REQ: This primitive indicates that the CCS user receiving the specified CC_SETUP_
IND requests that the specified call indication be rejected.

Provider Primitives for Call Reject Service

e CC_REJECT_IND: This primitive indicates to the calling CCS user that the call has been rejected.

The sequence of events for rejecting a call setup attempt at the NNI is defined in the time sequence

diagram shown Figure 3.38.

~

-

~
CC_SETUP_REQ
I R L
CC_SETUP_IND
CC_REJECT_REQ
REL
- R
/ ~~-___RLC
CC_REJECT_IND RN
Figure 3.38: Sequence of Primitives: CCS User Rejection of a Call Setup Attempt
)
2014-10-25 45

Chapter 3: CCI Services Definition

3.3.5.2 Call Failure Service

The call error procedure is indicated by the removal of a reattempt or failure object (associated with
a local event) from the queue. The error procedure is destructive with respect to other objects in
the queue, and eventually results in the emptying of queues and termination of the call.

Provider primitives for the Call Failure Service

e CC_CALL_FAILURE_IND: This primitive indicates to the CCS user that an event has caused the
call to fail and indicates the reason for the failure and the cause value associated with the
failure. The CCS user is required to immediately disconnect the circuit(s) and release the call
on any previous legs using the indicated cause value in the primitive.

The sequence of primitives for call failure are shown in Figure 3.39.

-

BLO/CGB/RSC/GRS
Timeout
Unexpected Message

| i

CC_CALL_FAILURE_IND

(Other messages are possibly
exchanged automatically.)

Figure 3.39: Sequence of Primitives: Call Failure
N

3.3.5.3 Call Release Service

The call release procedure is initialized by the insertion of a release object (associated with a CC_
RELEASE_REQ) into the queue. As shown in Table 3, the release procedure is destructive with respect
to other objects in the queue, and eventually results in the emptying of queues and termination of
the call.

The release procedure invokes the following interactions:

A. a CC_RELEASE_REQ from the CCS user, followed by a CC_RELEASE_CON from the CCS provider;
or

B. A CC_RELEASE_IND from the CCS provider, followed by a CC_RELEASE_REQ from the CCS user.

The sequence of primitives depends on the origin of the release action. The sequence may be:

1. invoked by one CCS user, with a request from that CCS user, leading to interaction (A) with
that CCS user and interaction (B) with the peer CCS user;

2. invoked by both CCS users, with a request from each of the CCS users, leading to interaction
(A) with both CCS users;

3. invoked by the CCS provider, leading to interaction (B) with both CCS users;

4. invoked independently by on CCS user and the CCS provider, leading to interaction (A) with
the originating CCS user and (B) with the peer CCS user.

46 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

User primitives for the Release Service

e CC_RELEASE_REQ: This primitive request that the CCS provider release the call.

e CC_RELEASE_RES: This primitive indicates to the CCS provider that the CCS user has accepted
a release indication.

Provider primitives for the Release Service

e CC_RELEASE_IND: This primitive indicates to the CCS user that the call has been released.

e CC_RELEASE_CON: This primitive indicates to the CCS user that the release request has been
confirmed.

The sequence of primitives as shown in Figure 3.40, Figure 3.41, Figure 3.42, and Figure 3.43, may
remain incomplete if a CC_RESET primitive occurs.

A CCS user can release a call establishment attempt by issuing a CC_RELEASE_REQ. The sequence
of events is shown in Figure 3.40, Figure 3.41, Figure 3.42, and Figure 3.43.

-

CC_RELEASE_REQ
\ REL
= \

CC_RELEASE_IND

CC_RELEASE_RES

/ Tt TTTToo
~
~

CC_RELEASE_CON "8 CC_OK_ACK

Figure 3.40: Sequence of Primitives: CCS User Invoked Release
N

CC_RELEASE_REQ \ / CC_RELEASE_REQ

CC_RELEASE_CON -7 >~ CC_RELEASE_CON

Figure 3.41: Sequence of Primitives: Simultaneous CCS User Invoked Release
N

2014-10-25 47

Chapter 3: CCI Services Definition

(7

CC_CALL_FAILURE_IND CC_RELEASE_IND

CC_RELEASE_RES
RLC /

~
~

N\ CC_OK_ACK

Figure 3.42: Sequence of Primitives: CCS Provider Invoked Release
= J

()

CC_RELEASE_REQ a---""

CC_CALL_FAILURE_IND
CC_RELEASE_IND T

Figure 3.43: Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked Release
N

3.3.6 Circuit Management Services

3.3.6.1 Reset Service

The reset service is used by the CCS user or management to resynchronize the use of the call, or by
the CCS provider to report detected loss of a unrecoverable call.

The reset service is only applicable to the NNI.

The reset procedure invokes the following interactions:
A. a CC_RESET_REQ from the CCS user, followed by a CC_RESET_CON from the CCS provider; or
B. a CC_RESET_IND from the CCS provider, followed by a CC_RESET_RES from the CCS user.

The complete sequence of primitives depends upon the origin of the reset action. The reset service
may be:

1. invoked by one CCS user, leading to interaction (A) with that CCS user and interaction (B)
with the peer CCS user.

2. invoked by both CCS users, leading to interaction (A) with both CCS users;
3. invoked by the CCS provider, leading to interaction (B) with both CCS users;

4. invoked by one CCS user and the CCS provider, leading to interaction (A) with the originating
CCS user and (B) with the peer CCS user.

User Primitives for Reset Service

e CC_RESET_REQ: This primitive requests that the CCS provider reset the specified call control
address (circuit or circuit group).

48 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CCI Services Definition

e CC_RESET_RES: This primitive indicates to the CCS provider that the CCS user has accepted
a reset indication and has performed local reset of the specified call control address (circuit or
circuit group).!

Provider Primitives for Reset Service

e CC_RESET_IND: This primitive indicates to the CCS user that the user should reset the specified
call control address (circuit or circuit group).

e CC_RESET_CON: This primitive indicates to the CCS user that the specified call control address
(circuit or circuit group) has been successfully reset by the peer.

The sequence of primitives are shown in Figure 3.44, Figure 3.45, Figure 3.46, and Figure 3.47.

N

CC_RESET_REQ \

CC_RESET_CON

e

RSC/GRS

RLC/GRA

N

CC_RESET_IND

CC_RESET_RES

-

~
~

"8 CC_OK_ACK

Figure 3.44: Sequence of Primitives: CCS User Invoked Reset

2

-

-

CC_RESET_REQ

CC_RESET_CON

N

e

~._ RSC/GRS _ -~

N

/ CC_RESET_REQ

N

CC_RESET_CON

Figure 3.45: Sequence of Primitives: Simultaneous CCS User Invoked Reset

I Note that the CC_RESET_RES primitive is not required and is only provided for completeness. The CCS

provider is allowed to acknowledge the reset request to the peer CCS user upon receipt of the necessary
protocol messages. This permits automatic completion of the reset service at the receiving CCS provider

without he presence or involvement of a management entity associated with the receiving provider.
2 Note that in Figure 3.44 additional primitives may be issued by the CCS provider to a CCS call control user

if a CCS call control user is engaged in a call.

2014-10-25

49

Chapter 3: CCI Services Definition

P N

CC_RESET_IND CC_RESET_IND

CC_RESET_RES CC_RESET_RES
\ RLC /
- ___Re

- ~
- ~

CC_OK_ACK * N\ CC_OK_ACK

Figure 3.46: Sequence of Primitives: CCS Provider Invoked Reset
o

4

-

CC_RESET_REQ \
Ts~._ mc _.-"~ \

- CC_RESET_IND
TS~~__RC_.-"" CC_RESET_RES

N
N
/ \\

CC_RESET_CON CC_OK_ACK

Figure 3.47: Sequence of Primitives: Simultaneous CCS user and CCS Provider Invoked Reset
N

5

3.3.6.2 Blocking Service

The blocking service is used by the CCS user or management to effect local maintenance or hardware
blocking on circuits, or by the CCS provider to indicate to CCS user or management the remote
maintenance or hardware blocking of circuits.

The blocking service is only applicable to the NNI.

The blocking service provides for the local and remote blocking of call control addresses (signalling
interface and circuit or circuit group) either for maintenance oriented or hardware failure purposes.
Blocking should only be invoked from streams that are listening on a circuit group that includes
the circuits for which blocking is requested, or the CC_DEFAULT_LISTENER. Maintenance blocking

3 Note that in Figure 3.45 additional primitives may be issued by the CCS provider to a CCS call control user
if a CCS call control user is engaged in a call.

4 Note that in Figure 3.46 additional primitives may be issued by the CCS provider to a CCS call control user
if a CCS call control user is engaged in a call.

5 Note that in Figure 3.47 additional primitives may be issued by the CCS provider to a CCS call control user
if a CCS call control user is engaged in a call.

50 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

will also only be indicated on streams that are listening on circuit group that includes the circuits
for which blocking is requested, or in the absence of such a stream, the CC_DEFAULT_LISTENER.
When no stream is available to report maintenance blocking indications, the indication should be
responded to by the CCS provider without user or management indication.

User Primitives for Blocking Service

e CC_BLOCKING_REQ: This primitive requests that the specified call control address(es) (signalling
interface and circuit or circuit group) be locally blocked either for maintenance oriented or
hardware failure purposes.

e CC_BLOCKING_RES: This primitive accepts a request and indicates the call control address(es)
(circuit or circuit group) that were remotely blocked for maintenance oriented or hardware
failure purposes.b

Provider Primitives for Blocking Service

e CC_BLOCKING_IND: This primitive indicates that the CCS user has requested that the specified
call control address(es) (signalling interface and circuit or circuit group) be remotely blocked
either for maintenance oriented or hardware failure purposes.

e CC_BLOCKING_CON: This primitive indicates that the remote CCS user has confirmed the speci-
fied call control address(es) (signalling interfaces and circuit or circuit group) as locally blocked
either for maintenance oriented or hardware failure purposes

The sequence of primitives are shown in Figure 3.48.

-

CC_BLOCKING_REQ
\ BLO/CGB

,,,,,,,,,,,,, -1\

CC_BLOCKING_IND

CC_BLOCKING_RES

BLA/CGBA /
/ =TTttt ~

CC_BLOCKING_CON - CC_OK_ACK

Figure 3.48: Sequence of Primitives: Successful Blocking Service
N

3.3.6.3 Unblocking Service

The unblocking service is only applicable to the NNI.

The unblocking service provides for the local and remote unblocking of call control addresses (sig-
nalling interface and circuit or circuit group) either for maintenance oriented or hardware failure
purposes.

Note that the CC_BLOCKING_RES primitive is not required and is only provided for completeness. The CCS
provider is allowed to acknowledge the blocking request to the peer CCS user upon receipt of the necessary
protocol messages. This permits automatic completion of the blocking service at the receiving CCS provider
without he presence or involvement of a management entity associated with the receiving provider.

2014-10-25 o1

Chapter 3: CCI Services Definition

User Primitives for Unblocking Service

e CC_UNBLOCKING_REQ: This primitive requests that the specified call control address(es) (sig-
nalling interfaces and circuit or circuit groups) be locally unblocked either for maintenance
oriented or hardware failure purposes.

e CC_UNBLOCKING_RES: This primitive accepts a request and indicates the call control address(es)
(circuit or circuit group) that were remotely unblocked for maintenance oriented or hardware
failure purposes.”

Provider Primitives for Unblocking Service

e CC_UNBLOCKING_IND: This primitive indicates that the CCS user has requested that the speci-
fied call control address(es) (signalling interface and circuit or circuit group) be remotely blocked
either for maintenance oriented or hardware failure purposes.

e CC_UNBLOCKING_CON: This primitive indicates that the remote CCS user has confirmed the
specified call control address(es) (signalling interfaces and circuit or circuit group) as locally
unblocked either for maintenance oriented or hardware failure purposes.

The sequence of primitives are shown in Figure 3.49.

-

UBL/CGU

,,,,,,,,,,,,, -

CC_UNBLOCKING_REQ \
CC_UNBLOCKING_IND

CC_UNBLOCKING_RES

UBA/CGUA /
/ oo

CC_UNBLOCKING_CON "\ CC_OK_ACK

Figure 3.49: Sequence of Primitives: Successful Unblocking Service
N

3.3.6.4 Query Service
The query service is only applicable to the NNI.

The query service provides for the query of the remote state and blocking level of call control
addresses (signalling interface and circuit group).

User Primitives for Query Service

e CC_QUERY_REQ: This primitive request that the specified call control address(es) (signalling
interfaces and circuit group) be queried for remote state and blocking level.

7 Note that the CC_UNBLOCKING_RES primitive is not required and is only provided for completeness. The
CCS provider is allowed to acknowledge the unblocking request to the peer CCS user upon receipt of the
necessary protocol messages. This permits automatic completion of the unblocking service at the receiving
CCS provider without he presence or involvement of a management entity associated with the receiving
provider.

52 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Services Definition

e CC_QUERY_RES: This primitive accepts a request and indicates the local state and blocking level
for the previously requested specified call control addresses (circuit group).®

Provider Primitives for Query Service
e CC_QUERY_IND: This primitive indicates that the CCS user has requested that the local state
and blocking level for the call control address(es) (signalling interface and circuit group).

e CC_QUERY_CON: This primitive indicates that the remote CCS user has confirmed the specified
call control addresses (signalling interface and circuit group) and has returned the remote state
and blocking level for each address.

The sequence of primitives are shown in Figure 3.50.

-

DL_ESTABLISH_CON

| e

\ DISCONNECT
************* = \

CC_TIMEOUT_IND

CC_DISCONNECT_REQ

CC_DISCONNECT_IND

Figure 3.50: Sequence of Primitives: Successful Query Service
N

8 Note that the CC_QUERY_RES primitive is not required and is only provided for completeness. The CCS
provider is allowed to acknowledge the query request to the peer CCS user upon receipt of the necessary
protocol messages. This permits automatic completion of the query service at the receiving CCS provider
without he presence or involvement of a management entity associated with the receiving provider.

2014-10-25 93

Call Control Interface (CCI) CCI Primitives

4 CCI Primitives

This section describes the format and parameters of the CCI primitives (Appendix A [Mapping of
CCI Primitives to Q.931], page 267 and Appendix B [Mapping of CCI Primitives to Q.764], page 269.
shows the mapping of CCI primitives of the primitives defined in Q.931 and Q.764). In addition, it
discusses the states the primitive is valid in, the resulting state, and the acknowledgement that the
primitive expects. (The state/event tables for these primitives are shown in Appendix C [State/Event
Tables], page 271. The precedence tables for the CCI primitives are shown in Appendix D [Primitive
Precedence Tables], page 273.) Rules for ITU-T conformance are described in [Addendum for Q.931
Conformance], page 191 and [Addendum for Q.764 Conformance], page 219 to this document.

Tables 5, 6, and 7 provide a summary of the CCS primitives and their parameters.

2014-10-25 %)

Chapter 4: CCI Primitives

4.1 Management Primitives

These primitives apply to UNT (User and Network) and NNT.

4.1.1 Call Control Information Request

CC_INFO_REQ

This primitive request the CCS provider to return the values of all supported protocol parameters
(see under CC_INFO_ACK), and also the current state of the CCS provider (as defined in Appendix C
[State/Event Tables], page 271). This primitive does not affect the state of the CCS provider and
does not appear in the state tables.

Format

The format of the message is one M_PCPROTO message block and its structure is as follows:

typedef struct CC_info_req {
ulong cc_primitive; /* always CC_INFO_REQ */
} CC_info_req_t;

Parameters
cc_primitive

Indicates the primitive type.
Valid States

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Acknowledgements

This primitive requires the CCS provider to generate one of the following acknowledgements upon
receipt of the primitive:

— Successful: Acknowledgement of the primitive via the CC_INFO_ACK primitive.

— Non-fatal errors: There are no errors associated with the issuance of this primitive.

56 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.1.2 Call Control Information Acknowledgement

CC_INFO_ACK

This primitive indicates to the CCS user any relevant protocol-dependent parameters. It should be
initiated in response to the CC_INFO_REQ primitive described above.

Format

The format of this message is one M_PCPROTO message block and its structure is as follows:

typedef struct CC_info_ack {
ulong cc_primitive; /* always CC_INFO_ACK */
/* FIXME ... more ... */

} CC_info_ack_t;

Parameters
The above fields have the following meaning:

cc_primitive
Indicates the primitive type.

Flags

Valid States

This primitive is valid in any state in response to a CC_INFO_REQ primitive.

New State

The state remains the same.

2014-10-25 o7

Chapter 4: CCI Primitives

4.1.3 Protocol Address Request

CC_ADDR_REQ

This primitive requests that the CCS provider return information concerning the call control ad-
dresses upon which the CCS user is bound or engage in a call.
The format of the message is one M_PROTO message block and its structure is as follows:

typedef struct CC_addr_req {
ulong cc_primitive; /* always CC_ADDR_REQ */
ulong cc_call_ref; /* call reference */

} CC_addr_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference for which to obtain the connected address.

Valid States

This primitive is valid in any state.

New State
The new state is CCS_WACK_AREQ.

Rules

e If the call reference is specified as zero (0), then no connected address information will be
returned in the CC_ADDR_ACK.

Acknowledgements

The CCS provider will generate on of the following acknowledgements upon receipt of the CC_ADDR_
REQ primitive:
— Successful: Correct acknowledgement of the primitive is indicated via the CC_ADDR_ACK primi-
tive.
— Unsuccessful (Non-fatal errors): These errors will be indicated via the CC_ERROR_ACK primitive.
The applicable non-fatal errors are as follows:

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

58 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

4.1.4 Protocol Address Acknowledgement

CC_ADDR_ACK

CCI Primitives

This primitive acknowledges the corresponding request primitive and is used by the CCS provider

to return information concerning the bound and connected protocol addresses for the stream.
The format of the message is one M_PROTO message block and its structure is as follows:

typedef struct CC_addr_ack {

ulong cc_primitive; /* always CC_ADDR_ACK */

ulong cc_bind_length; /* length of bound address */
ulong cc_bind_offset; /* offset of bound address */
ulong cc_call_ref; /* call reference */

ulong cc_conn_length; /* length of connected address */
ulong cc_conn_offset; /% offset of connected address */

} CC_addr_ack_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_bind_length
Indicates the length of the bound call control address.

cc_bind_offset
Indicates the offset of the bound call control address.

cc_call_ref Indicates the call reference for the connected call control address.

cc_conn_length
Indicates the length of the connected call control address.

cc_conn_offset
Indicates the offset of the connected call control address.

Valid State
This primitive is valid in state CC_WACK_AREQ.

New State
The new state is the state previous to the CC_ADDR_REQ.

Rules

e If the requesting stream is not bound to a call control address, the CCS provider will code the
cc_bind_length and cc_bind_offset fields to zero. Otherwise, the CCS provider will return the

same call control address that was returned in the CC_BIND_ACK.

o If the requesting stream is not connected to a call, the CCS provider will code the cc_conn_length
and cc_conn_offset fields to zero. Otherwise, the CCS provider will indicate the call control

address (circuit) upon which the call is connected.

2014-10-25

99

Chapter 4: CCI Primitives

4.1.5 Bind Protocol Address Request

CC_BIND_REQ

This primitive requests that the CCS provider bind a CCS user entity to a call control address
(circuit, circuit group) and negotiate the number of setup indications allowed to be outstanding by
the CCS provider for the specified CCS user entity being bound.

Format

The format of the message is one M_PROTO message block and its structure is as follows:
typedef struct CC_bind_req {

ulong cc_primitive; /* always CC_BIND_REQ */

ulong cc_addr_length; /* length of address */

ulong cc_addr_offset; /* offset of address */

ulong cc_setup_ind; /* req # of setup inds to be queued */
ulong cc_bind_flags; /* bind options flags */

} CC_bind_req_t;
/* Flags associated with CC_BIND_REQ */

#define CC_DEFAULT_LISTENER 0x000000001UL

#define CC_TOKEN_REQUEST 0x000000002UL

#define CC_MANAGEMENT 0x000000004UL

#define CC_TEST 0x000000008UL

#define CC_MAINTENANCE 0x000000010UL

#define CC_MONITOR 0x000000020UL
Parameters

cc_primitive
Is the primitive type.

cc_addr_length
Is the length in bytes of the call control (circuit, circuit group) address to be bound to
the stream.

cc_addr_offset
Is the offset from the beginning of the M_PROTO block where the call control (circuit,
circuit group) address begins.

cc_setup-ind

Is the requested number of setup indications (simultaneous incoming calls) allowed to
be outstanding by the CCS provider for the specified protocol address. (If the number of
outstanding setup indications equals cc_setup_ind, the CCS provider need not discard
further incoming setup indications, but may choose to queue them internally until the
number of outstanding setup indications drops below the cc_setup_ind number.) Ounly
one stream per call control address is allowed to have a cc_setup_ind number value
greater than zero. This indicates to the CCS provider that this stream is the listener
stream for the CCS user. This stream will be used by the CCS provider for setup
indications for that call control address.

if a stream is bound as a listener stream, it is still able to initiate outgoing call setup
requests.

cc_bind_flags
See "Flags" below.

60 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

Flags

CC_DEFAULT_LISTENER

When set, this flag specifies that this stream is the "default listener stream." This
stream is used to pass setup indications (or continuity check requests) for all incoming
calls that contain protocol identifiers that are not bound to any other listener, or when
a listener stream with cc_setup_ind value of greater than zero is not found. Also,
the default listener will receive all incoming call indications that contain no user data
(i-e., test calls) and all maintenance indications (i.e., CC_LMAINT_IND). Only one default
listener stream is allowed per occurrence of CCI. An attempt to bind a default listener
stream when one is already bound should result in an error (of type [CCADDRBUSY]).

CC_TOKEN_REQUEST
When set, this flag specifies to the CCS provider that the CCS user has requested
that a "token" be assigned to the stream (to be used in the call response message),
and the token value be returned to the CCS user via the CC_BIND_ACK primitive. The
token assigned by the CCS provider can then be used by the CCS user in a subsequent
CC_SETUP_RES primitive to identify the stream on which the call is to be established.

CC_MANAGEMENT
When set, this flag specifies to the CCS provider that this stream is to be used for
circuit management indications for the specified addresses.

CC_TEST When set, this flag specifies to the CCS provider that this stream is to be used for
continuity and test call indications for the specified addresses.

CC_MAINTENANCE
When set, this flag specifies to the CCS provider that this stream is to be used for
maintenance indications for the specified addresses.

Valid States
This primitive is valid in state CCS_UNBND (see Appendix C [State/Event Tables|, page 271).

New State
The new state is CCS_WACK_BREQ.

Acknowledgements
The CCS provider will generate one of the following acknowledgements upon receipt of the CC_BIND_
REQ primitive:
— Successful: Correct acknowledgement of the primitive is indicated via the CC_BIND_ACK primi-
tive.
— Non-fatal errors: These errors will be indicated via the CC_ERROR_ACK primitive. The applicable
non-fatal errors are as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADADDR]
The call control address was in an incorrect format or the address contained illegal
information. It is not intended to indicate protocol errors.

2014-10-25 61

Chapter 4: CCI Primitives

62

[CCNOADDR]
The CCS user did not provide a call control address and the CCS provider could
not allocate an address to the user.

[CCADDRBUSY]
The CCS user attempted to bind a second stream to a call control address with
the cc_setup-ind number set to a non-zero value, or attempted to bind a second
stream with the CC_DEFAULT_LISTENER flag value set to non-zero.

[CCBADFLAG]
The flags were invalid or unsupported, or the combination of flags was invalid. This
error is returned if more than one of CC_TEST, CC_MANAGEMENT, or CC_MAINTENANCE
flags are set.

[CCBADPRIM]
The primitive format was incorrect (i.e. too short).

[CCACCESS]
The user did not have proper permissions.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.1.6 Bind Protocol Address Acknowledgement

CC_BIND_ACK

This primitive indicates to the CCS user that the specified call control user entity has been bound to
the requested call control address and that the specified number of connect indications are allowed
to be queued by the CCS provider for the specified network address.

Format

The format of the message is one M_PCPROTO message block, and its structure is the following:
typedef struct CC_bind_ack {

ulong cc_primitive; /* always CC_BIND_ACK */
ulong cc_addr_length; /* length of address */
ulong cc_addr_offset; /* offset of address */
ulong cc_setup_ind; /* setup indications */
ulong cc_token_value; /* setup response token value */

} CC_bind_ack_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_addr_length
Is the length of the call control address that was bound.

cc_addr_offset
Is the offset from the beginning of the M_PCPROTO block where the call control address
begins.

cc_setup_ind
Is the accepted number of setup indications allowed to be outstanding by the CCS
provider for the specified call control address. If its value is zero, this stream cannot
accept CC_SETUP_IND messages. If its value is greater than zero, then the CCS user
can accept CC_SETUP_IND messages up to the value specified in this parameter before
having to respond with a CC_SETUP_RES or a CC_DISCONNECT_REQ message.

cc_token_value
Conveys the value of the "token" assigned to this stream that can be used by the CCS
user in a CC_SETUP_RES primitive to accept a call on this stream. It is a non-zero value,
and is unique to all streams bound to the CCS provider.

The proper alignment of the address in the M_PCPROTO message block is not guaranteed.

Rules
The following rules apply to the binding of the specified call control address to the stream:

e If the cc_addr_length field in the CC_BIND_REQ primitive is zero, then the CCS provider is to
assign a call control address to the user.

e The CCS provider is to bind the call control address as specified in the CC_BIND_REQ primitive.
If the CCS provider cannot bind the specified address, it may assign another call control address
to the user. It is the call control user’s responsibility to check the call control address returned
in the CC_BIND_ACK primitive to see if it is the same as the one requested.

2014-10-25 63

Chapter 4: CCI Primitives

The following rules apply to negotiating cc_setup_ind argument:

The cc_setup_ind number in the CC_BIND_ACK primitive must be less than or equal to the
corresponding requested number as indicated in the CC_BIND_REQ primitive.

Only one stream that is bound to the indicated call control address may have a negotiated
accepted number of maximum setup indications greater than zero. If a CC_BIND_REQ primitive
specifies a value greater than zero, but another stream has already bound itself to the given
call control address with a value greater than zero, the CCS provider should assign another
protocol address to the user.

If a stream with cc_setup_ind number greater than zero is used to accept a call, the stream will
be found busy during the duration of that call and no other streams may be bound to that call
control address with a cc_setup_ind number greater than zero. This will prevent more than one
stream bound to the identical call control address from accepting setup indications.

A stream requesting a cc_setup_ind number of zero should always be legal. This indicates to
the CCS provider that the stream is to be used to request call setup only.

A stream with a negotiated cc_setup_ind number greater than zero may generate setup requests
or accept setup indications.

If the above rules result in an error condition, then the CCS provider must issue a CC_ERROR_ACK
primitive to the CCS user specifying the error as defined in the description of the CC_BIND_REQ
primitive.

Valid States
This primitive is in response to a CC_BIND_REQ primitive and is valid in the state CCS_WACK_BREQ.

New State
The new state is CCS_IDLE.

64

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.1.7 Unbind Protocol Address Request

CC_UNBIND_REQ

This primitive request that the CCS provider unbind the CCS user entity that was previously bound
to the call control address.

Format

The format of the message is one M_PROTO block, and its structure is as follows:

typedef struct CC_unbind_req {
ulong cc_primitive; /* always CC_UNBIND_REQ */
} CC_unbind_req_t;

Parameters

cc_primitive
Indicates the primitive type.

Valid States
This primitive is valid in the CCS_IDLE state.

New State
The new state is CCS_WACK_UREQ.

Acknowledgements

This primitive requires the CCS provider to generate the following acknowledgements upon receipt
of the primitive:
— Successful: Correct acknowledgement of the primitive is indicated via the CC_OK_ACK primitive.
— Unsuccessful (Non-fatal errors): These errors will be indicated via the CC_LERROR_ACK primitive.
The applicable non-fatal errors are as follows:

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCSYSERR]
A system error has occurred and the UNIX system error is indicated in the prim-
itive.

2014-10-25 65

Chapter 4: CCI Primitives

4.1.8 Call Processing Options Management Request

CC_.OPTMGMT_REQ

This primitive allows the CCS user to manage the call processing parameter values associated with
the stream.

Format

The format of the message is one M_PROTO message block, and its structure is as follows:
typedef struct CC_optmgmt_req {

ulong cc_primitive; /* always CC_OPTMGMT_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* length of option values */
ulong cc_opt_offset; /* offset of option values */
ulong cc_opt_flags; /* option flags */

} CC_optmgmt_req_t;

Parameters
cc_primitive
Specifies the primitive type.
cc_call_ref Specifies the call reference for which to manage options.

cc_opt_length
Specifies the length of the default values of the options parameters as selected by the
CCS user. These values will be used in subsequent CC_SETUP_REQ primitives on the
stream that do not specify values for these options. If the CCS user cannot determine
the value of an option, it value should be set to CC_UNKNOWN. If the CCS user does
not specify any option paramter values, the length of this field should be set to zero.

cc_opt_offset
Specifies the offset of the options parameters from the beginning of the M_PROTO message
block.

cc_opt_flags
See "Flags" below.

Flags

Valid States
This primitive is valid in the CCS_IDLE state.

New State
The new state is CCS_WACK_OPTREQ.

Acknowledgements

The CC_OPTMGMT_REQ primitive requires the CCS provider to generate one of the following acknowl-
edgements upon receipt of the primitive:

— Successful: Acknowledgement is via the CC_OK_ACK primitive. At successful completions, the
resulting state is CCS_IDLE.

66 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

— Non-fatal errors: These errors are indicated in the CC_ERROR_ACK primitive. The resulting
state remains unchanged. The applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error has occurred and the UNIX system error is indicated in the prim-
itive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADOPT]

The option parameter values specified are outside the range supported by the CCS
provider.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADFLAG]
The flags were invalid or unsupported, or the combination of flags was invalid.

[CCBADPRIM]
The primitive format was incorrect (i.e. too short).

[CCACCESS]
The user did not have proper permissions.

2014-10-25 67

Chapter 4: CCI Primitives

4.1.9 Call Processing Options Management Acknowledgement

CC_OPTMGMT_ACK

This primitive allows the CCS user to manage the call processing parameter values associated with

the stream.

Format

The format of the message is one M_PCPROTO message block, and it structure is as follows:

typedef struct CC_optmgmt_ack {

ulong cc_primitive;

ulong cc_call_ref;

ulong cc_opt_length;

ulong cc_opt_offset;

ulong cc_opt_flags;
} CC_optmgmt_ack_t;

Parameters
Flags

Valid States

This primitive is valid in any state.

New State

The new state is unchanged.

Acknowledgements

68

/*
/*
/*
/*
/*

always CC_OPTMGMT_ACK */
call reference */

length of option values */
offset of option values */
option flags */

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.1.10 Error Acknowledgement

CC_ERROR_ACK

This primitive indicates to the CCS user that a non-fatal error has occurred in the last CCS user
originated primitive. This may only be initiated as an acknowledgement for those primitives that
require one. It also indicates to the user that no action was taken on the primitive that caused the
error.

Format

The format of the mssage is one M_PCPROTO message block, and its structure is as follows:
typedef struct CC_error_ack {

ulong cc_primitive; /* always CC_ERROR_ACK */
ulong cc_error_primitive; /* primitive in error */
ulong cc_error_type; /* CCI error code */

ulong cc_unix_error; /* UNIX system error code */
ulong cc_state; /* current state */

ulong cc_call_ref; /* call reference */

} CC_error_ack_t;

Parameters

cc_primitive
Identifies the primitive type.

cc_error_primitive
Identifies the primitive type that cause the error.

cc_error_type
Contains the Call Control Interface error code.

cc_unix_error
Contains the UNIX system error code. This may only be non-zero if the cc_error_type
is equal to [CCSYSERR].

cc_state Identifies the state of the interface at the time that the CC_ERROR_ACK primitive was
issued by the CCS provider.

cc_call_ref Identifies the CCS provider or CCS user call reference associated with the request or
response primitive that was in error. If no call reference is associated with the request
or response primitive that caused the error, this field is coded zero (0) by the CCS
provider.

Valid Error Codes
The following error codes are allows to be returned:

[CCSYSERR]
A system error has occurred and the UNIX system error is indicated in the primitive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADADDR]
The call control address as specified in the primitive was in an incorrect format, or the
address contained illegal information.

2014-10-25 69

Chapter 4: CCI Primitives

[CCBADDIGS]
The digits provided in the called party number or subsequent number specified in the
primitive are of an incorrect format or are invalid.

[CCBADOPT]
The options values as specified in the primitive were in an incorrect format, or they

contained illegal information.

[CCNOADDR]
The CCS provider could not allocate an address.

[CCADDRBUSY]
The CCS provider could not use the specified address because the specified address is

already in use.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADTOK]
Token used is not associated with an open stream.

[CCBADFLAG]
The flags specified in the primitive were incorrect or illegal.

[CCNOTSUPP]
Specified primitive type is not known to the CCS provider.

[CCBADPRIM]
The primitive was of an incorrect format (i.e. too small, or an offset it out of range).

[CCACCESS]
The user did not have proper permissions.

Valid States

This primitive is valid in all states that have a pending acknowledgement or confirmation.

New State

The new state is the same as the one from which the acknowledged request or response was issued.

70 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.1.11 Successful Receipt Acknowledgements

CC_OK_ACK

The primitive indicates to the CCS user that the previous call control user originated primitive was
received successfully by the call control provider. It does not indicate to the CCS user any call
control protocol action taken due to the issuance of the last primitive. The CC_OK_ACK primitive
may only be initiated as an acknowledgement for those user-originated primitives that have no other
means of confirmation.

Format

The format of the message is one M_PCPROTO message block, and its structure is as follows:
typedef struct CC_ok_ack {

ulong cc_primitive; /* always CC_OK_ACK */

ulong cc_correct_prim; /* primitive being acknowledged */
ulong cc_state; /* current state */

ulong cc_call_ref; /* call reference */

} CC_ok_ack_t;

Parameters
cc_primitive
Identifies the primitive.

cc_correct_prim
Identifies the successfully received primitive type.

cc_state Identifies the state of the interface at the time that the CC_OK_ACK primitive was issued
by the CCS provider.

cc_call_ref Identifies the CCS provider or CCS user call reference associated with the request or
response primitive that was in error. If no call reference is associated with the request
or response primitive that caused the error, this field is coded zero (0) by the CCS
provider.

Valid States
This primitive is issued in states CCS_WACK_UREQ and CCS_WACK_OPTREQ.

New State

The resulting state depends on the current state (see Appendix C [State/Event Tables|, page 271,
Tables B-7 and B-8.).

2014-10-25 71

Chapter 4: CCI Primitives

4.2 Primitive Format and Rules

This section describes the format of the UNT (User and Newtork) and NNT primitives and the rules
associated with these primitives. The default values of the options parameters associated with a call
may be selected via the CC_OPTMGMT_REQ primitive.

4.2.1 Call Setup Phase
The following call control service primitives pertain to the setup of a call, provided the CCS users

exist, and are known to the CCS provider.

4.2.1.1 Call Control Setup Request

CC_SETUP_REQ
This primitive requests that the CCS provider make a call to the specified destination.

Format

The format of the message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_setup_req {

ulong cc_primitive; /* always CC_SETUP_REQ */

ulong cc_user_ref; /* user call reference */

ulong cc_call_type; /* call type */

ulong cc_call_flags; /* call flags */

ulong cc_cdpn_length; /* called party number length */
ulong cc_cdpn_offset; /* called party number offset */
ulong cc_opt_length; /* optional parameters length */
ulong cc_opt_offset; /* optional parameters offset */
ulong cc_addr_length; /* connect to address length */
ulong cc_addr_offset; /* connect to address offset */

} CC_setup_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_user_ref Specifies a reference number known to the CCS user that uniquely identifies the current
setup request. When this value is non-zero, it permits the CCS User to have multi-
ple outstanding setup requests pending on the same stream. Responses made by the
CCS provider to the CC_SETUP_REQ primitive will contain this CCS user call attempt
reference.

cc_call_type
Specifies the type of call to be set up. Call types supported are dependent upon the
CCS provider and protocol, see the addendum for call types for specific protocols.

cc_call_flags
Specifies a bit field of call options. Call flags supported are depeddent upon the CCS
provider and protocol, see the addendum for call flags for specific protocols.

cc_cdpn_length
Specifies the length of the called party number parameter that conveys an address
identifying the CCS user to which the call is to be established. This field will accom-

72 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

modate variable length numbers within a range supported by the CCS provider. If no
called party address is provided by the CCS user, this field must be coded to zero. The
coding of the called party number is protocol and provider-specific.

cc_cdpn_offset
Is the offset of the called party number from the beginning of the M_PROTO message
block.

cc_opt_length
Specifies the length of optional parameters to be conveyed in the call setup. This
field will accomodate variable length addresses within a range supported by the CCS
provider. If no optional parameters are provided by the CCS user, this field must be
coded to zero. The format of optional parameters are protocol and provider-specific,
see the addendum for the format of optional parameters for specific protocols.

cc_opt_offset
Specifies the offset of the optional parameters from the beginning of the M_PROTO mes-
sage block.

cc_addr_length
Specifies the length of the call control address parameter that conveys the call control
address (circuit, circuit group) of the CCS user entity to which the call is to be estab-
lished. The semantics of the values in the CC_SETUP_REQ is identical to the values in
the CC_BIND_REQR.

cc_addr_offset
Specifies the offset of the call control address from the beginning of the M_PROTO message
block.

Rules
The following rules apply to the setup of calls to the specified addresses:

o If the cc_cdpn_length field in the CC_SETUP_REQ primitive is zero, then the CCS provider is
to select a called party number for the call. If the CCS provider cannot select a called party
number for the call, the CCS provider responds with a CC_ERROR_ACK primitive with error
[CCNOADDR].

e If the cc_cdpn_length field in the CC_SETUP_REQ primitive is non-zero, the CCS provider is
to setup the call to the specified number. If the CCS provider cannot setup a call of the
specified call type to the specified number the call will fail and the CCS provider will return a
CC_ERROR_ACK with the appropriate error value (e.g., [CCBADADDR]).

The following rules apply to the call control addresses (trunk groups and circuit identifiers):

o If the CCS user does not specify a call control address (i.e. cc_addr_length is set to zero), then
the CCS provider may attempt to assign a call control address, assign it a call reference and
associate it with the stream for the duration of the call.

The following rules apply to the CCS user call attempt reference:

e If the CCS user does not specify a call attempt reference (i.e. the cc_user_ref is set to zero),
then the CCS provider can only support one outstanding outgoing call attempt for the stream.
If the CCS user specifies a call attempt reference, all replies made by the CCS provider to this
CC_SETUP_REQ primitive will contain the CCS user specified call attempt reference until either
the call fails or is released, or after the CCS provider sends a CC_SETUP_CON primitive.

2014-10-25 73

Chapter 4: CCI Primitives

Valid States
This primitive is valid in state CCS_IDLE.

New State

The new state depends upon the information provided in the CC_SETUP_REQ message as follows:

e If the setup request specifies that a continuity check was performed on a previous circuit, the

new state is CCS_WREQ_CCREP (awaiting report of the result of continuity test performed on the
previous circuit).

If the setup request specifies that a continuity check is required on the circuit, the new state is
CCS_WIND_CTEST (awaiting indication of remote loop back on the circuit).

If the setup request specifies that no continuity test is required on this or a previous circuit
and that the called party address contains partial information, the new state is CCS_WIND_MORE
(awaiting the indication that more information is required).

If the setup request specifies that no continuity test is required on this or a previous circuit and

that the called party address contains complete information, the new state is CCS_WCON_SREQ
(awaiting confirmation of the setup request).

Acknowledgements

The following acknowledgements are valid for this primitive:
— Successful Call Establishment: This is indicated via the CC_SETUP_CON primitive. This results

74

in the Call Establishment state. For CC_SETUP_REQ primitives where ISUP_NCI_CONT_CHECK_
REQUIRED is set, or where the CCS provider otherwise determines that a continuity check
is required on the circuit, success is still indicated via the CC_SETUP_CON primitive. In this
case, the CC_SETUP_CON primitive is not sent by the CCS provider unless the continuity check
is successful. For CCS_SETUP primitives where ISUP_NCI_CONT_CHECK_PREVIOQUS is set, the
CC_SETUP_CON primitive is not sent by the CCS provider until the CCS user sends a CC_
CONT_REPORT_REQ primitive indicating that continuity check on the previous circuit has been
successful. Receipt of the CC_SETUP_CON primitive always results in the Call Establishment
state.

Unsuccessful Call Establishment: This is indicated via the CC_CALL_REATTEMPT_IND, CC_CALL_
FAILURE_IND, or CC_RELEASE_IND primitives. For example, a call may be rejected because
either the called CCS user cannot be reached, or the CCS provider and/or the called CCS
user did not agree on the specified call type or options. This results in the Idle state. Where
the CC_CALL_REATTEMPT_IND or CC_RELEASE_IND primitives are sent before the CC_SETUP_CON
primitive, the CC_CALL_REATTEMPT_IND or CC_RELEASE_IND primitives will contain the CCS
user specified call attempt reference.

Non-fatal errors: These are indicated via the CC_ERROR_ACK primitive. The applicable non-fatal
errors are defined as follows:

[CCSYSERR]
A system error has occurred and the UNIX system eror is indicated in the primi-
tive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADADDR]
The call control address as specified in the primitive was in an incorrect format,
or the address contained illegal information.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

[CCBADDIGS]
The called party number was in the incorrect format, or contained illegal in-
formation. This is used only to handle coding errors of the number and is not
intended to provide for protocol errors. Protocol errors should be conveyed in the
CC_CALL_REATTEMPT_IND, CC_CALL_FAILURE_IND or CC_RELEASE_IND primitives.

[CCBADOPT]
The optional parameters were in an incorrect format, or contained illegal infor-
mation.

[CCNOADDR]
The user did not provide a called party address field and one was required by the
call type. The CCS provider could not select a called party address.

[CCADDRBUSY]
The CCS provider could not use the specified address because the specified address
is already in use.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal (not unique).

[CCBADPRIM]
The primitive was of an incorrect format (i.e. too small, or an offset it out of
range).

[CCACCESS]
The user did not have proper permissions for the use of the requested address or
options.

2014-10-25 (0]

Chapter 4: CCI Primitives

4.2.1.2 Call Control Setup Indication

CC_SETUP_IND

This primitive indicates to the destination CCS user that a call setup request has been made by the
user at the specified source address.

Format

The format of the message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_setup_ind {

ulong cc_primitive; /* always CC_SETUP_IND */

ulong cc_call_ref; /* call reference */

ulong cc_call_type; /* call type */

ulong cc_call_flags; /* call flags */

ulong cc_cdpn_length; /* called party number length */
ulong cc_cdpn_offset; /* called party number offset */
ulong cc_opt_length; /* optional parameters length */
ulong cc_opt_offset; /* optional parameters offset */
ulong cc_addr_length; /* connecting address length */
ulong cc_addr_offset; /* connecting address offset */

} CC_setup_ind_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Identifies the call reference that can be used by the CCS user to associate this message
with the CC_SETUP_RES or CC_RELEASE_REQ primitive that is to follow. This value
must be unique among the outstanding CC_SETUP_IND messages.

cc_call_type
Indicates the type of call to be set up. Call types supported are dependent upon the
CCS provider and protocol, see the addendum for call types for specific protocols.

cc_call_flags
Indicates a bit field of call options. Call flags supported are dependent upon the CCS
provider and protocol, see the addendum for call flags for specific protocols.

cc_cdpn_length
Indicates the length of the called party number address parameter that conveys an
address identifying the CCS user to which the call is to be established. This field will
accommodate variable length addresses within a range supported by the CCS provider.

cc_cdpn_offset
Is the offset of the called party number address from the beginning of the M_PROTO
message block.

cc_opt_length
Indicates the length of the optional parameters that were used in the call setup.

cc_opt_offset
Indicates the offset of the optional parameters from the beginning of the M_PROTO
message block.

76 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

cc_addr_length
Indicates the length of the connecting address parameter that conveys the call control
address the CCS user entity (circuit) on which the call is being established. The
semantics of the values in the CC_SETUP_IND is identical to the values in the CC_BIND_
ACK.

cc_addr_offset
Indicates the offset of the connecting address from the beginning of the M_PROTO mes-
sage block.

Valid States

This primitive is valid in state CCS_IDLE for the indicated call reference.

New State
The new state depends upon the information provided in the CC_SETUP_IND message as follows:
e If the setup indication indicates that a continuity check was performed on a previous circuit,
the new state is CCS_WIND_CCREP (awaiting the report of continuity test results).
e If the setup indication indicates that a continuity check is required on the circuit, the new state
is CCS_WREQ_CTEST (awaiting confirmation of installation of loop back device on the circuit).

e If the setup indication indicates that no continuity tests are required on this or a previous circuit
and that the called party number contains partial information, the new state is CCS_WREQ_MORE
(awaiting the request for more information to confirm the partial address).

e If the setup indication indicates that no continuity tests are required on this or a previous
circuit and that the called party number contains complete information, the new state is CCS_
WRES_SIND (awaiting response to the setup indication).

In any event, the number of outstanding setup indications waiting for user response is incremented
by one.

Rules
The rules for issuing the CC_SETUP_IND primitive are as follows:

e This primitive will only be issued to streams that have been bound with a non-zero negotiated
maximum number of setup indications (i.e. on a listening stream), and where the number
of outstanding setup indications (call references) for the stream is less than the negotiated
maximum number of setup indications.

e If the call setup indicated is for a normal call, the stream upon which it is indicated was not
bound with the CC_TEST, CC_MANAGEMENT or CC_MAINTENANCE flags set.

o If the call setup indicated is for an ISUP test call, the stream upon which it is indicated
was bound with the CC_TEST flag set and a non-zero number of negotiated maximum setup
indications.

2014-10-25 7

Chapter 4: CCI Primitives

4.2.1.3 Call Control Setup Response

CC_SETUP_RES

This primitive allows the destination CCS user to request that the call control provider accept a

previous setu

p indication. This primitive also indicates that overlap receiving is complete. The CCS

use is still expected to complete the setup process by issuing the CCS_PROCEED_REQ, CCS_ALERTING_
REQ, CCS_PROGRESS_REQ, CCS_IBI_REQR, CCS_CONNECT_REQ, or CCS_DISCONNECT_REQ messages.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as

follows:
typede

} CC_s

Parameters

cc_primitive

cc_call_ref

f struct CC_setup_res {
ulong cc_primitive; /* always CC_SETUP_RES */
ulong cc_call_ref; /* call reference */
ulong cc_token_value; /* call response token value */

etup_res_t;

Indicates the primitive type.

Indicates the call reference of the CC_SETUP_RES message. It is used by the CCS
provider to associated the CC_SETUP_RES message with an outstanding CC_SETUP_IND
message. An invalid call reference should result in error with the error type [CCBADCLR].

cc_token_value

Is used to identify the stream that the CCS user wants to establish the call on. (Its
value is determined by the CCS user by issuing a CC_BIND_REQ primitive with the CC_
TOKEN_REQ flag set. The token value is returned in the CC_BIND_ACK.) The value of
this field should be non-zero when the CCS user wants to establish the call on a stream
other than the stream on which the CC_SETUP_IND arrived. If the CCS user wants to
establish a call on the same stream that the CC_SETUP_IND arrived on, then the value
of this field should be zero.

Valid States
This primitive is valid in state CCS_WRES_SIND.

New State

The new stat

e is CCS_WREQ_PROCEED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.
— Unsuccesful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The

applicab

le non-fatal errors are defined as follows:

[CCSYSERR]

78

A system error has occurred and the UNIX system error is indicated in the prim-
itive.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADTOK]
The token specified is not associated with an open stream.

[CCBADPRIM]
The primitive format was incorrect (i.e. too short).

2014-10-25 79

Chapter 4: CCI Primitives

4.2.1.4 Call Control Setup Confirm

CC_SETUP_CON

This primitive indicates to the calling CCS user that the call control setup request has been sent on
the specified call control address (circuit, circuit group). For calls that were requested setup with
the ISUP_NCI_CONT_CHECK_REQUIRED flag set in the CC_SETUP_REQ, or for which the CCS provider
has otherwise decide to perform continuity check, this also confirms that the continuity check was
successful.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_setup_con {

ulong cc_primitive; /* always CC_SETUP_CON */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* connecting address length */
ulong cc_addr_offset; /% connecting address offset */

} CC_setup_con_t;

Parameters

cc_primitive
Indicates the primitives type.

cc_user_ref Indicates the CCS user call attempt reference value which was provided by the CCS
user in the CC_SETUP_REQ message. This permits the CCS user to associate this CC_
SETUP_CON primitive with the previous CC_SETUP_REQ primitive and permits multiple
outstanding CC_SETUP_REQ primitives.

cc_call_ref Indicates the CCS provider assigned call reference. If the CCS user wishes to establish
more than one simultaneous call on a given stream, the CCS user must use this CCS
provider indicated call reference in subsequent call control primitives sent to the CCS
provider. This permits the CCS provider to associate a CCS user primitive with one
of multiple simultaneous calls associated with a given stream.

cc_addr_length
Indicates the length of the connecting address parameter that conveys the call control
address of the CCS user entity (circuit) on which the call is being established. The
semantics of the values in the CC_SETUP_CON is identical to the values in the CC_BIND_
REQ.

cc_addr_offset
Indicates the offset of the connecting address from the beginning of the M_PROTO mes-
sage block.

Valid States

This primitive is valid in state CCS_WCON_SREQ and state CCS_WREQ_CCREP.

New State

The new state depends on whether an end-of-pulsing signal was present in the called party number
in the associated CC_SETUP_REQ primitive. If an ST signal was present, the new state is CCS_

80 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

WREQ_PROCEED, otherwise the new state is CCS_WREQ_MORE. In either case, the call enters the Call
Establishment Phase.

2014-10-25 81

Chapter 4: CCI Primitives

4.2.1.5 Call Control Reattempt Indication

CC_CALL_REATTEMPT_IND

This primitive indicates to the calling CCS user that the selected address (circuit) is unavailable
and that a reattempt should be made on a new call control address (circuit).

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_call_reattempt_ind {

ulong cc_primitive; /* always CC_CALL_REATTEMPT_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_reason; /* reason for reattempt */

} CC_call_reattempt_ind_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_user_ref Indicates the CCS user call attempt reference value which was provided by the CCS
user in the CC_SETUP_REQ message. This permits the CCS user to associate this CC_

CALL_REATTEMPT_IND primitive with the previous CC_SETUP_REQ primitive and permits
multiple outstanding CC_SETUP_REQ primitives.

cc_reason Indicates the cause of the reattempt. the cc_reason field is protocol and implementation
specific. See the Addendum for protocol-specific values.

Valid Modes
This primitive is only valid in NNI mode.

Valid States

This primitive is valid in states CCS_WCON_SREQ, CCS_WREQ_CCREP, CCS_WIND_MORE, CCS_WREQ_INFO
and CCS_WIND_PROCEED.

New State
The new state is CCS_IDLE.

Rules

e The CC_CALL_REATTEMPT_IND indicates that call repeat attempt should be made by the CCS
user, and the reason for the reattempt.

e [f the CC_CALL_REATTEMPT_IND is issued before the CC_SETUP_CON primitive, the user reference
value will be the same value as appeared in the corresponding CC_SETUP_REQ primitive, and
the call reference value will be zero.

o If the CC_CALL_ATTEMPT_IND primitive is issued subsequent to the CC_SETUP_CON prim-
itive, the user reference value will be zero, and the call reference value will be the same as
appeared in the corresponding CC_SETUP_CON primitive.

82 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.2 Continuity Check Phase

The following call control service primitives pertain to the continuity check phase of a call.

4.2.2.1 Call Control Continuity Check Request

CC_CONT_CHECK_REQ

This primitive requests that the CCS provider perform a continuity check procedure.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_check_req {

ulong cc_primitive; /* always CC_CONT_CHECK_REQ */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_cont_check_req_t;
Parameters
cc_primitive
Specifies the primitive type.

cc_addr_length
Specifies the length of the call control address (circuit identifier) upon which the CCS
user is requesting a continuity check.

cc_addr_offset
Specifies the offset of the call control address from the beginning of the M_PROTO message
block.

Rules

The following rules apply to the continuity check of call control addresses (circuit identifiers):

e If the CCS user does not specify a call control address (i.e, cc_addr_length is set to zero), then
the CCS provider may attempt to assign a call control address and associate it with the stream
for the duration of the continuitu test procedure. This can be useful for automated continuity
testing.

Valid Modes

This primitive is only valid in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the selected circuit.

New State
The new state is CKS_WIND_CTEST for the selected address.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

2014-10-25 83

Chapter 4: CCI Primitives

84

— Successful: Successful completion is indicated via the CC_CONT_TEST_IND primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCNOADDR]
The call control address was not provided (cc_addr_length coded zero).
[CCBADADDR]
The call control address contained in the primitive were poorly formatted or con-
tained invalid information.
[CCNOTSUPP]

The primitive is not supported for the UNI interface and a UNI signalling address

was provided in the call control address or the address was issued to a UNI CCS
provider.

[CCACCESS]

The user did not have sufficient permission to perform the operation on the spec-
ified call control addresses.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.2.2 Call Control Continuity Check Indication

CC_CONT_CHECK_IND

This primitive indicates to the CCS user that a continuity check is being requested by the CCS
user peer on the specified call control address(es) (signalling interface and circuit identifiers). Upon
receipt of this primitive, the CCS user should establish a loop back device on the specified channel
and issues the CC_CONT_TEST_REQ primitive confirming the loop back. The CCS user should then
wait for the CC_CONT_REPORT_IND indicating the success or failure of the continuity check.

This primitive is only delivered to listening streams listening on the specified call control addresses
or to a stream bound as a default listener in the same manner as the CC_SETUP_IND. (A continuity
test indication is treated as a special form of call setup.)

This primitive is only issued to CCS users that successfully bound using the CC_BIND_REQ primitive
with flag CC_TEST set and a non-zero number of setup indications was provided in the CC_BIND_REQ
and returned in the CC_BIND_ACK.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_check_ind {

ulong cc_primitive; /* always CC_CONT_CHECK_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_cont_check_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Identifies the call reference that can be used by the CCS user to associate this message
with the CC_CONT_TEST_REQ or CC_RELEASE_REQ primitive that is to follow. This value
must be unique among the outstanding CC_CONT_CHECK_IND messages.

cc_addr_length
Indicates the length of the call control address (circuit identifier) upon which a conti-
nuity check is indicated.

cc_addr_offset
Indicates the offset of the requesting address from the beginning of the M_PROTO message
block.

Valid Modes

This primitive is only valid for addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the specified addresses.

New State
The new state is CKS_-WREQ_CTEST for the specified addresses.

2014-10-25 85

Chapter 4: CCI Primitives

4.2.2.3 Call Control Continuity Test Request

CC_CONT_TEST_REQ

This message is used either to respond to a CC_SETUP_IND primitive which contains the ISUP_NCI_
CONT_CHECK_REQUIRED flag, or to respond to a CC_CONT_CHECK_IND primitive. Before responding to
either primitive, the CCS User should install a loop back device on the requested channel and then
respond with this response primitive to confirm the loop back.

Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as
follows:

typedef struct CC_cont_test_req {

ulong cc_primitive; /* always CC_CONT_TEST_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_token_value; /* token value */

} CC_cont_test_req_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference of the CC_CONT_TEST_REQ message. It is used by the CCS
provider to associate the CC_CONT_TEST_REQ message with an outstanding CC_SETUP_
IND message. An invalid call reference should result in error with the error type
[CCBADCLR].

cc_token_value

Is used to identify the stream that the CCS user wants to establish the continuity check
call on. (Its value is determined by the CCS user by issuing a CC_BIND_REQ primitive
with the CC_TOKEN_REQ flag set. The token value is returned in the CC_BIND_ACK.) The
value of this field should be non-zero when the CCS user wants to establish the call on
a stream other than the stream on which the CC_CONT_CHECK_IND arrived. If the CCS
user wants to establish a call on the same stream that the CC_CONT_CHECK_IND arrived
on, then the value of this field should be zero.

Valid Modes
This primitive is valid only in NNT mode.

Valid States
This primitive is valid in state CKS_WREQ_CTEST.

New State
The new state is CKS_-WIND_CCREP.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

86 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

— Successful: Successful completion is indicated via the CC_CONT_REPORT_IND in the case that
the primitive was issued in response to a CC_SETUP_IND, or CC_RELEASE_IND primitive in the
case that the primitive was issued in response to the CC_CONT_CHECK_IND primitive.

Unsuccessful: Unsuccessful completion is indicated via the CC_CONT_REPORT_IND primitive.
Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCSYSERR]
A system error has occurred and the UNIX system error is indicated in the prim-

itive.
[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCACCESS]
The user did not have proper permissions for the operation.

[CCNOTSUPP]
The CCS provider does not support the operation.

2014-10-25 87

Chapter 4: CCI Primitives

4.2.2.4 Call Control Continuity Test Indication

CC_CONT_TEST_IND

This message confirms to the testing CCS user that a loop back device has been (or will be) in-
stalled on the specified call control address (circuit). Upon receiving this message, the testing CCS
user should connect tone generation and detection equipment to the specified circuit, perform the
continuity test and issue a report using the CC_CONT_REPORT_REQ primitive.
This primitive will only be issued to streams successfully bound with the CC_BIND_REQ primitive
with a non-zero number of setup indications and the CC_TEST bind flag set.

Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_test_ind {

ulong cc_primitive; /* always CC_CONT_TEST_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_cont_test_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference associated with the continuity check call for the specified
call control address (circuit identifier).

cc_addr_length
Indicates the length of the call control address (signalling interface and circuit identifier)
upon which a continuity check is confirmed. The semantics of the values in the CC_
CONT_TEST_IND is identical to the values in the CC_BIND_REQ.

cc_addr_offset
Indicates the offset of the connecting address from the beginning of the M_PROTO mes-
sage block.

Valid Modes

This primitive is valid only in NNT mode.

Valid States
This primitive is valid in state CCS_WCON_CREQ.

New State
The new state is CCS_WAIT_COR.

88 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.2.5 Call Control Continuity Report Request

CC_CONT_REPORT_REQ

This primitive requests that the CCS provider indicate to the called CCS user that the continuity
check succeeded or failed. The CCS user should remove any continuity test tone generator/detection
device from the circuit and verify silent code loop back before issuing this primitive.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_report_req {

ulong cc_primitive; /* always CC_CONT_REPORT_REQ */
ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC_cont_report_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_user_ref Specifies the CCS wuser reference of the associated CC_SETUP_REQ prim-
itive. This value is non-zero when the CC_CONT_REPORT_REQ primitive
is issued subsequent to a CC_SETUP_REQ primitive which had the flag

ISUP_NCI_CONTINUITY_CHECK_PREVIOUS set to indicate the result of the
continuity check on the previous circuit. Otherwise, this value is coded zero.

cc_call_ref Specifies the call reference of the associated CC_CONT_TEST_IND primitive for the con-
tinuity check call. This value is non-zero when the CC_CONT_REPORT_REQ primitive is
issued in response to a CC_CONT_TEST_IND primitive. Otherwise, this value is coded
Z€ro.

cc_result Specifies the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.

Valid Modes

This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CCREP.

New State

When issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE. When
issued subsequent to a CC_SETUP_REQ primitive, the new state is either CCS_WREQ_MORE or CCS_
WREQ_PROCEED, depending upon whether the sent address contain an ST pulse.
Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

2014-10-25 89

90

Chapter 4: CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADPRIM]
The primitive format was incorrect.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.2.6 Call Control Continuity Report Indication

CC_CONT_REPORT_IND

This primitive indicates to the called CCS user that the continuity check succeeded or failed. The
called CCS user can remove the loop back or tone generation/detection devices from the circuit and
the call either moves to the idle state or a call setup state.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_report_ind {

ulong cc_primitive; /* always CC_CONT_REPORT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC_cont_report_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference associated with the continuity check report as it appeared
in the associated CC_CONT_CHECK_IND primitive.

cc_result Indicates the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CTEST or CCS_WIND_CCREP.

New State

If the primitive is issued subsequent to the CC_SETUP_REQ, the new state is CCS_WCON_SREQ. If the
primitive is issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE.

2014-10-25 91

Chapter 4: CCI Primitives

4.2.3 Collecting Information Phase

The following call control service primitive pertain to the collecting information phase of a call.
During this phase requests for more information are issued and indicated, and additional information
is provided.

4.2.3.1 Call Control More Information Request

CC_MORE_INFO_REQ

This message request more information (digits in the called party address, or optional parameters)
from the calling CCS user. This specifies to the CCS provider that overlap receiving is in effect and
the number of digits received are not sufficient to complete the call.

Format
The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as
follows:

typedef struct CC_more_info_req {

ulong cc_primitive; /* always CC_MORE_INFO_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_req_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference for the CC_MORE_INFO_REQ message. It is used by the CCS
provider to associated the CC_MORE_INFO_REQ message with an previous CC_SETUP_IND
message and identify the incoming call.

cc_opt_length
Indicates the length of the optional parameters associated with the nore information
request.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI (User and Network) mode and for compatibility in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_MORE.

New State
The new state is CCS_WIND_INFO.

92 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_INFORMATION_IND and CC_INFO_
TIMEQUT_IND primitives.

— Unsuccessful: Unsuccessful completion is indicated by the CC_CALL_FAILURE_IND primitive
with a protocol specific reason indicating that additional information was not provided within
a sufficient period of time.

— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCSYSERR]
A system error has occurred and the UNIX system error is indicated in the prim-
itive.
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.
[CCNOTSUPP]
The CCS provider does not support the operation.
[CCACCESS]
The user did not have proper permissions for the operation.
[CCBADPRIM]
The primitive was incorrectly formatted (i.e. the M_PROTO message block was too
short).

2014-10-25 93

Chapter 4: CCI Primitives

4.2.3.2 Call Control More Information Indication

CC_MORE_INFO_IND

This message indicates that the calling CCS user needs to provide additional information (called
party address digits) to complete call processing. The CCS user should generate CC_INFORMATION_
REQ primitives, if possible. This is also an indication that overlap receiving is in effect. Appropriate
protocol timers will be started.

In contrast to the the CC_INFORMATION_REQ primitive(s) which are sent by the CCS user in response
to this message, the CC_MORE_INFO_IND message is normally only issued once per call setup.

Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_more_info_ind {

ulong cc_primitive; /* always CC_MORE_INFO_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_ind_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_user_ref Indicates the user call reference of the CC_MORE_INFO_IND message. It is used by the
CCS user to associate the CC_MORE_INFO_IND message with an outstanding CC_SETUP_
REQ message.

cc_opt_length
Indicates the length of the optional parameters associated with the more information
indication. If no optional parameters are associated with the more information indica-
tions, this parameter must be coded zero by the CCS provider.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI (Network and User) mode, and for compatibility in NNI mode.

Valid States
This primitive is valid in state CCS_WIND_MORE.

New State
The new state is CCS_WREQ_INFO.

4.2.3.3 Call Control Information Request

94 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

CC_INFORMATION_REQ

This message request that the CCS provider include the subsequent number information in addition
to the called party number information previously supplied with a CC_SETUP_REQ primitive.

Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_information_req {

ulong cc_primitive; /* always CC_INFORMATION_REQ */
ulong cc_user_ref; /* call reference */

ulong cc_subn_length; /* subsequent number length */
ulong cc_subn_offset; /% subsequent number offset */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_information_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_user_ref Specifies the user call reference. It is used by the CCS user to associate the message
with an outstanding CC_SETUP_REQ message.

cc_subn_length
Specifies the length of the subsequent called party address parameter that conveys
more of an address identifying the CCS user to which the call is to be established.
This field will accommodate variable length addresses within a range supported by the
CCS provider. If no subsequent called party address is provided by the CCS user,
this field must be coded to zero. The coding of the subsequent called party address is
protocol and provider-specific.

cc_subn_offset
Is the offset of the subsequent called party address from the beginning of the M_PROTO
message block.

cc_opt_length
Specifies the length of the optional parameters associated with the alerting indication.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes

This primitive is valid in UNI (both User and Network) and NNI.

Valid States
This primitive is valid in state CCS_WIND_MORE and CCS_WREQ_INFO.

New State

The new state is CCS_WIND_MORE if the subsequent number still does not contain complete address
information or CCS_WIND_PROCEED if it does.

2014-10-25 95

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCNOADDR]
The user did not provide a subsequent called party address field and one was
required by the call type. The CCS provider could not select a called party
address.

[CCSYSERR]
A system error has occurred and the UNIX system eror is indicated in the primi-
tive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The specified call reference was invalid.

[CCBADADDR]
The subsequent called party address was in the incorrect format, or contained
illegal information. This is used only to handle coding errors of the address and
is not intended to provide for protocol errors. Protocol errors should be conveyed
in the CC_CALL_FAILURE_IND or CC_RELEASE_IND primitives.

[CCBADOPT]
The optional parameters were in an incorrect format, or contained illegal infor-
mation.

[CCACCESS]
The user did not have proper permissions for the use of the requested address or
options.

[CCBADPRIM]
The primitive is of an incorrect format or an offset exceeds the size of the M_PROTO
block.

96 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.3.4 Call Control Information Indication
CC_INFORMATION_IND

Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_information_ind {

ulong cc_primitive; /* always CC_INFORMATION_IND */
ulong cc_call_ref; /* call reference */

ulong cc_subn_length; /* subsequent number length */
ulong cc_subn_offset; /% subsequent number offset */
ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_information_ind_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference of the message. It is used by the CCS provider to associated
the message with an preceding CC_SETUP_IND message.

cc_subn_length
Indicates the length of the subsequent called party address parameter that conveys
more of an address identifying the CCS user to which the call is to be established.
This field will accommodate variable length addresses within a range supported by the
CCS provider. If no subsequent called party address is provided by the CCS user,
this field must be coded to zero. The coding of the subsequent called party address is
protocol and provider-specific.

cc_subn_offset
Is the offset of the subsequent called party address from the beginning of the M_PROTO
message block.

cc_opt_length
Indicates the length of the optional parameters associated with the alerting indication.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI (both User and Network) and NNI.

Valid States
This primitive is valid in state CCS_WREQ_MORE or CCS_WIND_INFO.

New State

The new state is CCS_WREQ_MORE if more information is still pending, or CCS_WREQ_PROCEED if the
information is complete.

2014-10-25 97

Chapter 4: CCI Primitives

4.2.3.5 Call Control Information Timeout Indication

CC_INFO_TIMEOUT_IND

This message indicates that a timeout has occurred while waiting for additional digits. It is up
to the CCS user to decide whether the digits collected are sufficient, in which case the call can
proceed; or, to decide that the digits collected are insufficient and begin tearing down the call with a
CC_DISCONNECT_REQ or CC_RELEASE_REQ with cause value CC_.CAUS_ADDRESS_INCOMPLETE.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:

typedef struct CC_info_timeout_ind {
ulong cc_primitive; /* always CC_INFO_TIMEQUT_IND x*/
ulong cc_call_ref; /* call reference */

} CC_info_timeout_ind_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference of the CC_SETUP_IND when the CC_INFO_TIMEQUT_IND prim-
itive is used in response to the CC_SETUP_IND on a listening stream. Otherwise, this
parameter is coded zero and is ignored by the CCS provider.

Valid Modes
This primitive is valid in UNT mode (User or Network) or NNI mode.

Valid State
This primitive is valid in state CCS_WIND_INFO or CCS_WREQ_INFO.

New State

The new state is unchanged.

98 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.4 Call Establishment Phase

The following call control service primitives pertain to the establishment of a call.

4.2.4.1 Call Control Proceeding Request

CC_PROCEEDING_REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the call is
proceeding towards the called CCS user. This also means that there is sufficient called party address
information to complete the call.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:

typedef struct CC_proceeding req {

ulong cc_primitive; /* always CC_PROCEEDING_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* proceeding flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference for the request. The call reference is used by the CCS
provider to identify the call.

cc_flags Specifies proceeding flags associated with the proceeding request. Proceeding flags are
protocol specific (see the Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the alerting indication.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNT mode (User or Network) or NNI mode.

Valid States
This primitive is valid in state CCS_-ICC_WAIT_ACM.

New State
The new state is CCS_WREQ_MORE or CCS_WIND_PROCEED.

2014-10-25 99

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The

100

applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.
[CCBADFLAG]
The specified flags were incorrect or unsupported.
[CCBADOPT]
The optional parameters were in an incorrect format, or contained illegal infor-
mation.
[CCACCESS]
The user did not have proper permissions for the use of the requested address or
options.
[CCBADPRIM]
The primitive is of an incorrect format or an offset exceeds the size of the M_PROTO
block.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.4.2 Call Control Proceeding Indication

CC_PROCEEDING_IND

This primitive indicates to the calling CCS user that the call is proceeding to the called CCS user.
This also means that there is sufficient called party address information to complete the call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_proceeding_ind {

ulong cc_primitive; /* always CC_PROCEEDING_IND */
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* proceeding flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_ind_t;

Parameters
cc_primitive
Indicates the primitive type.
cc_call_ref Indicates the call reference. It is used by the CCS provider to indicate the call.

cc_flags Indicates the proceeding flags associated with the proceeding indication. Proceeding
flags are protocol specific (see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the proceeding indica-
tion.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_MORE or CCS_WIND_PROCEED.

New State
The new state is CCS_WIND_ALERTING.

2014-10-25 101

Chapter 4: CCI Primitives

4.2.4.3 Call Control Alerting Request

CC_ALERTING_REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the called CCS
user is being alerted.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_alerting_req {

ulong cc_primitive; /* always CC_ALERTING_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* alerting flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_req_t;

Parameters
cc_primitive
Specifies the primitive type.
cc_call_ref Specifies the call reference. It is used by the CCS provider to identify the call.

cc_flags Specifies the alerting flags associated with the alerting request. Alerting flags are
protocol specific (see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the alerting indication.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNT mode (User or Network) or NNI mode.

Valid States
This primiitve is valid in states CCS_WREQ_MORE, CCS_WREQ_PROCEED and CCS_WREQ_ALERTING states.

New State
The new state is CCS_WREQ_PROGRESS.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

102 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADFLAG]
The specified flags contained incorrect or unsupported information.

[CCBADOPT]
The optional parameters were in an incorrect format, or contained illegal infor-
mation.

[CCACCESS]
The user did not have proper permissions for the use of the requested address or
options.

[CCBADPRIM]
The primitive is of an incorrect format or an offset exceeds the size of the M_PROTO
block.

2014-10-25 103

Chapter 4: CCI Primitives

4.2.4.4 Call Control Alerting Indication

CC_ALERTING_IND
This primitive indicates to the calling CCS user that the called CCS user is being alerted.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_alerting_ind {

ulong cc_primitive; /* always CC_ALERTING_IND */
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* alerting flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags Indicates the alerting flags.

cc_opt_length
Indicates the length of the optional parameters associated with the alerting indica-
tion. If no optional parameters are associated with the alerting indication, then this
parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in states CCS_WREQ_MORE, CCS_WIND_PROCEED and CCS_WIND_ALERTING.

New State
The new state is CCS_WIND_PROGRESS.

104 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.4.5 Call Control Progress Request

CC_PROGRESS_REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the call is
progressing towards the called CCS user, with the specified event.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_progress_req {

ulong cc_primitive; /* always CC_PROGRESS_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_event; /* progress event */

ulong cc_flags; /* progress flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS provider to identify

the call.
cc_event Specifies the progress event. Progress events are protocol specific (see Addendum).
cc_flags Indicates progress flags. Progress flags are protocol specific (see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the progress request. If
no optional parameters are associated with the progress request, then this parameter
must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States
This primitive is valid in states CCS_WREQ_PROGRESS.

New State
The new state is CCS_WREQ_PROGRESS.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

2014-10-25 105

Chapter 4: CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The

106

applicable non-fatal errors are defined as follows:
[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.
[CCBADFLAG]
The specified flags contained incorrect or unsupported information.
[CCBADOPT]

The optional parameters were in an incorrect format, or contained illegal infor-
mation.

[CCACCESS]

The user did not have proper permissions for the use of the requested address or
options.

[CCBADPRIM]

The primitive is of an incorrect format or an offset exceeds the size of the M_PROTO
block.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.4.6 Call Control Progress Indication

CC_PROGRESS_IND

This primitive indicates to the calling CCS user that the call is progressing towards the called CCS
user with the specified progress event.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_progress_ind {

ulong cc_primitive; /* always CC_PROGRESS_IND */
ulong cc_call_ref; /* call reference */

ulong cc_event; /* progress event */

ulong cc_flags; /* progress flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_ind_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify

the call.
cc_event Indicates the progress event. Progress events are protocol specific (see Addendum).
cc_flags Indicates progress flags. Progress flags are protocol specific (see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the progress request. If
no optional parameters are associated with the progress request, then this parameter
must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNT mode (User or Network) or NNI mode.

Valid States
This primitive is valid instates CCS_WIND_PROGRESS.

New State
The new state is CCS_WIND_PROGRESS.

2014-10-25 107

Chapter 4: CCI Primitives

4.2.4.7 Call Control In-Band Information Request

CC_IBI_REQ

This primitive request that the CCS provider indicate to the calling CCS user that the in-band
information is now available.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_ibi_req {

ulong cc_primitive; /* always CC_IBI_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* ibi flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags Specifies the flags associated with the primitive. In band information flags are protocol
specific (see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the in-band information
request. If no optional parameters are associated with the in band information request,
then this parameter must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.
Valid Modes
This primitive is valid in NNI mode and in UNI (User and Network) mode for compatibility with
the NNI.
Valid States
This primitive is valid in states CCS_WREQ_MORE, CCS_WREQ_PROCEED, CCS_WREQ_ALERTING, CCS_
WREQ_PROGRESS and CCS_WREQ_CONNECT.
New State
The new state is CCS_WREQ_CONNECT.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

108 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.
[CCBADFLAG]
The specified flags contained incorrect or unsupported information.
[CCBADOPT]

The optional parameters were in an incorrect format, or contained illegal infor-
mation.

[CCACCESS]

The user did not have proper permissions for the use of the requested address or
options.

[CCBADPRIM]

The primitive is of an incorrect format or an offset exceeds the size of the M_PROTO
block.

2014-10-25 109

Chapter 4: CCI Primitives

4.2.4.8 Call Control In-Band Information Indication

CC_IBI_.IND

This primitive indicates to the calling CCS user that there is in-band information now available in
the voice channel.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_ibi_ind {

ulong cc_primitive; /* always CC_IBI_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* ibi flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags Indicates the flags associated with the primitive. In band information flags are provider
and protocol specific (see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the in-band information
indication. If no optional parameters are associated with the in band information
request, then this parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes

This primitive is valid in NNI mode and in UNI (User and Network) mode for compatibility with
the NNI.

Valid States

This primitive is valid in states CCS_WIND_MORE, CCS_WIND_PROCEED, CCS_WIND_ALERTING and CCS_
WIND_PROGRESS.

New State

The new state is CCS_WIND_CONNECT.

110 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.4.9 Call Control Connect Request

CC_CONNECT_REQ

This primitive requests that the CCS provide indicate to the remote CCS user that the call control
setup has complete and the called CCS use is connected on the call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_connect_req {

ulong cc_primitive; /* always CC_CONNECT_REQ x*/
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* connect flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS provider to identify
the call. The call reference is the same value which was indicated in the corresponding
CC_SETUP_IND primitive for the incoming call.

cc_flags Specifies the connect flags associated with the primitive. Connect flags are protocol
specific (see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the connect request. If
no optional parameters are associated with the connect request, then this parameter
must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in NNI mode and in UNI (User) mode.

Valid States

This primitive is only valid for incoming calls in the CCS_WREQ_MORE, CCS_WREQ_PROCEED, CCS_WREQ_
ALERTING, CCS_WREQ_PROGRESS, CCS_WREQ_CONNECT states.

New State

The new state is CCS_-WIND_SCOMP (waiting for indication of setup complete).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

2014-10-25 111

Chapter 4: CCI Primitives

— Successful: Successful completion is indicated via the CC_SETUP_COMPLETE_IND primitive.
— Unsuccessful: Unsuccessful completion is indicated via the CC_CALL_FAILURE_IND,

112

CC_DISCONNECT_IND or CC_RELEASE_IND primitives.
Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADFLAG]
The specified flags contained incorrect or unsupported information.

[CCBADOPT]
The optional parameters were in an incorrect format, or contained illegal infor-
mation.

[CCACCESS]
The user did not have proper permissions for the use of the requested address or
options.

[CCBADPRIM]

The primitive is of an incorrect format or an offset exceeds the size of the M_PROTO
block.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.4.10 Call Control Connect Indication

CC_CONNECT_IND

This primitive indicates that the called CCS user has connected to the call. Upon receving this
primitive the CCS user operating in UNI (Network) mode should connect the calling CCS user to
the call and acknowledge connection of the calling CCS user by responding with the CC_SETUP_
COMPLETE_REQ primitive.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_connect_ind {

ulong cc_primitive; /* always CC_CONNECT_IND x*/
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* connect flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call. The call reference is the same value which was indicated in the corresponding
CC_SETUP_CON primitive for the outgoing call.

cc_flags Indicates the connect flags associated with the primitive. Connect flags are protocol
specific (see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the connect indica-
tion. If no optional parameters are associated with the connect indication, then this
parameter is coded zero by the CCS provider.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in NNI mode and in UNI (Network) mode.

Valid States
This primitive is valid in state CCS_WIND_SCOMP.

New State
The new state is CCS_CONNECTED.

2014-10-25 113

Chapter 4: CCI Primitives

4.2.4.11 Call Control Setup Complete Request

CC_SETUP_COMPLETE_REQ

This primitive request that the CCS provider indicate to the remote CCS user that the call control
setup has completed (the calling CCS user is connected) by the requesting CCS user. It is used in
response to the CC_CONNECT_IND primitive.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_setup_complete_req {

ulong cc_primitive; /* always CC_SETUP_COMPLETE_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

¥ CC_setup_complete_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length
Specifies the length of the optional parameters associated with the setup complete
request. If no optional parameters are associated with the setup complete request,
then this parameter must be coded zero. The CCS provider may include additional
protocol-specific optional parameters.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI mode (Network only) and NNI mode for compatibility.

Valid States

This primitive is valid in state CCS_WREQ_SCOMP.

For compatibility between NNI mode and UNI Network mode, the CCS provider in NNI mode
should acknowledge this primitive with a CC_OK_ACK if it is issued in the CCS_CONNECTED state.

New State
The new state is CCS_CONNECTED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

114 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCBADPRIM]
The primitive was of an incorrect format (i.e. too small, or an offset it out of
range).
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.
[CCBADOPT]

The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

[CCACCESS]

The user did not have proper permissions to request the operation or to use the
options specified.

[CCNOTSUPP]
The specified primitive type is not known to or not supported by the CCS provider.

2014-10-25 115

Chapter 4: CCI Primitives

4.2.4.12 Call Control Setup Complete Indication

CC_SETUP_COMPLETE_IND

This primitive indicates to the called CCS user, operating in UNT (User) mode, that the call control
setup was completed (the call is answered and connected) by the calling CCS user. In UNI (User)
mode, the CCS user may defer connecting the receive path to the called CCS user until this message
is received. In response to this primitive, the CCS user should connect the receive path to the called
CCS user and consider the call connected.

CCS users operating in UNI (Network) mode or NNI mode should ignore this primitive if issued by
the CCS provider.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_setup_complete_ind {

ulong cc_primitive; /* always CC_SETUP_COMPLETE_IND */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_ind_t;

Parameters
cc_primitive
Indicates the primitives type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length
Indicates the length of the optional parameters associated with the setup complete in-
dication. If no optional parameters were associated with the setup complete indication,
then this parameter must be coded zero. The CCS provider may include additional
optional protocol-specific optional parameters.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI (User only) mode.

Valid States
This primitive is valid in states CCS_-WIND_SCOMP and CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

116 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.5 Call Established Phase

The following call control service primitives pertain to the Established phase of a call.

4.2.5.1 Forward Transfer Request

CC_FORWXFER_REQ

This message requests that the CCS provider forward transfer an established call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_forwxfer_req {

ulong cc_primitive; /* always CC_FORWXFER_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length
Specifies the length of the optional parameters associated with the forward transfer
request. If no optional parameters were associated with the forward transfer request,
then this parameter must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is only valid in NNI mode.

Valid States
This primitive is valid in state CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

2014-10-25 117

Chapter 4: CCI Primitives

— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.

118 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.5.2 Forward Transfer Indication

CC_FORWXFER_IND

This primitive indicates to the CCS user that the peer CCS user has requested a forward transfer
of an established call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_forwxfer_ind {

ulong cc_primitive; /* always CC_FORWXFER_IND */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length
Specifies the length of the optional parameters associated with the forward transfer
indication. If no optional parameters were associated with the forward transfer indica-
tion, then this parameter must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in NNI mode only.

Valid States
This primitive is valid in state CCS_CONNECTED.

New State
The new state is CCS_CONNECTED.

2014-10-25 119

Chapter 4: CCI Primitives

4.2.5.3 Call Control Suspend Request

CC_SUSPEND_REQ
This message requests that the CCS provider suspend an established call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_suspend_req {

ulong cc_primitive; /* always CC_SUSPEND_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags Specifies the suspend flags associated with the suspend request. Suspend flags specify
whether the request is for a user suspend or a network suspend. Suspend flags are
provider and protocol specific (see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the suspend request. If
no optional parameters were associated with the suspend request, then this parameter
must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in mode UNI (User) and NNI.

Valid States
This primitive is valid in state CCS_CONNECTED.

New State
The new state is CCS_SUSPENDED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_SUSPEND_CON primitive.

120 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

— Unsuccessful: Unsuccessful completion is indicated via the CC_SUSPEND_REJECT_IND or CC_
RELEASE_IND primitive. The cause value in the CC_SUSPEND_REJECT_IND or CC_RELEASE_IND

primitive indicates the cause of failure.
— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

2014-10-25 121

Chapter 4: CCI Primitives

4.2.5.4 Call Control Suspend Indication

CC_SUSPEND_IND

This message indicates to the CCS user that the peer CCS user has requested the suspension of an
establisehd call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_suspend_ind {

ulong cc_primitive; /* always CC_SUSPEND_IND */
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags Indicates the options associated with the suspend. Suspend flags are mode and protocol
dependent, see the addendum. Indicates the suspend flags associated with the suspend
indication. Suspend flags indicate whether the request is for a user suspend or a network
suspend. Suspend flags are provider and protocol specific (see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the suspend indica-
tion. If no optional parameters were associated with the suspend indication, then this
parameter must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in mode UNI (Network) and NNI.

Valid States
This primitive is valid in state CCS_CONNECTED or CCS_SUSPENDED.

New State
The new state is CCS_-WRES_SUSIND for UNI and CCS_SUSPENDED for NNI.

122 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.5.5 Call Control Suspend Response

CC_SUSPEND_RES

This message requests that the CCS provider accept a previous suspend indication.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_suspend_res {

ulong cc_primitive; /* always CC_SUSPEND_RES */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_res_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length
Specifies the length of the optional parameters associated with the suspend response. If
no optional parameters were associated with the suspend response, then this parameter
must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_-WRES_SUSIND.

New State
The new state is CCS_SUSPENDED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCOUTSTATE]
The primitive was issued from an invalid state.

2014-10-25 123

Chapter 4: CCI Primitives

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

124 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.5.6 Call Control Suspend Confirmation

CC_SUSPEND_CON

This message indicates to the CCS user that the CCS provider has confirmed the CCS user request
to suspend an established call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_suspend_con {

ulong cc_primitive; /* always CC_SUSPEND_CON */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_con_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length
Indicates the length of the optional parameters associated with the suspend indica-
tion. If no optional parameters were associated with the suspend indication, then this
parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State
The new state is CCS_SUSPENDED.

2014-10-25 125

Chapter 4: CCI Primitives

4.2.5.7 Call Control Suspend Reject Request

CC_SUSPEND_REJECT_REQ

This message request that the CCS provider reject a previous suspend indication with the specified
cause.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:

typedef struct CC_suspend_reject_req {

ulong cc_primitive; /* always CC_SUSPEND_REJECT_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS user to identify the
call. Its value should be the same as the value returned by the CCS provider in the
CC_SETUP_IND or CC_SETUP_CON primitive.

cc_cause Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the suspend reject re-
quest. If no optional parameters are associated with the suspend reject request, then
this parameter must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the suspend reject request, then
this parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_-WRES_SUSIND.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another
sense (network or user), otherwise the new state remains CCS_SUSPENDED.

126 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCBADPRIM]
The primitive was of an incorrect format (i.e. too small, or an offset it out

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADOPT]

The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

[CCACCESS]

The user did not have proper permissions to request the operation or to use the
options specified.

[CCNOTSUPP]
The specified primitive type is not known to or not supported by the CCS provider.

2014-10-25 127

Chapter 4: CCI Primitives

4.2.5.8 Call Control Suspend Reject Confirmation

CC_SUSPEND_REJECT_IND

This message indicates to the requesting CCS user that a previous suspend request for an established
call was rejected and the cause for rejection.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_suspend_reject_ind {

ulong cc_primitive; /* always CC_SUSPEND_REJECT_IND */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_cause Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the suspend reject
indication. If no optional parameters are associated with the suspend reject indication,
then this parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the suspend reject indication, then
this parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another
sense (network or user), otherwise the new state remains CCS_SUSPENDED.

128 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.5.9 Call Control Resume Request

CC_RESUME_REQ

This message requests that the CCS provider resume a previously suspended call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_resume_req {

ulong cc_primitive; /* always CC_RESUME_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS user to identify the
call to the CCS provider. The value should be the same as the value indicated by the
CCS provider in a previous CC_SETUP_IND or CC_SETUP_CON primitive.

cc_flags Specifies the options associated with the resume. Resume flags are provider and pro-
tocol dependent (see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the resume request. If
no optional parameters are associated with the resume request, then this parameter
must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the resume request, then this
parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User) and NNI.

Valid States
This primitive is valid in state CCS_SUSPENDED.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another
sense (network or user), otherwise the new state remains CCS_SUSPENDED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

2014-10-25 129

Chapter 4: CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The

130

applicable non-fatal errors are defined as follows:
[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.
[CCBADPRIM]

The primitive was of an incorrect format (i.e. too small, or an offset it out
[CCOUTSTATE]

The primitive was issued from an invalid state.
[CCBADCLR]

The call reference specified in the primitive was incorrect or illegal.

[CCBADOPT]

The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

[CCACCESS]

The user did not have proper permissions to request the operation or to use the
options specified.

[CCNOTSUPP]
The specified primitive type is not known to or not supported by the CCS provider.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.5.10 Call Control Resume Indication

CC_RESUME_IND

This message indicates to the CCS user that the peer CCS user has requested that a previously
suspended call be resumed.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_resume_ind {

ulong cc_primitive; /* always CC_RESUME_IND */
ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_flags Indicates the options associated with the resume. Resume flags are mode and protocol
dependent, see the addendum.

cc_opt_length
Indicates the length of the optional parameters associated with the resume indica-
tion. If no optional parameters are associated with the resume indication, then this
parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the resume indication, then this
parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (Network) and NNI.

Valid States
This primitive is valid in state CCS_SUSPENDED.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or in
another sense (network or user), otherwise the new state remains CCS_SUSPENDED.

2014-10-25 131

Chapter 4: CCI Primitives

4.2.5.11 Call Control Resume Response

CC_RESUME_RES

This message requests that the CCS provider accept a previous request to resume a suspended call.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_resume_res {

ulong cc_primitive; /* always CC_RESUME_RES */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_res_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS user to identify the
call to the CCS provider. Its value should be the same as the value indicated by a
previous CC_SETUP_IND or CC_SETUP_CON primitive for the call.

cc_opt_length
Specifies the length of the optional parameters associated with the resume response. If
no optional parameters are associated with the resume response, then this parameter
must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the resume response, then this
parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (Network) and for compatibility in NNT mode.

Valid States

This primitive is valid in state CCS_-WRES_SUSIND.

For compatibility with UNI, NNI should ignore, yet positively acknowledge, this primitive if received
in the CCS_CONNECTED or CCS_SUSPENDED states where the all is not suspended in the sense confirmed.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another
sense (network or user), otherwise the new state remains CCS_SUSPENDED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

132 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.
[CCBADPRIM]

The primitive was of an incorrect format (i.e. too small, or an offset it out
[CCOUTSTATE]

The primitive was issued from an invalid state.
[CCBADCLR]

The call reference specified in the primitive was incorrect or illegal.

[CCBADOPT]

The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

[CCACCESS]

The user did not have proper permissions to request the operation or to use the
options specified.

[CCNOTSUPP]
The specified primitive type is not known to or not supported by the CCS provider.

2014-10-25 133

Chapter 4: CCI Primitives

4.2.5.12 Call Control Resume Confirmation

CC_RESUME_CON

This message indicates to the requesting CCS user that a previous request to resume a suspended
call has been confirmed.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_resume_con {

ulong cc_primitive; /* always CC_RESUME_CON */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_con_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_opt_length
Indicates the length of the optional parameters associated with the resume confirma-
tion. If no optional parameters are associated with the resume confirmation, then this
parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameter are associated with the resume confirmation, then this
parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State

The new state is CCS_CONNECTED if the call is not still suspended in the opposite direction or another
sense (network or user), otherwise the new state remains CCS_SUSPENDED.

134 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.5.13 Call Control Resume Reject Request

CC_RESUME_REJECT_REQ

This message requests that the CCS provider reject a previous requst to resume a suspended call
with the specified cause.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_resume_reject_req {

ulong cc_primitive; /* always CC_RESUME_REJECT_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference. The call reference is used by the CCS user to identify the
call to the CCS provider. Its value should be the same as the value indicated in a
previous CC_SETUP_IND or CC_SETUP_CON primitive by the CCS provider for the call.

cc_cause Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the resume reject re-
quest. If no optional parameters are associated with the resume reject request, then
this parameter must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the resume reject request, then
this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (Network).

Valid States
This primitive is valid in state CCS_-WRES_SUSIND.

New State
The new state is CCS_SUSPENDED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

2014-10-25 135

Chapter 4: CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The

136

applicable non-fatal errors are defined as follows:
[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.
[CCBADPRIM]

The primitive was of an incorrect format (i.e. too small, or an offset it out
[CCOUTSTATE]

The primitive was issued from an invalid state.
[CCBADCLR]

The call reference specified in the primitive was incorrect or illegal.

[CCBADOPT]

The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

[CCACCESS]

The user did not have proper permissions to request the operation or to use the
options specified.

[CCNOTSUPP]
The specified primitive type is not known to or not supported by the CCS provider.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.5.14 Call Control Resume Reject Indication

CC_RESUME_REJECT_IND

This message indicates to the requesting CCS user that a previous request to resume a suspended
call has been rejected and the cause for rejection.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_resume_reject_ind {

ulong cc_primitive; /* always CC_RESUME_REJECT_IND */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_cause Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the resume reject in-
dication. If no optional parameters are associated with the resume reject indication,
then this parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the resume reject indication, then
this parameter must be coded zero.

Valid Modes
This primitive is valid in mode UNI (User).

Valid States
This primitive is valid in state CCS_WCON_SUSREQ.

New State
The new state is CCS_SUSPENDED.

2014-10-25 137

Chapter 4: CCI Primitives

4.2.6 Call Termination Phase

The following call control service primitives pertain to the Termination phase of a call.

4.2.6.1 Call Control Reject Request

CC_REJECT_REQ

This message is used to reject a call before any request for more information, or request for indication
of proceeding, alerting, progress, or in-band information has been attempted. The message also
includes the cause of the rejection.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_reject_req {

ulong cc_primitive; /* always CC_REJECT_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_call_ref Specifies the call reference of the CC_SETUP_IND when the CC_REJECT_REQ primitive is

used in response to the CC_SETUP_IND on a listening stream. Otherwise, this parameter
is coded zero and is ignored by the CCS provider.

cc_cause Specifies the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length
Specifies the length of the optional parameters associated with the reject request. If no
optional parameters are associated with the reject request, then this parameter must
be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the reject request, then this
parameter must be coded zero.

Valid Modes

This primitive is only valid in the UNI mode (User or Network). (NNT users should use the CC_
RELEASE_REQ primitive in the same situation.)

Valid State
This primitive is valid in state CCS_WRES_SIND.

138 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

New State
The new state is CCS_IDLE.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCBADPRIM]
The primitive was of an incorrect format (i.e. too small, or an offset it out

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADOPT]

The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

[CCACCESS]

The user did not have proper permissions to request the operation or to use the
options specified.

[CCNOTSUPP]
The specified primitive type is not known to or not supported by the CCS provider.

2014-10-25 139

Chapter 4: CCI Primitives

4.2.6.2 Call Control Reject Indication

CC_REJECT_IND

This message indicates to the CCS user that a previous setup request has been rejected by the peer
CCS user and indicates the cause of the rejection.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_reject_ind {

ulong cc_primitive; /* always CC_REJECT_IND */
ulong cc_user_ref; /* user call reference */
ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_user_ref Indicates the CCS user reference of the associated CC_SETUP_REQ primitive that was
rejected.

cc_cause Indicates the cause for the rejection. Cause values are provider and protocol specific
(see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the reject indication. If
no optional parameters are associated with the reject indication, then this parameter
must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the reject indication, then this
parameter must be coded zero.

Valid Modes
This primitive is only valid in the UNI mode (User or Network).

Valid State
This primitive is valid in state CCS_WCON_SREQ.

New State
The new state is CCS_IDLE.

140 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.6.3 Call Control Call Failure Indication

CC_CALL_FAILURE_IND

This primitive indicates to the CCS user that the call on the selected address (circuit, circuit group)
has failed.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_call_failure_ind {

ulong cc_primitive; /* always CC_CALL_FAILURE_IND */
ulong cc_call_ref; /* call reference */

ulong cc_reason; /* reason for failure */

ulong cc_cause; /* cause to use in release */

} CC_call_failure_ind_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify

the call.

cc_reason Indicates the reason for the failure. Reasons are provider and protocol specific (see
Addendum).

cc_cause Indicates the cause value for the failure. Cause values are provider and protocol specific

(see Addendum).

cc_opt_length
Indicates the length of the optional parameters associated with the call failure indica-
tion. If no optional parameters are associated with the call failure indication, then this
parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block. If no optional parameters are associated with the call failure indication, then
this parameter must be coded zero.

Valid Modes

This primitive is valid in NNI mode only.

Valid States

This primitive is valid in any state other than CCS_IDLE, CCS_WIND_MORE, CCS_WREQ_INFO, CCS_
WCON_SREQ, and CCS_WIND_PROCEED. In the aforementioned states (other than CCS_IDLE), a CC_
CALL_REATTEMPT_IND should be issued instead.

New State
The new state is CCS_IDLE.

2014-10-25 141

Chapter 4: CCI Primitives

4.2.6.4 Call Control Disconnect Request

CC_DISCONNECT_REQ

This primitive request that the CCS provider indicate to the calling CCS user that in-band informa-
tion may now be available in the voice channel reflecting the specified cause. The CC_DISCONNECT_
REQ primitive is an invitation to the remote CCS user to release the call channel.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:

typedef struct CC_disconnect_req {

ulong cc_primitive; /* always CC_DISCONNECT_REQ */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_req_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference of the CC_DISCONNECT_REQ message. It is used by the
CCS provider to associated the CC_DISCONNECT_REQ message with an outstanding CC_
SETUP_IND message. An invalid call reference should result in error with the error type
[CCBADCLR].

cc_cause Indicates the cause value for the disconnect.

cc_opt_length
Indicates the length of the optional parameters associated with the disconnect request.
If no optional parameters are associated with the disconnect request, then this param-
eter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid only in UNI (Network or User) mode.

Valid States

This primitive is valid in states CCS_WREQ_MORE, CCS_WREQ_PROCEED, CCS_WREQ_ALERTING and CCS_
WREQ_PROGRESS.

New State
The new state is CCS_WREQ_CONNECT.

142 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCBADPRIM]
The primitive was of an incorrect format (i.e. too small, or an offset it out

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADOPT]

The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

[CCACCESS]

The user did not have proper permissions to request the operation or to use the
options specified.

[CCNOTSUPP]
The specified primitive type is not known to or not supported by the CCS provider.

2014-10-25 143

Chapter 4: CCI Primitives

4.2.6.5 Call Control Disconnect Indication

CC_DISCONNECT_IND

This primitive indicates to the calling CCS user that there is in-band information now available in
the voice channel.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_disconnect_ind {

ulong cc_primitive; /* always CC_DISCONNECT_IND */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_cause Indicates the cause value for the disconnect.

cc_opt_length
Indicates the length of the optional parameters associated with the in-band information
request. If no optional parameters are associated with the in band information request,
then this parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid States

This primitive is valid in states CCS_WIND_MORE, CCS_WREQ_INFO, CCS_WIND_PROCEED, CCS_WIND_
ALERTING, CCS_WIND_PROGRESS and CCS_WIND_CONNECT.

New State
The new state is CCS_WIND_CONNECT

144 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.6.6 Call Control Release Request

CC_RELEASE_REQ

This primitive request that the CCS provider release the call and provide the specified cause value
to the remote CCS user.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_release_req {

ulong cc_primitive; /* always CC_RELEASE_REQ */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_user-ref Specifies the user call reference of the CC_SETUP_REQ when the CC_RELEASE_REQ prim-
itive is used in response to the CC_SETUP_REQ and before a CC_SETUP_CON is issued.
Otherwise, this parameter is coded zero and is ignored by the CCS provider.

cc_call_ref Specifies the call reference of the CC_SETUP_IND when the CC_RELEASE_REQ primitive is
used in response to the CC_SETUP_IND on a listening stream. Otherwise, this parameter
is coded zero and is ignored by the CCS provider.

cc_cause Specifies the cause of the release. Cause values are CCS provider and protocol specific.
See the addendum for protocol specific values.

cc_opt_length
Specifies the length of the optional parameters associated with the release request. If
no optional parameters are associated with the release request, then this parameter
must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI (User or Network) and NNI modes.

Valid States
This primitive is valid from any call state other than CCS_IDLE and CCS_WCON_RELREQ.

New State

If the current state is CCS_WRES_RELIND, the new state is CCS_IDLE. If the current state is other
than CCS_WRES_RELIND, the new state is CCS_WCON_RELREQ

2014-10-25 145

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_RELEASE_IND or CC_RELEASE_CON

146

primitives.

Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.
[CCBADPRIM]

The primitive was of an incorrect format (i.e. too small, or an offset it out
[CCOUTSTATE]

The primitive was issued from an invalid state.
[CCBADCLR]

The call reference specified in the primitive was incorrect or illegal.
[CCBADOPT]

The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

[CCACCESS]

The user did not have proper permissions to request the operation or to use the
options specified.

[CCNOTSUPP]
The specified primitive type is not known to or not supported by the CCS provider.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.6.7 Call Control Release Indication

CC_RELEASE_IND

This primitive indicates that the remote CCS user or CCS provider hsa released the call with the
specified cause value.

Format
The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:

typedef struct CC_release_ind {

ulong cc_primitive; /* always CC_RELEASE_IND x*/
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_ind_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_user_ref Indicates the user call reference of the CC_SETUP_REQ when the CC_RELEASE_IND prim-
itive is used in response to the CC_SETUP_REQ and before a CC_SETUP_CON is issued.
Otherwise, this parameter is coded zero and is ignored by the CCS provider.

cc_call_ref Indicates the call reference of the CC_SETUP_IND when the CC_RELEASE_IND primitive is
used in response to the CC_SETUP_IND on a listening stream. Otherwise, this parameter
is coded zero and is ignored by the CCS provider.

cc_cause Indicates the cause of the release. Cause values are CCS provider and protocol specific.
See the addendum for protocol specific values.

cc_opt_length
Indicates the length of the optional parameters associated with the release indication. If
no optional parameters are associated with the release indication, then this parameter
must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNI (User or Network) and NNI modes.

Valid States

This primitive is valid in any setup or established call state other than CCS_IDLE and CCS_WRES_
RELIND.

2014-10-25 147

Chapter 4: CCI Primitives

New State

If the current state is CCS_WCON_RELREQ, the new state is CCS_IDLE. If the current state is other
than CCS_WCON_RELREQ, then new state is CCS_WRES_RELIND.

148 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.6.8 Call Control Release Response

CC_RELEASE_RES

This primitive indicates to the CCS provider that the release of the associated circuit is complete.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_release_res {

ulong cc_primitive; /* always CC_RELEASE_RES x*/
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_res_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_user_ref Specifies the user call reference of the CC_SETUP_REQ when the CC_RELEASE_REQ prim-
itive is used in response to the CC_SETUP_REQ and before a CC_SETUP_CON is issued.
Otherwise, this parameter is coded zero and is ignored by the CCS provider.

cc_call_ref Specifies the call reference of the CC_SETUP_IND when the CC_RELEASE_REQ primitive is
used in response to the CC_SETUP_IND on a listening stream. Otherwise, this parameter
is coded zero and is ignored by the CCS provider.

cc_opt_length
Specifies the length of the optional parameters associated with the release response. If
no optional parameters are associated with the release response, then this parameter
must be coded zero.

cc_opt_offset
Specifies the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNT (User or Network) and NNI modes.

Valid States
This primitive is valid in state CCS_WRES_RELIND.

New State
The new state is CCS_IDLE.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

2014-10-25 149

Chapter 4: CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.

150 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.2.6.9 Call Control Release Confirmation

CC_RELEASE_CON

This primitive indicates to the releasing CCS user that the release of the associated circuit is com-
plete.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_release_con {

ulong cc_primitive; /* always CC_RELEASE_CON */
ulong cc_user_ref; /* user call reference */
ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */
ulong cc_opt_offset; /* optional parameter offset */

} CC_release_con_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_user_ref Indicates the user call reference of the CC_SETUP_REQ when the CC_RELEASE_IND prim-
itive is used in response to the CC_SETUP_REQ and before a CC_SETUP_CON is issued.
Otherwise, this parameter is coded zero and is ignored by the CCS provider.

cc_call_ref Indicates the call reference of the CC_SETUP_IND when the CC_RELEASE_IND primitive is
used in response to the CC_SETUP_IND on a listening stream. Otherwise, this parameter
is coded zero and is ignored by the CCS provider.

cc_opt_length
Indicates the length of the optional parameters associated with the release confirma-
tion. If no optional parameters are associated with the release confirmation, then this
parameter must be coded zero.

cc_opt_offset
Indicates the offset of the optional parameters from the start of the M_PROTO message
block.

Valid Modes
This primitive is valid in UNT (User or Network) and NNI modes.

Valid States
This primitive is valid in state CCS_WCON_RELREQ.

New State
The new state is CCS_IDLE.

2014-10-25 151

Chapter 4: CCI Primitives

4.3 Management Primitive Formats and Rules
This section describes the format of the UNI (Network and User) and NNI management primitives

and rules associated with these primitives.

4.3.1 Interface Management Primitives
4.3.1.1 Interface Management Restart Request

CC_RESTART_REQ

This primitive request the CCS provider to restart all the call control addresses (signalling interface
and channels) for the specified UNI interface.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_restart_req {

ulong cc_primitive; /* always CC_RESTART_REQ */
ulong cc_flags; /* restart flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_restart_req_t;

Parameters
cc_primitive
Indicates the primitive type.
cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Indicates the length of the call control address (signalling interface and circuit iden-
tifiers) upon which a restart was requested. The semantics of the values in the CC_
RESET_REQ is identical to the values in the CC_BIND_REQ.

cc_addr_offset
Indicates the offset of the reporting address from the beginning of the M_PROTO message
block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

152 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.1.2 Interface Management Restart Confirmation

CC_RESTART_CON

This primitive confirms to the requesting CCS user that the restart of the requested call control
addresses (signalling interface and channels) for the specified UNT interface is complete.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_restart_ind {

ulong cc_primitive; /* always CC_RESTART_IND */
ulong cc_flags; /* restart flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_restart_ind_t;

Parameters
cc_primitive
Indicates the primitive type.
cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Indicates the length of the call control address (signalling interface and circuit iden-
tifiers) upon which a restart was requested. The semantics of the values in the CC_
RESET_REQ is identical to the values in the CC_BIND_REQ.

cc_addr_offset
Indicates the offset of the reporting address from the beginning of the M_PROTO message
block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

2014-10-25 153

Chapter 4: CCI Primitives

4.3.2 Circuit Management Primitives
4.3.2.1 Circuit Management Reset Request

CC_RESET_REQ

This primitive requests that the CCS provider reset the specified call control address(es) (signalling
interface and circuit identifiers) with the CCS user peer. For the NNI this primitive supports both
the Circuit Reset Service as well as the Circuit Group Reset Service.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_reset_req {

ulong cc_primitive; /* always CC_RESET_REQ */
ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_req_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Indicates the length of the call control address (signalling interface and circuit identi-
fiers) upon which a reset is requested. The semantics of the values in the CC_RESET_REQ
is identical to the values in the CC_BIND_REQ.

cc_addr_offset
Indicates the offset of the reporting address from the beginning of the M_PROTO message
block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules

The following rules apply to the reset of call control addresses (signalling interface and circuit
identifiers):

e The call control address must contain a signalling interface identifier and one or more circuit
identifiers.

e The signalling interface identifier must identify an NNI signalling interface.

e When the call control address contains one circuit identifier, a non-group reset will be per-
formed.

e When the call control address contains more than one circuit identifier, the CCS provider may
either issue individual circuit resets, or may issue one or more group circuit resets.

154 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

Valid Modes

This primitive is only valid for call control address(es) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

New State
The new state is CCS_-WCON_RESREQ for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_RESET_CON primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCACCESS]
The user did not have sufficient permission to perform the operation on the spec-
ified call control addresses.

[CCNOADDR]
The call control address was not provided (cc_addr_length coded zero).

[CCBADADDR]
The call control address(es) contained in the primitive were poorly formatted or
contained invalid information.

[CCNOTSUPP]
The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

[CCOUTSTATE]
The primitive was issued from an invalid state for the requested address(es).

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

2014-10-25 155

Chapter 4: CCI Primitives

4.3.2.2 Circuit Management Reset Indication

CC_RESET_IND

This primitive indicates that the peer CCS user has requested that the specified call control ad-
dress(es) (signalling interface and circuit identifiers) be reset.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_reset_ind {

ulong cc_primitive; /* always CC_RESET_IND */
ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_ind_t;

Parameters
cc_primitive
Indicates the primitive type.
cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Indicates the length of the call control address(es) (signalling interface and circuit
identifiers) that the peer CCS user has requested be reset.

cc_addr_offset
Indicates the offset of the call control address(es) (signalling interface and circuit iden-
tifiers) from the beginning of the M_PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes

This primitive will not be issued for call control addresses in modes other than NNI mode.

Valid States

This primitive will only be issued for call control addresses for which no reset indication (CCS_IDLE)
is already pending.

New State
The new state is CCS_.WRES_RESIND.

156 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.2.3 Circuit Management Reset Response

CC_RESET_RES

This primitive request the CCS provider to complete the reset operation for the specified call control
address(es) (signalling interface and circuit identifiers) which was previously indicated with a CC_
RESET_IND.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_reset_res {

ulong cc_primitive; /* always CC_RESET_RES */
ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_res_t;

Parameters
cc_primitive
Indicates the primitive type.
cc_flags Indicates options flags for the operation. (See "Flags" below.)

cc_addr_length
Indicates the length of the call control address(es) (signalling interface and circuit
identifiers) upon which the CCS user has accepted a reset.

cc_addr_offset
Indicates the offset of the call control address(es) (signalling interface and circuit iden-
tifiers) from the beginning of the M_PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules

The following rules apply to the reset of call control addresses (signalling interface and circuit
identifiers):

e The set of addresses specified must be a non-empty subset of the addresses which were specified
in the indication primitive to which this primitive is responding.

e Only once the primitive is successfully accepted by the CCS provider should the CCS provider
take any actions whatsoever with regard to reset.

e Call control addresses included in the call control address list which are not equipped may be
ignored by the CCS provider.

Valid States
This primitive is valid in state CCS_WRES_RESIND for the specified address(es).

New State
The new state is CCS_-WACK_RESRES for the specified address(es).

2014-10-25 157

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The

158

applicable non-fatal errors are defined as follows:

[CCACCESS]

The user did not have sufficient permission to perform the operation on the spec-
ified call control addresses.

[CCNOADDR]
The call control address was not provided (cc_addr_length coded zero).

[CCBADADDR]

The call control address(es) contained in the primitive were poorly formatted or
contained invalid information.

[CCNOTSUPP]
The primitive is not supported for the UNT interface and a UNI signalling interface
identifier was provided in the call control address.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.2.4 Circuit Management Reset Confirmation

CC_RESET_CON

This primitive confirms to the requesting CCS user that the specified call control address(es) (sig-
nalling interface and circuit identifiers) have been successfully confirmed reset to the peer CCS
user.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_reset_con {

ulong cc_primitive; /* always CC_RESET_CON */
ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_reset_con_t;

Parameters
cc_primitive
Indicates the primitive type.
cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Indicates the length of the call control address(es) (signalling interface and circuit
identifiers) upon which the CCS provider has confirmed a reset.

cc_addr_offset
Indicates the offset of the call control address(es) (signalling interface and circuit iden-
tifiers) from the beginning of the M_PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for call control addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_-WCON_RESREQ for the specified addresses.

New State
The new state is CCS_IDLE for the specified addresses.

2014-10-25 159

Chapter 4: CCI Primitives

4.3.2.5 Circuit Management Blocking Request

CC_BLOCKING_REQ

This primitive request that the CCS provider locally block the specified call control address(es)
(signalling interface and circuit or circuit group) with the peer CCS user. For the NNI, this primitive
supports both the Circuit Blocking Service as well as the Circuit Group Blocking Service.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_blocking req {

ulong cc_primitive; /* always CC_BLOCKING_REQ */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local blocking is requested. The semantics of the values
in the call control address is described in Section 2.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules

The following rules apply to the blocking of call control addresses (signalling interface and circuit
or circuit group identifiers):

e If the stream upon which the blocking request is issued is not bound (see CC_BIND_REQ), the
call control address must contain a signalling interface identifier and a circuit or circuit group
identifier.

e If the stream upon which the blocking request is bound to a signalling interface and trunk
group, and no call control address(es) are provided (i.e, cc_addr_length is set to zero), the CCS
provider may interpret the primitive to be requesting blocking on all circuits in the trunk group.

e At any time that the primitive is issued without specifying a call control address (i.e,
cc_addr_length is zero to zero), the CCS provider may assign a call control address or
addresses.

e If the CCS provider fails to assign a call control address or addresses, the primitive will fail
with error [CCNOADDR].

160 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

Valid Modes

This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

New State
The new state is CCS_-WCON_BLREQ for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive.

— Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.

— Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND
primitive.

— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCACCESS]
The user did not have sufficient permission to invoke the operation on the specified
addresses.

[CCFLAGS] The flags were invalid or unsupported.

[CCNOADDR]
An address or addresses was not provided by the CCS user (i.e., cc_addr_length
set to zero) and the CCS provider could not assign an address or addresses.

[CCBADADDR]
The call control address contained in the primitive were illegally formatted or
contained invalid information.

[CCNOTSUPP]
The primitive is not supported for the UNT interface and a UNI signalling interface
identifier was provided in the call control address.

[CCOUTSTATE]
The primitive was issued from an invalid state for the requested address(es).

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

2014-10-25 161

Chapter 4: CCI Primitives

4.3.2.6 Circuit Management Blocking Indication

CC_BLOCKING_IND

This primitive indicates that the peer CCS user has requested that the specified call control ad-
dress(es) (signalling interface and circuit identifiers) be remotely blocked.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_blocking_ind {

ulong cc_primitive; /* always CC_BLOCKING_IND */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_ind_t;

Parameters
cc_primitive
Specifies the primitive type.
cc_flags Specifies the options flags. See "Flags" below.

cc_addr_length
Indicates the length of the call control address(es) (signalling interface and circuit
identifiers) that the peer CCS user has requested to be remotely blocked.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the remote blocking state of the specified
address(es) is CCS_UNBLOCKED or CCS_BLOCKED.

New State
The new remote blocking state will be CCS_-WRES_BLIND for the specified call control addresses.

162 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.2.7 Circuit Management Blocking Response

CC_BLOCKING_RES

This primitive requests that the CCS provider respond to the previous blocking indication.

Format

The format is one M_PROTO message block. The structure of the M_PROTO message block is as follows:
typedef struct CC_blocking_res {

ulong cc_primitive; /* always CC_BLOCKING_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking res_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local blocking is requested. The semantics of the values
in the call control address is described in Section 2.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes

This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States

This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State

The new blocking state of the previously specified call control addresses is the CCS_BLOCKED
state.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

2014-10-25 163

164

Chapter 4: CCI Primitives

— Unsuccessful: Unsuccessful completion is

indicated via the CC_RELEASE_IND or
CCS_RESET_IND primitive.

— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:
[CCACCESS]
The user did not have sufficient permission to invoke the operation.
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.2.8 Circuit Management Blocking Confirmation

CC_BLOCKING_CON

This primitive confirms a previous blocking request (or indicates failure of a previous blocking
request).

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_blocking con {

ulong cc_primitive; /* always CC_BLOCKING_CON */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_blocking_con_t;

Parameters
cc_primitive
Specifies the primitive type.
cc_flags Specifies the options flags and result of the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which local blocking is confirmed.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the local blocking state of the specified
address(es) is CCS_-WCON_BLREQ.

New State
The new local blocking state will be CCS_BLOCKED for the specified call control addresses.

2014-10-25 165

Chapter 4: CCI Primitives

4.3.2.9 Circuit Management Unblocking Request

CC_UNBLOCKING_REQ

This primitive requests that the CCS provider locally unblock the specified call control address(es)
(signalling interface and circuit or circuit group) with the peer CCS user. For the NNI, this primitive
supports both Circuit Unblocking Service as well as the Circuit Group Unblocking Service.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_unblocking_req {

ulong cc_primitive; /* always CC_UNBLOCKING_REQ */
ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local unblocking is requested. The semantics of the values
in the call control address is described in Section 2.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules

The following rules apply to the unblocking of call control addresses (signalling interface and circuit
or circuit group identifiers):

e If the stream upon which the unblocking request is issued is not bound (see CC_BIND_REQ), the
call control address must contain a signalling interface identifier and a circuit or circuit group
identifier.

e If the stream upon which the unblocking request is bound to a signalling interface and trunk
group, and no call control address(es) are provided (i.e, cc_addr_length is set to zero), the CCS
provider may interpret the primitive to be requesting unblocking on all circuits in the trunk
group.

e At any time that the primitive is issued without specifying a call control address (i.e,
cc_addr_length is zero to zero), the CCS provider may assign a call control address or
addresses.

166 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

e If the CCS provider fails to assign a call control address or addresses, the primitive will fail
with error [CCNOADDR].

Valid Modes

This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

New State
The new state is CCS_ZWCON_BLREQ for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive.

— Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.

— Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND
primitive.

— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCACCESS]

The user did not have sufficient permission to invoke the operation on the specified
addresses.

[CCFLAGS] The flags were invalid or unsupported.

[CCNOADDR]
An address or addresses was not provided by the CCS user (i.e., cc_addr_length
set to zero) and the CCS provider could not assign an address or addresses.

[CCBADADDR]
The call control address contained in the primitive were illegally formatted or
contained invalid information.

[CCNOTSUPP]
The primitive is not supported for the UNI interface and a UNI signalling interface
identifier was provided in the call control address.

[CCOUTSTATE]
The primitive was issued from an invalid state for the requested address(es).

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

2014-10-25 167

Chapter 4: CCI Primitives

4.3.2.10 Circuit Management Unblocking Indication

CC_UNBLOCKING_IND

This primitive indicates that the peer CCS user has requested that the specified call control ad-
dress(es) (signalling interface and circuit identifiers) be remotely unblocked.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_unblocking_ind {

ulong cc_primitive; /* always CC_UNBLOCKING_IND */
ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_ind_t;

Parameters
cc_primitive
Specifies the primitive type.
cc_flags Specifies the options flags. See "Flags" below.

cc_addr_length
\Indicates the length of the call control address(es) (signalling interface and circuit
identifiers) that the peer CCS user has requested to be remotely unblocked.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the remote blocking state of the specified
address(es) is CCS_UNBLOCKED or CCS_BLOCKED.

New State
The new remote blocking state will be CCS_-WRES_UBIND for the specified call control addresses.

168 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.2.11 Circuit Management Unblocking Response

CC_UNBLOCKING_RES

This primitive requests that the CCS provider respond to the previous unblocking indication.

Format

The format is one M_PROTO message block. The structure of the M_PROTO message block is as follows:
typedef struct CC_unblocking_res {

ulong cc_primitive; /* always CC_UNBLOCKING_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_unblocking_res_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which local unblocking is requested. The semantics of the values
in the call control address is described in Section 2.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes

This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States

This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State

The new blocking state of the previously specified call control addresses is the CCS_UNBLOCKED
state.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

2014-10-25 169

170

Chapter 4: CCI Primitives

— Unsuccessful: Unsuccessful completion is

indicated via the CC_RELEASE_IND or
CCS_RESET_IND primitive.

— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:
[CCACCESS]
The user did not have sufficient permission to invoke the operation.
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.2.12 Circuit Management Unblocking Confirmation

CC_UNBLOCKING_CON

This primitive confirms a previous unblocking request (or indicates failure of a previous unblocking
request).

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_unblocking_ con {

ulong cc_primitive; /* always CC_UNBLOCKING_CON */
ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking con_t;

Parameters
cc_primitive
Specifies the primitive type.
cc_flags Specifies the options flags and result of the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which local unblocking is confirmed.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the local unblocking state of the specified
address(es) is CCS_WCON_UBREQ.

New State
The new local unblocking state will be CCS_UNBLOCKED for the specified call control addresses.

2014-10-25 171

Chapter 4: CCI Primitives

4.3.2.13 Circuit Management Query Request

CC_QUERY_REQ

This primitive requests that the CCS provider query specified call control address(es) (signalling
interface and circuit or circuit group) to the peer CCS user. For the NNI, this primitive supports
the Circuit Group Query Service.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_query_req {

ulong cc_primitive; /* always CC_QUERY_REQ */
ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_req_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which the query is requested. The semantics of the values in
the call control address is described in Section 2.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Rules

The following rules apply to the querying of call control addresses (signalling interface and circuit
or circuit group identifiers):

e If the stream upon which the query request is issued is not bound (see CC_BIND_REQ), the
call control address must contain a signalling interface identifier and a circuit or circuit group
identifier.

e If the stream upon which the query request is bound to a signalling interface and trunk group,
and no call control address(es) are provided (i.e, cc_addr_length is set to zero), the CCS provider
may interpret the primitive to be requesting status on all circuits in the trunk group.

e At any time that the primitive is issued without specifying a call control address (i.e,
cc_addr_length is zero to zero), the CCS provider may assign a call control address or
addresses.

e If the CCS provider fails to assign a call control address or addresses, the primitive will fail
with error [CCNOADDR].

172 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

Valid Modes

This primitive is only valid for call control address(es) (signalling interfaces) in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the requested address(es).

New State
The new state is CCS_-WCON_BLREQ for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive.

— Successful: Successful completion is indicated via the CC_BLOCKING_CON primitive.

— Unsuccessful: Unsuccessful completion is indicated via the CC_RELEASE_IND or CC_RESET_IND
primitive.

— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCACCESS]
The user did not have sufficient permission to invoke the operation on the specified
addresses.

[CCFLAGS] The flags were invalid or unsupported.

[CCNOADDR]
An address or addresses was not provided by the CCS user (i.e., cc_addr_length
set to zero) and the CCS provider could not assign an address or addresses.

[CCBADADDR]
The call control address contained in the primitive were illegally formatted or
contained invalid information.

[CCNOTSUPP]
The primitive is not supported for the UNT interface and a UNI signalling interface
identifier was provided in the call control address.

[CCOUTSTATE]
The primitive was issued from an invalid state for the requested address(es).

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

2014-10-25 173

Chapter 4: CCI Primitives

4.3.2.14 Circuit Management Query Indication

CC_QUERY_IND

This primitive indicates that the peer CCS user has requested that the specified call control ad-
dress(es) (signalling interface and circuit identifiers) be queried.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO message
block is as follows:
typedef struct CC_query_ind {

ulong cc_primitive; /* always CC_QUERY_IND */
ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_ind_t;

Parameters
cc_primitive
Specifies the primitive type.
cc_flags Specifies the options flags. See "Flags" below.

cc_addr_length
Indicates the length of the call control address(es) (signalling interface and circuit
identifiers) that the peer CCS user has requested to be queried.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive is valid in any state for the specified address(es).

New State

The new query state will be CCS_WRES_QIND for the specified call control addresses and the
number of outstanding queries for the specified call control addresses will be incremented.

174 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.2.15 Circuit Management Query Response

CC_QUERY_RES

This primitive requests that the CCS provider respond to the previous query indication.

Format

The format is one M_PROTO message block. The structure of the M_PROTO message block is as follows:
typedef struct CC_query_res {

ulong cc_primitive; /* always CC_QUERY_RES */
ulong cc_flags; /* blocking flags */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_res_t;

Parameters

cc_primitive
Specifies the primitive type.

cc_flags Specifies options flags for the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) upon which the query is requested. The semantics of the values in
the call control address is described in Section 2.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes

This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States

This primitive is only valid for the previous CC_BLOCKING_IND (call control addresses in the
CCS_WRES_BLIND state).

New State

The new query state of the previously specified call control addresses is the CCS_IDLE or
CCS_-WRES_QIND state and the query backlog is decremented.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

— Successful: Successful completion is indicated via the CC_OK_ACK primitive.

2014-10-25 175

176

Chapter 4: CCI Primitives

— Unsuccessful: Unsuccessful completion is

indicated via the CC_RELEASE_IND or
CCS_RESET_IND primitive.

— Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:
[CCACCESS]
The user did not have sufficient permission to invoke the operation.
[CCOUTSTATE]
The primitive was issued from an invalid state.
[CCSYSERR]

A system error occurred and the UNIX system error is indicated in the primitive.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.2.16 Circuit Management Query Confirmation

CC_QUERY_CON

This primitive confirms a previous query request (or indicates failure of a previous query request).

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_query_con {

ulong cc_primitive; /* always CC_QUERY_CON */
ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_query_con_t;

Parameters
cc_primitive
Specifies the primitive type.
cc_flags Specifies the options flags and result of the operation. (See "Flags" below.)

cc_addr_length
Specifies the length of the call control address (signalling interface and circuit or circuit
group identifiers) for which status is confirmed.

cc_addr_offset
Specifies the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the Addendum.

Valid Modes
This primitive will only be issued by the CCS provider for signalling interfaces in the NNI mode.

Valid States

This primitive will only be issued by the CCS provider if the query state of the specified address(es)
is CCS_WCON_QREQ.

New State
The new query state will be CCS_IDLE for the specified call control addresses.

2014-10-25 177

Chapter 4: CCI Primitives

4.3.3 Maintenance Primitives
4.3.3.1 Maintenance Indication

CC_MAINT_IND

This primitive indicates that the CCS provider has observed an event on the indicated call control
address(es) which requires a maintenance action.

Format

The format of this message is one M_PROTO message block followed by zero or more M_DATA blocks.
The structure of the M_PROTO message block is as follows:
typedef struct CC_maint_ind {

ulong cc_primitive; /* always CC_MAINT_IND */
ulong cc_reason; /* reason for indication */
ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* length of address */
ulong cc_addr_offset; /* length of address */

} CC_maint_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_reason Indicates the reason for the maintenance indication. Maintenance indication reasons
are protocol and provider-specific. For additional information see the Addendum.

cc_call_ref Indicates the call reference. The call reference is used by the CCS provider to identify
the call.

cc_addr_length
Indicates the length of the call control address(es) (signalling interface and circuit
identifiers) upon which the CCS provider is giving a maintenance indication.

cc_addr_offset
Indicates the offset of the call control address(es) from the beginning of the M_PROTO
message block.

Valid Modes
This primitive is valid in UNI (Network) mode and NNI mode.

Valid States

This primitive is valid in any state.

New State

The new state is unchanged.

178 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.4 Circuit Continuity Test Primitives

This section describes the format of the NNI circuit continuity test primitives and rules associated
with these primitives. Continuity test primitives are used by NNI management interfaces for per-
forming continuity test requests or responding to continuity test indications for specified or indicated
circuits. These primitives are provided to allow the NNI to meet Q.764 conformance.

4.3.4.1 Circuit Continuity Check Request

CC_CONT_CHECK_REQ

This primitive requests that the CCS provider perform a continuity check procedure.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_check_req {

ulong cc_primitive; /* always CC_CONT_CHECK_REQ */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_cont_check_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_addr_length
Specifies the length of the call control address (circuit identifier) upon which the CCS
user is requesting a continuity check.

cc_addr_offset
Specifies the offset of the call control address from the beginning of the M_PROTO message
block.

Rules

The following rules apply to the continuity check of call control addresses (circuit identifiers):

e If the CCS user does not specify a call control address (i.e, cc_addr_length is set to zero), then
the CCS provider may attempt to assign a call control address and associate it with the stream
for the duration of the continuity test procedure. This can be useful for automated continuity
testing.

Valid Modes
This primitive is only valid in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the selected circuit.

New State
The new state is CKS_-WIND_CTEST for the selected address.

2014-10-25 179

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this

primitive:

— Successful: Successful completion is indicated via the CC_CONT_TEST_IND primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The
applicable non-fatal errors are defined as follows:

[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCNOADDR]
The call control address was not provided (cc_addr_length coded zero).

[CCBADADDR]

The call control address contained in the primitive were poorly formatted or con-
tained invalid information.

[CCNOTSUPP]
The primitive is not supported for the UNI interface and a UNI signalling address
was provided in the call control address or the address was issued to a UNI CCS
provider.

[CCACCESS]

The user did not have sufficient permission to perform the operation on the spec-
ified call control addresses.

180 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.4.2 Circuit Continuity Check Indication

CC_CONT_CHECK_IND

This primitive indicates to the CCS user that a continuity check is being requested by the CCS
user peer on the specified call control address(es) (signalling interface and circuit identifiers). Upon
receipt of this primitive, the CCS user should establish a loop back device on the specified channel
and issues the CC_CONT_TEST_REQ primitive confirming the loop back. The CCS user should then
wait for the CC_CONT_REPORT_IND indicating the success or failure of the continuity check.

This primitive is only delivered to listening streams listening on the specified call control addresses
or to a stream bound as a default listener in the same manner as the CC_SETUP_IND. (A continuity
test indication is treated as a special form of call setup.)

This primitive is only issued to CCS users that successfully bound using the CC_BIND_REQ primitive
with flag CC_TEST set and a non-zero number of setup indications was provided in the CC_BIND_REQ
and returned in the CC_BIND_ACK.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_check_ind {

ulong cc_primitive; /* always CC_CONT_CHECK_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_cont_check_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Identifies the call reference that can be used by the CCS user to associate this message
with the CC_CONT_TEST_REQ or CC_RELEASE_REQ primitive that is to follow. This value
must be unique among the outstanding CC_CONT_CHECK_IND messages.

cc_addr_length
Indicates the length of the call control address (circuit identifier) upon which a conti-
nuity check is indicated.

cc_addr_offset
Indicates the offset of the requesting address from the beginning of the M_PROTO message
block.

Valid Modes

This primitive is only valid for addresses in the NNI mode.

Valid States
This primitive is valid in state CCS_IDLE for the specified addresses.

New State
The new state is CKS_-WREQ_CTEST for the specified addresses.

2014-10-25 181

Chapter 4: CCI Primitives

4.3.4.3 Circuit Continuity Test Request

CC_CONT_TEST_REQ

This message is used either to respond to a CC_SETUP_IND primitive which contains the ISUP_
NCI_CONT_CHECK_REQUIRED flag, or to respond to a CC_.CONT_CHECK_IND primitive. Before
responding to either primitive, the CCS User should install a loop back device on the requested
channel and then respond with this response primitive to confirm the loop back.

Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_test_req {

ulong cc_primitive; /* always CC_CONT_TEST_REQ */
ulong cc_call_ref; /* call reference */
ulong cc_token_value; /* token value */

} CC_cont_test_req_t;

Parameters

cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference of the CC_CONT_TEST_REQ message. It is used by the CCS
provider to associate the CC_CONT_TEST_REQ message with an outstanding CC_SETUP_
IND message. An invalid call reference should result in error with the error type
[CCBADCLR].

cc_token_value

Is used to identify the stream that the CCS user wants to establish the continuity check
call on. (Its value is determined by the CCS user by issuing a CC_BIND_REQ primitive
with the CC_TOKEN_REQ flag set. The token value is returned in the CC_BIND_ACK.) The
value of this field should be non-zero when the CCS user wants to establish the call on
a stream other than the stream on which the CC_CONT_CHECK_IND arrived. If the CCS
user wants to establish a call on the same stream that the CC_CONT_CHECK_IND arrived
on, then the value of this field should be zero.

Valid Modes
This primitive is valid only in NNT mode.

Valid States
This primitive is valid in state CKS_WREQ_CTEST.

New State
The new state is CKS_-WIND_CCREP.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

182 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

— Successful: Successful completion is indicated via the CC_CONT_REPORT_IND in the case that
the primitive was issued in response to a CC_SETUP_IND, or CC_RELEASE_IND primitive in the
case that the primitive was issued in response to the CC_CONT_CHECK_IND primitive.

Unsuccessful: Unsuccessful completion is indicated via the CC_CONT_REPORT_IND primitive.
Non-fatal errors: Errors are indicated via the CC_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[CCSYSERR]
A system error has occurred and the UNIX system error is indicated in the prim-

itive.
[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCACCESS]
The user did not have proper permissions for the operation.

[CCNOTSUPP]
The CCS provider does not support the operation.

2014-10-25 183

Chapter 4: CCI Primitives

4.3.4.4 Circuit Continuity Test Indication

CC_CONT_TEST_IND

This message confirms to the testing CCS user that a loop back device has been (or will be) in-
stalled on the specified call control address (circuit). Upon receiving this message, the testing CCS
user should connect tone generation and detection equipment to the specified circuit, perform the
continuity test and issue a report using the CC_CONT_REPORT_REQ primitive.
This primitive will only be issued to streams successfully bound with the CC_BIND_REQ primitive
with a non-zero number of setup indications and the CC_TEST bind flag set.

Format

The format of this message is on M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_test_ind {

ulong cc_primitive; /* always CC_CONT_TEST_IND */
ulong cc_call_ref; /* call reference */
ulong cc_addr_length; /* address length */
ulong cc_addr_offset; /* address offset */

} CC_cont_test_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference associated with the continuity check call for the specified
call control address (circuit identifier).

cc_addr_length
Indicates the length of the call control address (signalling interface and circuit identifier)
upon which a continuity check is confirmed. The semantics of the values in the CC_
CONT_TEST_IND is identical to the values in the CC_BIND_REQ.

cc_addr_offset
Indicates the offset of the connecting address from the beginning of the M_PROTO mes-
sage block.

Valid Modes

This primitive is valid only in NNT mode.

Valid States
This primitive is valid in state CCS_WCON_CREQ.

New State
The new state is CCS_-WAIT_COR.

184 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.4.5 Circuit Continuity Report Request

CC_CONT_REPORT_REQ

This primitive requests that the CCS provider indicate to the called CCS user that the continuity
check succeeded or failed. The CCS user should remove any continuity test tone generator/detection
device from the circuit and verify silent code loop back before issuing this primitive.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_report_req {

ulong cc_primitive; /* always CC_CONT_REPORT_REQ */
ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC_cont_report_req_t;

Parameters
cc_primitive
Specifies the primitive type.

cc_user_ref Specifies the CCS wuser reference of the associated CC_SETUP_REQ prim-
itive. This value is non-zero when the CC_CONT_REPORT_REQ primitive
is issued subsequent to a CC_SETUP_REQ primitive which had the flag

ISUP_NCI_CONTINUITY_CHECK_PREVIOUS set to indicate the result of the
continuity check on the previous circuit. Otherwise, this value is coded zero.

cc_call_ref Specifies the call reference of the associated CC_CONT_TEST_IND primitive for the con-
tinuity check call. This value is non-zero when the CC_CONT_REPORT_REQ primitive is
issued in response to a CC_CONT_TEST_IND primitive. Otherwise, this value is coded
Z€ro.

cc_result Specifies the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.

Valid Modes

This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CCREP.

New State

When issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE. When
issued subsequent to a CC_SETUP_REQ primitive, the new state is either CCS_WREQ_MORE or CCS_
WREQ_PROCEED, depending upon whether the sent address contain an ST pulse.
Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of this
primitive:

2014-10-25 185

Chapter 4: CCI Primitives

— Successful: Successful completion is indicated via the CC_0K_ACK primitive.

— Unsuccessful (Non-fatal errors): Errors are indicated via the CC_ERROR_ACK primitive. The

186

applicable non-fatal errors are defined as follows:
[CCSYSERR]
A system error occurred and the UNIX system error is indicated in the primitive.

[CCOUTSTATE]
The primitive was issued from an invalid state.

[CCBADCLR]
The call reference specified in the primitive was incorrect or illegal.

[CCBADPRIM]
The primitive format was incorrect.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Primitives

4.3.4.6 Circuit Continuity Report Indication

CC_CONT_REPORT_IND

This primitive indicates to the called CCS user that the continuity check succeeded or failed. The
called CCS user can remove the loop back or tone generation/detection devices from the circuit and
the call either moves to the idle state or a call setup state.

Format

The format of this message is one M_PROTO message block. The structure of the M_PROTO block is as
follows:
typedef struct CC_cont_report_ind {

ulong cc_primitive; /* always CC_CONT_REPORT_IND */
ulong cc_call_ref; /* call reference */
ulong cc_result; /* result of continuity check */

} CC_cont_report_ind_t;

Parameters
cc_primitive
Indicates the primitive type.

cc_call_ref Indicates the call reference associated with the continuity check report as it appeared
in the associated CC_CONT_CHECK_IND primitive.

cc_result Indicates the result of the continuity test, whether success or failure. The value of the
cc_result is protocol specific. For values representing success and values representing
failure, see the Addendum.

Valid Modes
This primitive is valid only in NNI mode.

Valid States
This primitive is valid in state CCS_WREQ_CTEST or CCS_WIND_CCREP.

New State

If the primitive is issued subsequent to the CC_SETUP_REQ, the new state is CCS_WCON_SREQ. If the
primitive is issued in response to the CC_CONT_TEST_IND primitive, the new state is CCS_IDLE.

2014-10-25 187

Chapter 4: CCI Primitives

4.3.5 Collecting Information Phase

The following call control service primitive pertain to the collecting information phase of a call.

188 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Diagnostics Requirements

5 Diagnostics Requirements

Two error handling facilities should be provided to the call control service user: one to handle
non-fatal errors, ant the other to handle fatal errors.

5.1 Non-Fatal Error Handling Facility

These are errors that do not change the state of the call control service interface or the call reference
as seen by the call control service user, and provide the user the option of reissuing the call control
service primitive with the corrected options specification. The non-fatal error handling is provided
only to those primitive that require acknowledgements, and uses the CC_ERROR_ACK primitive to
report these errors. These errors retain the state of the call control service interface and call reference
the same as it was before the call control service provider received the primitive that was in error.
Syntax errors and rule violations are reported via the non-fatal error handling facility.

5.2 Fatal Error Handling Facility

These errors are issued by the CCS provider when it detects errors that are not correctable by the
call control service user, or if it is unable to report a correctable error to the call control service user.
Fatal errors are indicated via the STREAMS message type M_ERROR with the UNIX system error
EPROTO. The M_ERROR STREAMS message type will result in the failure of all the UNIX system
calls on the stream. The call control service user can recover from a fatal error by having all the
processes close the files associated with the stream, and then reopening them for processing.

2014-10-25 189

Call Control Interface (CCI) Addendum for Q.931 Conformance

Addendum for Q.931 Conformance

This addendum describes the formats and rules that are specific to ISDN Q.931. The addendum
must be used along with the generic CCI as defined in the main document when implementing a
CCS provider that will be configured with the Q.931 call processing layer.

Primitives and Rules for Q.931 Conformance

The following are the rules that apply to the CCI primitives for Q.931 compatibility.

Common Primitive Parameters
Call Control Addresses

Format

The format of call control addresses is as follows:

Parameters

cc_addr_length
Specifies or indicates the length of the call control address. If a call control address is
not included in the primitive, this parameter must be coded zero (0).

cc_addr_offset
Specifies or indicates the offset of the address from the begining of the primitive. If a
call control address is not included with the primitive, this parameter must be coded

zero (0).

Address Format

The format of the call control addresses for Q.931 conforming CCS providers is as follows:
typedef struct isdn_addr {

ulong scope; /* the scope of the identifier */
ulong id; /* the identifier within the scope */
ulong ci; /* channel identifier within the scope */

} isdn_addr_t;

#define ISDN_SCOPE_CH 1 /* channel scope */
#define ISDN_SCOPE_FG 2 /% facility group scope */
#define ISDN_SCOPE_TG 3 /* transmission group scope */
#define ISDN_SCOPE_EG 4 /* equipment group scope */
#define ISDN_SCOPE_XG 5 /* customer/provider group scope */
#define ISDN_SCOPE_DF 6 /* default scope */
Address Fields
scope Specifies or indicates the scope of the call control address. See "Scope" below.
id Specifies or indicates the identifier within the scope.
cic Specifies or indicates the Channel Indicator significant within the scope.

2014-10-25 191

Addendum for Q.931 Conformance

Scope

The scope of the address is one of the following:

ISDN_SCOPE_CH

Specifies or indicates that the scope of the call control address is an ISDN B-channel.
The identifier within the scope is an identifier which uniquely identifies the channel to
the CCS provider. Channel scope addresses may also be used to specify or indicate
transmission groups, equipment groups and customer/provider groups. When used
in an indication or confirmation primitive, the CCS provider includes the Channel
Identification associated with the circuit in the address.

For multi-rate calls where multiple channels are involved, the channel scoped address

specifies the lowest numerical Channel Identifier in the group of circuits and the Chan-
nel Identifier provides the channel map of the group of channels.

ISDN_SCOPE_FG

Specifies or indicates that the scope of the call control address is an ISDN facility
group (group of one or more redundant D-channels). The identifier within the scope is
an identifier which uniquely identifies the ISDN interface to the CCS provider. Facil-
ity group scope addresses may also be used to specify or indicate channels, equipment
groups or customer/provider groups. When used in an indication or confirmation prim-
itive, the CCS provider includes the Channel Identifier associated with the indicated
channels.

ISDN_SCOPE_TG

Specifies or indicates that the scope of the call control address is an ISDN transmis-
sion group (PRI interface). The identifier within the scope is an indentifier which
uniquely identifies the ISDN physical interface to the CCS provider. Transmission
group scope addresses may also be used to specify or indicate equipment groups or
customer /provider groups. When used in an indication or confirmation primitive, the
CCS provider may include the Channel Identifier associated with the facility group for
the physical interface.

ISDN_SCOPE_EG

Specifies or indicates that the scope of the call control address is an ISDN equipment
group. The identifier within the scope is an identifier that uniquely identifies the
equipment group to the CCS provider. Equipment group scoped addresses may aslo
be used to specify or indicate customer/provider groups.

ISDN_SCOPE_XG

Specifies or indicates that the scope of the call control address is an ISDN
customer /provider group. The identifier within the scope is an identifier that uniquely
identifies the customer /provider group to the CCS provider.

ISDN_SCOPE_DF

Rules

Specifies or indicates that the scope of the call control address is the default scope. The
identifier within the scope and Channel Identifier are unused and should be ignored by
the CCS user and will be coded zero (0) by the CCS provider.

Rules for scope:

1. In primitives in which the address parameter occurs, the scope field setting indicates the scope
of the address parameter.

192

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

2. Only one call control address can be specified with a signle scope.
3. Not all scopes are necessarily supported by all primitives. See the particular primitive in this
addendum.
Rules for addresses:

1. The address contained in the primitive contains the following:
e A scope.
e An identifier within the scope or zero (0).
e A channel indication within the scope or zero (0).

2. If the scope of the address is ISDN_SCOPE_DF, then both the identifier and channel indication
fields should be coded zero (0) and will be ignored by the CCS user or provider.

3. If the scope of the address is ISDN_SCOPE_EG or ISDN_SCOPE_XG, then the channel indication
field should be coded zero (0) and will be ignored by the CCS user or provider.

4. In all other scopes, the channel indication field is optional and is coded zero (0) if unused.

Optional Information Elements

Format

The format of the optional information elements is as follows:

Parameters

cc_opt_length
Indicates the length of the optional information elements associated with the primitive.
For Q.931 conforming CCS providers, the format of the optional information elements
is the format of a Information Element list as specified in Q.931.

cc_opt_offset
indicates the offset of the option information elements from the beginning of the block.

Rules

Rules for optional information elements:

1. The optional information elements provided by the CCS user may be checked for syntax by
the CCS provider. If the CCS provider discovers a syntax error in the format of the optional
information elements, the CCS provider should respond with a CC_ERROR_ACK primitive with
error [CCBADOPT].

2. For some primitives, specific optional information elements might be interpreted by the CCS
provider and alter the function of some primitives. See the specific primitive descriptions later
in this addendum.

3. Except for optional information elements interpreted by the CCS provider as specified later
in this addendum, the optional information elements are treated as opaque and the optional
information element list only is checked for syntax. Opaque information elements will be passed
to the ISDN message without examination by the CCS provider.

4. To perform specific functions, additional optional information elements may be added to ISDN
messages by the CCS provider.

5. To perform specific functions, optional information elements may be modified by the CCS
provider before they are added to ISDN messages.

2014-10-25 193

Addendum for Q.931 Conformance

Local Management Primitives
CC_INFO_ACK

Parameters

Flags

Rules

CC_BIND_REQ

Parameters

cc_addr_length
Specifies the length of the address to bind.

cc_addr_oftset
Specifies the offset of the address to bind.

cc_setup_ind
Specifies the requested maximum number of setup indications that will be outstanding
for the listening stream.

Flags

CC_DEFAULT_LISTENER

CC_CHANNEL

CC_CHANNEL_GROUP

CC_TRUNK_GROUP
When on of these flags are set, it indicates that the address is interpreted by the CCS
provider as unspecified (CC_DEFAULT_LISTENER), a channel (CC_CHANNEL), as a channel
group (CC_CHANNEL_GROUP), or as a trunk group (CC_TRUNK_GROUP).

Rules

Rules for address specification:
1. The address contained in the primitive must be either a unspecified, a channel, a channel group
or a trunk group.
2. If the CC_DEFAULT_LISTENER flag is set, the address should be left unspecified by the CCS user
and should be ignored by the CCS provider.
Rules for setup indicatesion:
1. If the number of setup indications is non-zero, the stream is bound as a listening stream.
Listening streams will receive all calls that are incoming on the address bound:

e If the address bound is a channel (CC_CHANNEL flag set), all incoming calls on the chan-
nel will be delivered to the stream listening on the channel. These streams will have a
maximum number of setup indications of one (1).

e If the address bound is a channel group (CC_CHANNEL_GROUP flag set), all incoming calls
on the channel group will be delivered to the stream listening on the channel group. These

194 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

streams will have a maximum number of setup indications no higher than the number of
channels in the channel group.

e If the address bound is a trunk group (CC_TRUNK_GROUP flag set), all incoming calls on the
trunk group will be delivered to the stream listening on the trunk group. These streams
will have a maximum number of setup indications no higher than the number of channels
in the trunk group.

Rules for bind flags:

1. For Q.931 conforming CCS providers, the CC_DEFAULT_LISTENER will receive incoming calls that
have no other listening stream. There can only be one stream bound with the CC_DEFAULT_
LISTENER flag set.

2. Only one of CC_DEFAULT_LISTENER, CC_CHANNEL, CC_CHANNEL_GROUP or CC_TRUNK_GROUP may
be set.

CC_BIND_ACK
Parameters

Flags

Rules
CC_OPTMGMT_REQ
Parameters

Flags

Rules

Call Setup Primitives

Call Type and Flags

Call type and flags are used in the following primitives:
CC_SETUP_REQ and CC_SETUP_IND.

Parameters

cc_call_type
Indicates the type of call to be set up. For Q.931 conforming CCS providers, the call
type can be one of the call types listed under "Call Type" below.

cc_call_flags
Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Flags" below.

2014-10-25 195

Addendum for Q.931 Conformance

Call Type
The following call types are defined for Q.931 conforming CCS providers:

CC_CALL_TYPE_SPEECH
The call type is speech. This call type corresponds to a Q.931 Information transfer
capability of Speech, and an Information transfer rate of 64kbit/s.

CC_CALL_TYPE_64KBS_UNRESTRICTED
The call type is 64 kbit/s unrestricted digital information. This call type corresponds
to a Q.931 Information transfer capability of Unrestricted, and an Information transfer
rate of 64kbit/s.

CC_CALL_TYPE_3_1kHZ_AUDIO
The call type is 3.1 kHz audio. This call type corresponds to a Q.931 Information
transfer capability of Unrestricted, and an Information transfer rate of 64kbits/s.

CC_CALL_TYPE_128KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of 2x64 kbit/s.

CC_CALL_TYPE_384KBS_UNRESTRICTED
The call type is 384 kbit/s unrestricted digital information. This call type corresponds
to a Q.931 Information transfer capability of Unrestricted, and an Information transfer
rate of 384 kbit/s.

CC_CALL_TYPE_1536KBS_UNRESTRICTED
The call type is 1536 kbit /s unrestricted digital information. This call type corresponds
to a Q.931 Information transfer capability of Unrestricted, and an Information transfer
rate of 1536 kbit/s.

CC_CALL_TYPE_1920KBS_UNRESTRICTED
The call type is 1920 kbit /s unrestricted digital information. This call type corresponds
to a Q.931 Information transfer capability of Unrestricted, and an Information transfer
rate of 1920 kbit/s.

CC_CALL_TYPE_2x64KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 2.

CC_CALL_TYPE_3x64KBS_UNRESTRICTED
The call type is 3 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 3.

CC_CALL_TYPE_4x64KBS_UNRESTRICTED
The call type is 4 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 4.

CC_CALL_TYPE_b5x64KBS_UNRESTRICTED
The call type is 5 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 5.

196 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC_CALL_TYPE_6x64KBS_UNRESTRICTED
The call type is 6 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 6.

CC_CALL_TYPE_7x64KBS_UNRESTRICTED
The call type is 7 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 7.

CC_CALL_TYPE_8x64KBS_UNRESTRICTED
The call type is 8 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 8.

CC_CALL_TYPE_9x64KBS_UNRESTRICTED
The call type is 9 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 9.

CC_CALL_TYPE_10x64KBS_UNRESTRICTED
The call type is 10 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 10.

CC_CALL_TYPE_11x64KBS_UNRESTRICTED
The call type is 11 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 11.

CC_CALL_TYPE_12x64KBS_UNRESTRICTED
The call type is 12 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 12.

CC_CALL_TYPE_13x64KBS_UNRESTRICTED
The call type is 13 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 13.

CC_CALL_TYPE_14x64KBS_UNRESTRICTED
The call type is 14 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 14.

CC_CALL_TYPE_15x64KBS_UNRESTRICTED
The call type is 15 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 15.

CC_CALL_TYPE_16x64KBS_UNRESTRICTED
The call type is 16 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 16.

2014-10-25 197

Addendum for Q.931 Conformance

CC_CALL_TYPE_17x64KBS_UNRESTRICTED
The call type is 17 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 17.

CC_CALL_TYPE_18x64KBS_UNRESTRICTED
The call type is 18 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 18.

CC_CALL_TYPE_19x64KBS_UNRESTRICTED
The call type is 19 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 19.

CC_CALL_TYPE_20x64KBS_UNRESTRICTED
The call type is 20 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 20.

CC_CALL_TYPE_21x64KBS_UNRESTRICTED
The call type is 21 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 21.

CC_CALL_TYPE_22x64KBS_UNRESTRICTED
The call type is 22 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 22.

CC_CALL_TYPE_23x64KBS_UNRESTRICTED
The call type is 23 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 23.

CC_CALL_TYPE_24x64KBS_UNRESTRICTED
The call type is 24 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 24.

CC_CALL_TYPE_25x64KBS_UNRESTRICTED
The call type is 25 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 25.

CC_CALL_TYPE_26x64KBS_UNRESTRICTED
The call type is 26 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 26.

CC_CALL_TYPE_27x64KBS_UNRESTRICTED
The call type is 27 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 27.

198 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC_CALL_TYPE_28x64KBS_UNRESTRICTED
The call type is 28 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 28.

CC_CALL_TYPE_29x64KBS_UNRESTRICTED
The call type is 29 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 29.

CC_CALL_TYPE_30x64KBS_UNRESTRICTED
The call type is 30 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a Q.931 Information transfer capability of Unrestricted, and an Information
transfer rate of multi-rate with a base rate of 64 kbit/s and a multiplier of 30.

Flags
The following call flags are defined for Q.931 conforming CCS providers:
CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS"

When set, this flag indicates that the unrestricted digital information includes tones
and announcements.

Rules
CC_SETUP_REQ

Parameters

cc_call_type
Specifies the type of call to be set up. For Q.931 conforming CCS providers, the call
type can be one of the call types listed under "Call Type and Flags" in this addendum.

cc_call_flags
Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Call Type and Flags" in
this addendum.

cc_cdpn_length
Specifies the length of the called party number. For Q.931 conforming CCS providers,
the format of the called party number is the format of the Called Party Number pa-
rameter (without the parameter type or length octets) as specified in Q.931.

cc_cdpn_offset
Specifies the offset of the called party number from the beginning of the block.

Rules
Rules for call type:
1. A CCS provider need not support all of the call types listed.

Rules for call flags:

1. The CC_.ITC_-WITH_-TONES_AND_ANNOUNCEMENTS flag may only be set when the call
type is unrestricted digital information. When the call type is not unrestricted digital informa-
tion, this flag should be ignored by the CCS provider.

2014-10-25 199

Addendum for Q.931 Conformance

Rules for called party number:
Rules for generating a SETUP message:

1.

The mandatory (first) Bearer Capability information element in the SETUP message will be
derived from the call type and flags. The Bearer Capability information element will contain
the Information transfer capability, rate, base and multiplier indicated above.

When the call type is CC_CALL_TYPE_128KBS_UNRESTRICTED, the Bearer
Capability information element will be coded with an Information transfer ca-
pability of unrestricted (or unrestricted with tones an announcements if the flag
CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS i set) and an Information transfer
rate of 2 x 64 kbit/s uni-rate call. For a multi-rate call, the call type should be coded as
CC_CALL_TYPE_2x64KBS_UNRESTRICTED.

When the call type is CC_CALL_TYPE_384KBS_UNRESTRICTED, the Bearer
Capability information element will be coded with an Information transfer ca-
pability of unrestricted (or unrestricted with tones an announcements if the flag
CC_ITC_.WITH.TONES_AND_ANNOUNCEMENTS i set) and an Information transfer
rate of 384 kbit/s uni-rate call. For a multi-rate call, the call type should be coded as
CC_CALL_TYPE_6x64KBS_UNRESTRICTED.

When the call type is CC_CALL_TYPE_1536KBS_UNRESTRICTED, the Bearer
Capability information element will be coded with an Information transfer ca-
pability of unrestricted (or unrestricted with tones an announcements if the flag
CC_ITC_.WITH_.TONES_AND_ANNOUNCEMENTS i set) and an Information transfer
rate of 1536 kbit/s uni-rate call. For a multi-rate call, the call type should be coded as
CC_CALL_TYPE_24x64KBS_UNRESTRICTED.

When the call type is CC_CALL_TYPE_1920KBS_UNRESTRICTED, the Bearer
Capability information element will be coded with an Information transfer ca-
pability of unrestricted (or unrestricted with tones an announcements if the flag
CC_ITC_WITH.TONES_AND_ANNOUNCEMENTS i set) and an Information transfer
rate of 1920 kbit/s uni-rate call. For a multi-rate call, the call type should be coded as
CC_CALL_TYPE_29x64KBS_UNRESTRICTED.

e The mandatory Channel Identification information element in the SETUP message
will be derived from the address to which the stream is bound.
If the stream is bound to a channel group (the one or more interfaces), then a free channel
will be selected automatically by the CCS provider (if possible).
If the stream is bound to a channel, then the channel identifier of the bound channel will
be used.

Rules for state transitions:

1.

If the optional information element contains a Sending Complete information element, then the
CCS provider will not accept any subsequent CC_INFORMATION_REQ primitives from the CCS
user, nor will the CCS provider issue any subsequent CC_MORE_INFO_IND primitives to the CCS

user.

CC_SETUP_IND

Parameters

cc_call_type

200

Specifies the type of call to be set up. For Q.931 conforming CCS providers, the call
type can be one of the call types listed under "Call Type and Flags" in this addendum.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

cc_call_flags
Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Call Type and Flags" in
this addendum.

cc_cdpn_length
Specifies the length of the called party number. For Q.931 conforming CCS providers,
the format of the called party number is the format of the Called Party Number pa-
rameter (without the parameter type or length octets) as specified in Q.931.

cc_cdpn_offset
Specifies the offset of the called party number from the beginning of the block.

cc_addr_length
Specifies the length of the address which contains the channel identifier selected for the
call.

cc_addr_offset
Specifies the offset of the address from the beginning of the block.

Flags

Call flags can be any of the call flags supported by the CCS provider listed under CC_SETUP_REQ in
this addendum.

Rules

Rules for call type:
1. A CCS provider need not support all of the call types listed.

Rules for call flags:

1. The CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS flag may only be set when the call
type is unrestricted digital information. When the call type is not unrestricted digital informa-
tion, this flag should be ignored by the CCS provider.

Rules for called party number:
Rules for obtaining parameters from a SETUP message:

1. The mandatory (first) Bearer Capability information element in the SETUP message will be
translated into the call type and flags. The call type and flags correspond to the Bearer
Capability information element will contain the Information transfer capability, rate, base and
multiplier indicated under "Call Type" and "Flags".

2. The mandatory Channel Identification information element in the SETUP message will be
provided in the address parameter.

Rules for state transitions:

1. If the optional information element contains a Sending Complete information element, then
the CCS provider will not accept any subsequent CC_MORE_INFO_REQ primitives from the CCS
user, nor will the CCS provider issue any subsequent CC_INFORMATION_IND primitives to the
CCS user.

CC_SETUP_RES

Parameters

2014-10-25 201

Addendum for Q.931 Conformance

Flags

Rules

CC_SETUP_CON

Parameters

Flags

Rules
CC_CALL_REATTEMPT_IND
Rules
CC_SETUP_COMPLETE_REQ
Parameters

Flags

Rules
CC_SETUP_COMPLETE_IND
Parameters

Flags

Rules

Continuity Check Primitives
CC_CONT_CHECK_REQ
Parameters

Flags

Rules

CC_CONT_TEST_REQ

Parameters

202 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

Flags

Rules
CC_CONT_REPORT_REQ
Parameters

Flags

Rules

Call Establishment Primitives
CC_MORE_INFO_REQ
Parameters

Flags

Rules
CC_MORE_INFO_IND
Parameters

Flags

Rules
CC_INFORMATION_REQ
Parameters

Flags

Rules
CC_INFORMATION_IND
Parameters

Flags

Rules

2014-10-25 203

Addendum for Q.931 Conformance

CC_INFO_TIMEOUT_IND

Rules

Rules for issuing primitive:

1. If the Q.931 conforming CCS provider is expecting additional digits (it has previously issued a
CC_MORE_INFO_REQ) and timer T302 expires, the CCS provider will issue this primitive to the
CCS user.

2. Upon receipt of this primitive, it is the CCS user’s responsibility to determine whether the
address digits are sufficient and to issue a CC_SETUP_RES or CC_REJECT_REQ primitive.

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to
Q.764, if the CCS user receives a CC_INFO_TIMEOUT_IND

CC_PROCEEDING_REQ
Parameters

Flags

Rules
CC_PROCEEDING_IND
Parameters

Flags

Rules
CC_ALERTING_REQ
Parameters

Flags

Rules
CC_ALERTING_IND
Parameters

Flags

Rules

CC_PROGRESS_REQ

204 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

Parameters

Flags

Rules
CC_PROGRESS_IND
Parameters

Flags

Rules

CC_IBI_REQ
Parameters

Flags

Rules

CC_IBI_.IND
Parameters

Flags

Rules

Call Established Primitives
CC_SUSPEND_REQ

Parameters

cc_flags Indicates the options associated with the suspend. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support suspend flags. This field should be coded zero (0)
by the CCS user and ignored by the CCS provider.

Rules

Rules for issuing primitive:

1. Only the CCS user on the User side of the Q.931 interface can issue a CC_SUSPEND_REQ primitive.
If the CCS provider is in Network mode and it receives a CCS_SUSPEND_REQ), it should
respond with a CC_ERROR_ACK with error [CCNOTSUPP].

2014-10-25 205

Addendum for Q.931 Conformance

CC_SUSPEND_IND

cc_flags Indicates the options associated with the suspend. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support suspend flags. This field will be coded zero (0) by
the CCS provider and may be ignored by the CCS provider.

CC_SUSPEND_RES
Parameters

Rules

CC_SUSPEND_CON
Parameters

Rules
CC_SUSPEND_REJECT_REQ

Parameters

cc_cause Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause
values can be any of the values listed in "Cause Values" in this addendum with the
exception of CCS_CAUS_NONE.

Flags
Rules

CC_SUSPEND_REJECT_IND

Parameters

cc_cause Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause
values can be any of the values listed in "Cause Values" in this addendum with the
exception of CCS_CAUS_NONE.

Flags

Rules
CC_RESUME_REQ
Parameters

cc_flags Indicates the options associated with the resume. See "Flags" below.

206 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

Flags

Q.931 conforming CCS providers do not support resume flags. This field should be coded zero (0)
by the CCS user and ignored by the CCS provider.

Rules
CC_RESUME_IND

Parameters

cc_flags Indicates the options associated with the resume. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support resume flags. This field should be coded zero (0)
by the CCS user and ignored by the CCS provider.

Rules

CC_RESUME_RES
Parameters

Flags

Rules

CC_RESUME_CON
Parameters

Flags

Rules
CC_RESUME_REJECT_REQ

Parameters

cc_cause Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause
values can be any of the values listed in "Cause Values" in this addendum with the
exception of CCS_CAUS_NONE.

Flags

Rules

2014-10-25 207

Addendum for Q.931 Conformance

CC_RESUME_REJECT_IND

cc_cause Specifies the cause for the rejection. For Q.931 conforming CCS providers, the cause
values can be any of the values listed in "Cause Values" in this addendum with the
exception of CCS_CAUS_NONE.

Parameters

Flags

Rules

Call Termination Primitives

Cause Values

Cause values are used in the following primitives:
CC_REJECT_REQ, CC_REJECT_IND, CC_DISCONNECT_REQ, CC_DISCONNECT_IND, CC_RELEASE_REQ, and
CC_RELEASE_IND.

Parameters

cc_cause Indicates the case for the rejection, disconnection, or release of a call. For Q.931
conforming CCS providers, the cause values can be any of the cause values listed in
Q.850 listed under "Cause Value" below.

Cause Value

Cause values are essentially opaque and cause values will be transferred directly to the corresponding
Q.931 message. The following cause values are defined for Q.931 conforming CCS providers:

CC_CAUS_UNALLOCATED_NUMBER
The called party number does not correspond to number allocated to a subscriber or
terminal.

CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK
(no description)

CC_CAUS_NO_ROUTE_TO_DESTINATION
(no description)

CC_CAUS_SEND_SPECIAL_INFO_TONE
(no description)
CC_CAUS_MISDIALLED_TRUNK_PREFIX
(no description)
CC_CAUS_PREEMPTION
(no description)

CC_CAUS_PREEMPTION_CCT_RESERVED
(no description)

CC_CAUS_NORMAL_CALL_CLEARING
(no description)

208 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CC_CAUS_USER_BUSY
(no description)

CC_CAUS_NO_USER_RESPONDING
(no description)

CC_CAUS_NO_ANSWER
(no description)

CC_CAUS_SUBSCRIBER_ABSENT
(no description)

CC_CAUS_CALL_REJECTED
(no description)

CC_CAUS_NUMBER_CHANGED
(no description)

CC_CAUS_REDIRECT
(no description)

CC_CAUS_OUT_OF_ORDER
(no description)

CC_CAUS_ADDRESS_INCOMPLETE
(no description)

CC_CAUS_FACILITY_REJECTED
(no description)

CC_CAUS_NORMAL_UNSPECIFIED

(no description)

CC_CAUS_NO_CCT_AVAILABLE
(no description)

CC_CAUS_NETWORK_OUT_OF _ORDER
(no description)

CC_CAUS_TEMPORARY_FAILURE
(no description)

CC_CAUS_SWITCHING_EQUIP_CONGESTION
(no description)

CC_CAUS_ACCESS_INFO_DISCARDED
(no description)

CC_CAUS_REQUESTED_CCT_UNAVAILABLE
(no description)

CC_CAUS_PRECEDENCE_CALL_BLOCKED
(no description)

CC_CAUS_RESOURCE_UNAVAILABLE
(no description)

CC_CAUS_NOT_SUBSCRIBED
(no description)

2014-10-25

Addendum for Q.931 Conformance

209

Addendum for Q.931 Conformance

CC_CAUS_OGC_BARRED_WITHIN_CUG
(no description)

CC_CAUS_ICC_BARRED WITHIN_CUG
(no description)

CC_CAUS_BC_NOT_AUTHORIZED
(no description)

CC_CAUS_BC_NOT_AVAILABLE
(no description)

CC_CAUS_INCONSISTENCY
(no description)

CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE
(no description)

CC_CAUS_BC_NOT_IMPLEMENTED
(no description)

CC_CAUS_FACILITY_NOT_IMPLEMENTED
(no description)

CC_CAUS_RESTRICTED_BC_ONLY
(no description)

CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED
(no description)

CC_CAUS_USER_NOT_MEMBER_OF_CUG

(no description)

CC_CAUS_INCOMPATIBLE_DESTINATION
(no description)

CC_CAUS_NON_EXISTENT_CUG
(no description)

CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION
(no description)

CC_CAUS_INVALID_MESSAGE
(no description)

CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED
(no description)

CC_CAUS_PARAMETER_NOT_IMPLEMENTED
(no description)

CC_CAUS_RECOVERY_ON_TIMER_EXPIRY
(no description)

CC_CAUS_PARAMETER_PASSED_ON
(no description)

CC_CAUS_MESSAGE_DISCARDED
(no description)

210

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC_CAUS_PROTOCOL_ERROR
(no description)

CC_CAUS_INTERWORKING
(no description)
CC_CAUS_UNALLOCATED_DEST_NUMBER
(no description)
CC_CAUS_UNKNOWN_BUSINESS_GROUP
(no description)

CC_CAUS_EXCHANGE_ROUTING_ERROR
(no description)

CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26
(no description)

CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND
(no description)

CC_CAUS_PREEMPTION
(no description)

CC_CAUS_PRECEDENCE_CALL_BLOCKED
(no description)

CC_CAUS_CALL_TYPE_INCOMPATIBLE
(no description)

CC_CAUS_GROUP_RESTRICTIONS
(no description)

Rules

In addition to these cause values, the CCS provider might support additional variant-specific cause
values.

CC_REJECT_REQ

Parameters

cc_cause Specifies the cause value for the rejection. For Q.931 conforming CCS providers, the
cause value will be one of the cause values listed under "Cause Values" in this Adden-
dum.

Flags

Rules

CC_REJECT_IND

Parameters

cc_cause Specifies the cause value for the rejection. For Q.931 conforming CCS providers, the
cause value will be one of the cause values listed under "Cause Values" in this Adden-
dum.

2014-10-25 211

Addendum for Q.931 Conformance

Flags
Rules
CC_CALL_FAILURE_IND

Parameters

cc_reason Specifies the reason for the failure indication. For Q.931 conforming CCS providers,
the reason will be one of the reasons listed under "Call Failure Reasons" below.

cc_cause Specifies the cause value for the error indication. For Q.931 conforming CCS providers,
the cause value will be one of the cause values listed under "Cause Values" in this
addendum.

Call Failure Reasons

ISUP_CALL_FAILURE_ERROR
Indicates that the data link failed and recovered during overlap sending or overlap
receiving.

ISUP_CALL_FAILURE_STATUS
Indicates that the CCS provider received a STATUS message from the peer with a
unrecoverable mismatch in state.

ISUP_CALL_FAILURE_RESTART
Indicates that the CCS provider received or issued a RESTART message for the chan-
nel.

Flags
Rules

CC_DISCONNECT_REQ

Parameters

cc_cause Specifies the cause value for the disconnect. For Q.931 conforming CCS providers,
the cause value will be one of the cause values listed under "Cause Values" in this
addendum.

Rules

CC_DISCONNECT_IND

Parameters

cc_cause Indicates the case values for the disconnect. For Q.931 conforming CCS providers, the
cause value wil be one of the cause values listed under "Cause Value" in this addendum.

Rules

212 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC_RELEASE_REQ

Parameters

cc_cause Specifies the cause value for the release. For Q.931 conforming CCS providers, the cause
value will be one of the cause values listed under "Cause Values" in this addendum.

Rules
Rules for cause:

1. If the request is not the first step in the clearing phase (i.e, the call is not in state
CC_WREQ_REL), then the cause value must be specified. Otherwise, the cause value should
be coded CC_CAUS_NONE by the CCS user and ignored by the CCS provider.

CC_RELEASE_IND

Parameters

cc_cause Specifies the cause value for the release. For Q.931 conforming CCS providers, the cause
value will be one of the cause values listed under "Cause Values" in this addendum.

Rules
Rules for cause:

1. If the request is not the first step in the clearing phase (i.e, the call is not in state
CC_WIND_REL), then the cause value will be indicated by the CCS provider. Otherwise, the
cause value will be coded CC_.CAUS_NONE by the CCS provider and should be ignored by
the CCS user.

CC_RELEASE_RES
Parameters

Rules
CC_RELEASE_CON
Parameters

Rules

Management Primitives
CC_RESTART_REQ

Parameters

cc_flags

2014-10-25 213

Addendum for Q.931 Conformance

cc_addr_length
Specifies the length of the address which contains the interface identifier(s) and optional
channel identification for the interface(s) or channels to restart.

cc_addr_offset
Specifies the offset of the address from the beginning of the block.

Flags
Rules
CC_RESTART_CON

Parameters

cc_flags

cc_addr_length
Specifies the length of the address which contains the interface identifier(s) and optional
channel identification for the interface(s) or channels to restart.

cc_addr_offset
Specifies the offset of the address from the beginning of the block.

Flags

Rules

Q.931 Header File Listing

#ifndef __SS7_ISDNI_H__

#define __SS7_ISDNI_H__
/*
* ISDN address
*/
typedef struct isdn_addr {
cc_ulong scope; /* the scope of the identifier */
cc_ulong id; /* the identifier within the scope */
cc_ulong cij; /* channel identifier within the scope */

} isdn_addr_t;

#define ISDN_SCOPE_CH
#define ISDN_SCOPE_FG
#define ISDN_SCOPE_TG
#define ISDN_SCOPE_EG
#define ISDN_SCOPE_XG
#define ISDN_SCOPE_DF

/* channel scope */

/* facility group scope */

/* transmission group scope */

/* equipment group scope */

/* customer/provider group scope */
/* default scope */

OO WN -

enum {
UO_NULL,

214 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

U1_CALL_INITIATED,
U2_OVERLAP_SENDING,
U3_0UTGOING_CALL_PROCEEDING,
U4_CALL_DELIVERED,
U6_CALL_PRESENT,
U7_CALL_RECEIVED,
U8_CONNECT_REQUEST,
U9_INCOMING_CALL_PROCEEDING,
U10_ACTIVE,
U11_DISCONNECT_REQUEST,
U12_DISCONNECT_INDICATION,
U15_SUSPEND_REQUEST,
U17_RESUME_REQUEST,
U19_RELEASE_REQUEST,
U25_0VERLAP_RECEIVING,
NO_NULL,

N1_CALL_INITIATED,
N2_OVERLAP_SENDING,
N3_OUTGOING_CALL_PROCEEDING,
N4_CALL_DELIVERED,
N6_CALL_PRESENT,
N7_CALL_RECEIVED,
N8_CONNECT_REQUEST,
N9_INCOMING_CALL_PROCEEDING,
N10_ACTIVE,
N11_DISCONNECT_REQUEST,
N12_DISCONNECT_INDICATION,
N15_SUSPEND_REQUEST,
N17_RESUME_REQUEST,
N19_RELEASE_REQUEST,
N22_CALL_ABORT,
N25_0VERLAP_RECEIVING,

CMS_IDLE = 0,

#define ISDN_PI_INTERWORKING

/*
* (Q.850 Cause Values
*/

/*

Normal class
*/

#define

#define

#define

#define

#define

#define

#define

#define

CC_CAUS_UNALLOCATED_NUMBER
CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK
CC_CAUS_NO_ROUTE_TO_DESTINATION
CC_CAUS_SEND_SPECIAL_INFO_TONE
CC_CAUS_MISDIALLED_TRUNK_PREFIX
CC_CAUS_CALL_ABANDONNED
CC_CAUS_PREEMPTION
CC_CAUS_PREEMPTION_CCT_RESERVED

#define CC_CAUS_NORMAL_CALL_CLEARING

2014-10-25

© 00O U WwN -

-
()]

0x0 /* FIXME */

/*
/*
/*
/*
/*
/*
/*
/*

/*

Addendum for Q.931 Conformance

Unallocated (unassigned) number */

No route to specified transit network */
No route to destination */

Send special information tone */
Misdialled trunk prefix */

Call abandonned */

Preemption */

Preemption - circuit reserved for

reuse */

Normal call clearing */

215

Addendum for Q.931 Conformance

#define CC_CAUS_USER_BUSY 17 /* User busy */
#define CC_CAUS_NO_USER_RESPONDING 18 /* No user responding */
#define CC_CAUS_NO_ANSWER 19 /* No answer from user (user alerted) */
#define CC_CAUS_SUBSCRIBER_ABSENT 20 /* Subscriber absent */
#define CC_CAUS_CALL_REJECTED 21 /* Call rejected */
#define CC_CAUS_NUMBER_CHANGED 22 /* Number changed */
#define CC_CAUS_REDIRECT 23 /* Redirect to new destination */
#define CC_CAUS_OUT_OF_ORDER 27 /* Desitination out of order */
#define CC_CAUS_ADDRESS_INCOMPLETE 28 /* Invalid number format (address
incomplete) */
#define CC_CAUS_FACILITY_REJECTED 29 /* Facility rejected */
#define CC_CAUS_NORMAL_UNSPECIFIED 31 /* Normal unspecified */
/*
Resource Unavailable Class
*/
#define CC_CAUS_NO_CCT_AVAILABLE 34 /x No circuit/channel available */
#define CC_CAUS_NETWORK_OUT_OF_ORDER 38 /* Network out of order */
#define CC_CAUS_TEMPORARY_FAILURE 41 /* Temporary failure */
#define CC_CAUS_SWITCHING_EQUIP_CONGESTION 42 /% Switching equipment congestion */
#define CC_CAUS_ACCESS_INFO_DISCARDED 43 /* Access information discarded */

#define CC_CAUS_REQUESTED_CCT_UNAVAILABLE 44 /* Requested circuit/channel not
available */

#define CC_CAUS_PRECEDENCE_CALL_BLOCKED 46 /* Precedence call blocked */

#define CC_CAUS_RESOURCE_UNAVAILABLE 47 /* Resource unavailable, unspecified */

/*

Service or Option Unavaialble Class
*/

#define CC_CAUS_NOT_SUBSCRIBED 50 /x Requested facility not subscribed */

#define CC_CAUS_OGC_BARRED_WITHIN_CUG 53 /* Outgoing calls barred within CUG */

#define CC_CAUS_ICC_BARRED WITHIN_CUG 55 /* Incoming calls barred within CUG */

#define CC_CAUS_BC_NOT_AUTHORIZED 57 /* Bearer capability not authorized */

#define CC_CAUS_BC_NOT_AVAILABLE 58 /* Bearer capability not presently
available */

#define CC_CAUS_INCONSISTENCY 62 /* Inconsistency in designated outgoing
access information and subscriber
class */

#define CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE 63 /* Service or option not available,
unspecified */

/*
Service or Option Not Implemented Class
*/
#define CC_CAUS_BC_NOT_IMPLEMENTED 65 /* Bearer capability not implemented */
#define CC_CAUS_FACILITY_NOT_IMPLEMENTED 69 /x* Requested facility not implemented */
#define CC_CAUS_RESTRICTED_BC_ONLY 70 /* Only restricted digital information
bearer capability is available */
#define CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED 79 /* Service or option not
implemented, unspecified */
/*
Invalid Message (e.g., Parameter out of Range) Class
*/
#define CC_CAUS_UNEXPECTED_MESSAGE 81 /* Unexpected message */
#define CC_CAUS_USER_NOT_MEMBER_OF_CUG 87 /* User not member of CUG */
#define CC_CAUS_INCOMPATIBLE_DESTINATION 88 /* Incompatible destination */
#define CC_CAUS_NON_EXISTENT_CUG 90 /* Non-existent CUG */
#define CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION 91 /* Invalid transit network

selection */

216 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

#define CC_CAUS_INVALID_MESSAGE 95
#define CC_CAUS_MISSING_MANDATORY_PARAMETER 96

/*
Protocol Error (e.g., Unknwon Message) Class

*/
#define CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED 97
#define CC_CAUS_PARAMETER_NOT_IMPLEMENTED 99

#define CC_CAUS_INVALID_MANDATORY_PARAMETER 100

#define CC_CAUS_RECOVERY_ON_TIMER_EXPIRY 102
#define CC_CAUS_PARAMETER_PASSED_ON 103
#define CC_CAUS_MESSAGE_DISCARDED 110
#define CC_CAUS_PROTOCOL_ERROR 111
/*
Interworking Class
*/
#define CC_CAUS_INTERWORKING 127
/*
* ANSI Standard Causes
*/
/*
Normal Class
*/
#define CC_CAUS_UNALLOCATED_DEST_NUMBER 23
#define CC_CAUS_UNKNOWN_BUSINESS_GROUP 24
#define CC_CAUS_EXCHANGE_ROUTING_ERROR 25

#define CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER

#define CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND 27
/*
Resource Unavailable Class
*/
#define CC_CAUS_RESOURCE_PREEMPTION 45
#define CC_CAUS_PRECEDENCE_CALL_BLOCKED 46
/*
Service or Option Not Available Class
*/
#define CC_CAUS_CALL_TYPE_INCOMPATIBLE 51
#define CC_CAUS_GROUP_RESTRICTIONS 54

#endif /*

2014-10-25

/*
/*

/*
/*
/*
/*
/*
/*

/*

/*

/*
/*
/*
26

/*

/*
/*

/*

/*

*/

Addendum for Q.931 Conformance

Invalid message, unspecified */
Invalid message, missing mandatory
parameter */

Message typ non-existent or not
implemented. */

Information element/Parameter
non-existent or not implemented */
Invalid mandatory parameter */
Recovery on timer expiry */
Parameter non-existent or not
implemented - passed on */

Message with unrecognized parameter
discarded */

Protocol error, unspecified */

Interworking, unspecified */

Unallocated destination number */
Unknown business group */
Exchange routing error */
/* Misrouted call to a ported
number */
Number portability Query on Release

(QoR) number not found. */
Preemption. */
Precedence call blocked. */

Call type incompatible with service
request */
Call blocked due to group restrictions

__SS7_ISDNI_H__ */

217

Call Control Interface (CCI) Addendum for Q.764 Conformance

Addendum for Q.764 Conformance

This addendum describes the formats and rules that are specific to ISUP Q.764. The addendum
must be used along with the generic CCI as defined in the main document when implementing a
CCS provider that will be configured with the Q.764 call processing layer.

Primitives and Rules for Q.764 Conformance

The following are the rules that apply to the CCI primitives for Q.764 compatibility.

Common Primitive Parameters
Call Control Addresses

Format

The format of call control addresses is as follows:

Parameters

cc_addr_length
Specifies or indicates the length of the call control address. If a call control address is
not included in the primitive, this parameter must be coded zero (0).

cc_addr_offset
Specifies or indicates the offset of the address from the begining of the primitive. If a
call control address is not included with the primitive, this parameter must be coded
zero (0).

Address Format

The format of the call control addresses for QQ.764 conforming CCS providers is as follows:
typedef struct isup_addr {

ulong scope; /* the scope of the identifier */
ulong id; /* the identifier within the scope */
ulong cic; /* circuit identification code within the scope */

} isup_addr_t;

#define ISUP_SCOPE_CT 1 /* circuit scope */

#define ISUP_SCOPE_CG 2 /* circuit group scope */

#define ISUP_SCOPE_TG 3 /* trunk group scope */

#define ISUP_SCOPE_SR 4 /* signalling relation scope */

#define ISUP_SCOPE_SP 5 /* signalling point scope */

#define ISUP_SCOPE_DF 6 /* default scope */

#define ISUP_SCOPE_CIC 7 /* for unidentified cic addresses */
Address Fields
scope Specifies or indicates the scope of the call control address. See "Scope" below.
id Specifies or indicates the identifier within the scope.
cic Specifies or indicates the Circuit Identification Code significant within the scope.

2014-10-25 219

Addendum for Q.764 Conformance

Scope
The scope of the address is one of the following:

ISUP_SCOPE_CT
Specifies or indicates that the scope of the call control address is a ISUP circuit. The
identifier within the scope is an identifier which uniquely identifies a circuit to the CCS
provider. Circuit scope addresses may also be used to specify or indicate circuit groups,
trunk groups, signalling relations and signalling points. When used in an indication
or confirmation primitive, the CCS provider includes the Circuit Identification Code
associated with the circuit in the address.

For multi-rate calls where multiple circuits are involved, the circuit scoped address
specifies the lowest numerical Circuit Identification Code in the group of circuits.

ISUP_SCOPE_CG
Specifies or indicates that the scope of the call control address is a ISUP circuit group.
The identifier within the scope is an identifier which uniquely identifies a circuit group
to the CCS provider. Circuit group scope addresses may also be used to specify or in-
dicate signalling relations and signalling points. When used in an indication or confir-
mation primitive, the CCS provider includes the Circuit Identification Code associated
with the circuit group (lowest numerical value CIC in the circuit group range).

ISUP_SCOPE_TG
Specifies or indicates that the scope of the call control address is a ISUP trunk group.
The identifier within the scope is an identifier which uniquely identifies a trunk group
to the CCS provider. Trunk group scope addresses may also be used to specify or
indicate circuits, signalling relations and signalling points. The Circuit Identification
Code must be used to specify a circuit within the trunk group.

ISUP_SCOPE_SR
Specifies or indicates that the scope of the call control address is a ISUP signalling
relation. The identifier within the scope is an identifier which uniquely identifies a
signalling relation to the CCS provider. Signalling relation scope addresses may also
be used to specify or indicate circuits and signalling points. The Circuit Identification
Code must be used to sepcify a circuit (equipped or unequipped) within the signalling
relation.

ISUP_SCOPE_SP
Specifies or indicates that the scope of the call control address is a ISUP signalling
point. The identifier within the scope is an identifier which uniquely identifies a local
signalling point to the CCS provider. Signalling point scope addresses may only indicate

local signalling points. The Circuit Identification Code is unused and should be ignored
by the CCS user and will be coded zero (0) by the CCS provider.

ISUP_SCOPE_DF
Specifies or indicates that the scope of the call control address is the default scope.
The identifier within the scope and Circuit Identification Code are unused and should
be ignored by the CCS user and will be coded zero (0) by the CCS provider.

Rules

Rules for scope:

1. In primitives in which the address parameter occurs, the scope field setting indicates the scope
of the address parameter.

220 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

2. Only one call control address can be specified with a signle scope.

3. Not all scopes are necessarily supported by all primitives. See the particular primitive in this
addendum.

Rules for addresses:
1. The address contained in the primitive contains the following:
e A scope.
e An identifier within the scope or zero (0).
e A circuit identification code within the scope or zero (0).

2. If the scope of the address is ISUP_SCOPE_DF, then both the identifier and circuit identification
code fields should be coded zero (0) and will be ignored by the CCS user or provider.

3. If the scope of the address is ISUP_SCOPE_SP, then the circuit identification code field should
be coded zero (0) and will be ignored by the CCS user or provider.

4. In all other scopes, the circuit identification code is optional and is coded zero (0) if unused.

Optional Parameters

Format

The format of the optional parameters for Q.764 conforming CCS providers is as follows:

Parameters

cc_opt_length
Specifies or indicates the length of the optional parameters associated with the prim-
itive. For Q.764 conforming CCS providers, the format of the optional parameters is
the format of the Optional Parameters list (without the pointer or End of Optional
Parameters octets) as specified in Q.763.

cc_opt_offset
Specifies the offset of the optional parameters from the beginning of the block.

Rules

Rules for optional parameters:

1. The optional parameters provided by the CCS user may be checked for syntax by the CCS
provider. If the CCS provider discovers a syntax error in the format of the optional parameters,
the CCS provider should respond with a CC_ERROR_ACK primitive with error [CCBADOPT].

2. For some primitives, specific optional parameters might be interpreted by the CCS provider
and alter the function of some primitives. See the specific primitive descriptions later in this
addendum.

3. Except for optional parameters interpreted by the CCS provider as specified later in this ad-
dendum, the optional parameters are treated as opaque and the optional parameter list only is
checked for syntax. Opaque parameters will be passed to the ISUP message without examina-
tion by the CCS provider.

4. To perform specific functions, additional optional parameters may be added to ISUP messages
by the CCS provider.

5. To perform specific functions, optional parameters may be modified by the CCS provider before
being added to ISUP messages.

2014-10-25 221

Addendum for Q.764 Conformance

Local Management Primitives

CC_INFO_ACK

Parameters
Flags

Rules

CC_BIND_REQ

Parameters

cc_addr_length
Indicates the length of the address to bind.

cc_addr_offset
Indicates the offset of the address to bind from the beginning of the block.

cc_setup_ind

cc_bind_flags

222

Indicates the maximum number of setup (or continuity check) indications that will be
outstanding for the listening stream.

Indicates the options assocated with the bind. The bind flags can be as follows:
CC_DEFAULT_LISTENER

When set, this flag specifies that this stream is the "default listener
stream." This stream is used to pass setup indications (or continuity
check requests) for all incoming calls that contain protocol identifiers
that are not bound to any other listener, or when a listener stream with
cc_setup_ind value of greater than zero is not found. Also, the default
listener will receive all incoming call indications that contain no user
data (i.e., test calls) and all maintenance indications (i.e., CC_MAINT_
IND). Only one default listener stream is allowed per occurrence of CCL
An attempt to bind a default listener stream when one is already bound
should result in an error (of type [CCADDRBUSY]).

CC_TOKEN_REQUEST

When set, this flag specifies to the CCS provider that the CCS user has
requested that a "token" be assigned to the stream (to be used in the call
response message), and the token value be returned to the CCS user via
the CC_BIND_ACK primitive. The token assigned by the CCS provider can
then be used by the CCS user in a subsequent CC_SETUP_RES primitive
to identify the stream on which the call is to be established.

CC_MANAGEMENT

CC_TEST

When set, this flag specifies to the CCS provider that this stream is to be
used for circuit management indications for the specified addresses.

When set, this flag specifies to the CCS provider that this stream is to be
used for continuity and test call indications for the specified addresses.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

CC_MAINTENANCE
When set, this flag specifies to the CCS provider that this stream is to be
used for maintenance indications for the specified addresses.

Rules

Rules for address specification:
1. The address contained in the primitive as indicated by cc_addr_length and cc_addr_offset pa-
rameters. The address can be of any ISUP scope.
2. If the CC_DEFAULT_LISTENER flag is set, the parameters cc_addr_length and cc_addr_offset
should be coded zero, and will be ignored by the CCS provider.
Rules for setup indications:

1. If the number of setup indications is non-zero, the stream is bound as a listening stream.
Listening streams will receive all calls, test calls, and continuity tests that are incoming on the
address bound.

e If the address bound is of scope ISUP_SCOPE_CT, only incoming calls on the bound circuit
will be delivered to the listening stream.

e If the address bound is of scope ISUP_SCOPE_CG, only incoming calls on the bound circuit
group will be delivered to the listening stream.

e If the address bound is of scope ISUP_SCOPE_TG, only incoming calls on the bound trunk
group will be delivered to the listening stream (this is the normal case).

e If the address bound is of scope ISUP_SCOPE_SR, only incoming calls on the bound sig-
nalling relation (from the associated remote point code) will be delivered to the listening
stream.

e If the address bound is of scope ISUP_SCOPE_SP, only incoming calls on the bound local
signalling point will be delivered to the listening stream.

e If the address bound is of scope ISUP_SCOPE_DF, all incoming calls will be delivered to the
listening stream.

e Streams bound at one scope takes precedence over a stream bound at another scope in the
order: circuit, circuit group, trunk group, signalling relation, signalling point and default
scope.

2. Once a stream has successfully bound as a listening stream, it should be prepared to receive
incoming calls, test calls and continuity tests.

Rules for bind flags:

1. For Q.764 conformance, the CC_DEFAULT_LISTENER will receive all incoming calls, test calls,
continuity tests, circuit management indications and maintenance indications that have no
other listening stream. There can only be one stream bound with the CC_DEFAULT_LISTENER
flag set.

2. Only one of CC_DEFAULT_LISTENER, CC_MANAGEMENT, CC_TEST and CC_MAINTENANCE may be
set.

3. Streams bound with the CC_MANAGEMENT flag set will receive only circuit management indica-
tions and will not receive any calls.

4. Streams bound with the CC_TEST flag set will receive only continuity test and test call indica-
tions and will not receive normal calls, circuit management or maintenance indications.

5. Streams bound with the CC_MAINTENANCE flag set will receive only maintenance indications and
will not receive any circuit management indications or calls.

2014-10-25 223

Addendum for Q.764 Conformance

CC_BIND_ACK

Parameters
cc_addr_length
Indicates the length of the address to bind.

cc_addr_offset
Indicates the offset of the address to bind from the beginning of the block.

cc_setup_ind
Indicates the maximum number of setup (or continuity check) indications that will be
outstanding for the listening stream.

Flags
See CC_BIND_REQ in this Addendum.

Rules
See CC_BIND_REQ in this Addendum.

CC_.OPTMGMT_REQ
Parameters

Flags

Rules

Call Setup Primitives
CC_SETUP_REQ

Parameters

cc_call_type
Specifies the type of call to be set up. Q.764 conforming CCS providers must support
the following call types:

CC_CALL_TYPE_SPEECH
The call type is speech. This call type corresponds to a Q.764 transmission
medium requirement of Speech.

CC_CALL_TYPE_64KBS_UNRESTRICTED
The call type is 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.764 transmission medium requirement of 64 kbit/s
Unrestricted Digital Information.

CC_CALL_TYPE_3_1kHZ_AUDIO
The call type is 3.1 kHz audio. This call type corresponds to a Q.764
transmission medium requirement of 3.1 kHz Audio.

224 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

cc_user_ref

cc_call_flags

2014-10-25

CC_CALL_TYPE_64KBS_PREFERRED
The call type is 64 kbit/s preferred. This call type corresponds to a Q.764
transmission medium requirement of 64 kbit/s Preferred.

CC_CALL_TYPE_2x64KBS_UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call
type corresponds to a Q.764 transmission medium requirement of 2 x 6/
kbit/s Unrestricted Digital Information.

CC_CALL_TYPE_384KBS_UNRESTRICTED
The call type is 384 kbit/s unrestricted digital information. This call type
corresponds to a Q.764 transmission medium requirement of 384 kbit/s
Unrestricted Digital Information.

CC_CALL_TYPE_1536KBS_UNRESTRICTED
The call type is 1536 kbit/s unrestricted digital information. This call
type corresponds to a Q.764 transmission medium requirement of 1536
kbit/s Unrestricted Digital Information.

CC_CALL_TYPE_1920KBS_UNRESTRICTED
The call type is 1920 kbit/s unrestricted digital information. This call
type corresponds to a Q.764 transmission medium requirement of 1920
kbit/s Unrestricted Digital Information.

Specifies the CCS user call reference to be associated with the call setup request. The
CCS provider will use this user call reference in any indications given before the CC_
SETUP_CON primitive is issued.

Specifies the options associated with the call. Q.764 conforming CCS providers must
support the following flags:

The following flags correspond to bits in the Nature of Connection Indicators parameter
of Q.763:

ISUP_NCI_ONE_SATELLITE_CCT

ISUP_NCI_TWO_SATELLITE_CCT
When one of these flags is set it indicates that either one or two satellite
circuits are present in the connection. Otherwise, it indicates that no
satellite circuits are present in the connection.

ISUP_NCI_CONT_CHECK_REQUIRED

ISUP_NCI_CONT_CHECK_PREVIQUS
When one of these flags is set it indicates that either a continuity check
is required on the connection, or that a continuity check was performed
on a previous connection. Otherwise, it indicates that a continuity check
is not required on the connection.

ISUP_NCI_OG_ECHO_CONTROL_DEVICE
When set it indicates that an outgoing half echo control device is included
on the connection. Otherwise, it indicates that no outgoing half echo
control device is included on the connection.

The following flags correspond to bits in the Forward Call Indicators parameter of
Q.763:

225

Addendum for Q.764 Conformance

ISUP_FCI_INTERNATIONAL_CALL
When this flag is set, the call is to be treated as an international call.
Otherwise, the call is to be treated as a national call.

ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAILABLE
ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE
When one of these flags is set, either the pass along end-to-end method
is available or the SCCP end-to-end method is available. Otherwise, no
end-to-end method is available and only link-by-link method is available.

ISUP_FCI_INTERWORKING_ENCOUNTERED
When this flag is set, interworking has been encountered on the call.
Otherwise, no interworking has been encountered on the call.

ISUP_FCI_E2E_INFORMATION_AVAILABLE
When this flag is set, end-to-end information is now available. Otherwise,
no end-to-end information is available.

ISUP_FCI_ISDN_USER_PART_ALL_THE_WAY
When this flag is set, ISDN User Part has been used all the way on the
call. Otherwise, ISDN User Part has not been used all the way.

ISUP_FCI_ORIGINATING_ACCESS_ISDN
When this flag is set, the originating access is ISDN. Otherwise, the orig-
inating access is non-ISDN.

ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE

ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE

ISUP_FCI_SCCP_ALL_METHODS_AVAILABLE
When one of these flags is set, either the connectionless SCCP method
is available, the connection oriented SCCP method is available, or both
methods are available. Otherwise, no SCCP method is indicated as avail-
able.

cc_cdpn_length
Specifies the length of the called party number. For Q.764 conforming CCS providers,
the format of the called party number is the format of the Called Party Number pa-
rameter (without the parameter type or length octets) as specified in Q.763.

cc_cdpn_offset
Specifies the offset of the called party number from the beginning of the block.

Rules
Rules for call reference:

1. If the ISUP user wishes to setup multiple outgoing calls on the same stream, the ISUP user as-
sociates a user call reference with each of the setup requests so that the indication, confirmation
and acknowledgement primitives can be associated with the specific call setup request.

2. User call references are only necessary if multiple outgoing calls are to setup at the same time.

3. User call references only need by valid until a setup confirmation, call reattempt indication,
release indication or call failure indication has been received in response to the setup request. A
setup confirmation will contain a CCS provider call reference which can be used to distinguish
the call from other calls to the CCS provider.

226 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

Rules for call type:
1. All Q.764 conforming CCS provider must support the following call types:

CC_CALL_TYPE_SPEECH, CC_CALL_TYPE_64KBS_UNRESTRICTED,
CC_CALL_TYPE_3_1kHZ_AUDIO, and CC_.CALL_TYPE_64KBS_PREFERRED.

2. Support for other call types is optional and implementation-specific.

Rules for flags:
1. Q.764 conforming CCS providers must support all of the flags listed above.
2. Only one of the following flags may be set:
ISUP_NCI_ONE_SATELLITE and ISUP_NCI_TWO_SATELLITE.
3. Only one of the following flags may be set:
ISUP_NCI_CONT_CHECK_REQUIRED and ISUP_NCI_CONT_CHECK_PREVIOUS.
4. Only one of the following flags may be set:
ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAILABLE and ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE.

5. Only one of the following flags may be set, and only if ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE
is also set:

ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE, ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE and
ISUP_FCI_SCCP_ALL_METHODS_AVAILABLE.

CC_SETUP_IND

Parameters

cc_call_ref Indicates the CCS provider-assigned call reference associated with the call.

cc_call_type
Indicates the type of call to be set up. For Q.764 conforming CCS providers, the call
type can be one of the call types listed in this addendum under CC_SETUP_REQ.

cc_call_flags
Indicates the options associated with the call. Q.764 conforming CCS providers indicate
the flags listed in this addendum under CC_SETUP_REQ.

cc_addr_length
Indicates the length of the call control address (circuit(s)) upon which the call setup is
indicated.

cc_addr_offset
Indicates the offset of the call control address from the start of the block.

cc_cdpn_length
Indicates the length of the called party number. For Q.764 conforming CCS providers,
the format of the called party number is the format of the Called Party Number pa-
rameter (without the parameter type or length octets) as specified in Q.763.

cc_cdpn_oftset
Indicates the offset of the called party number from the beginning of the block.

cc_opt_length
Indicates the length of the optional parameters associated with the IAM, excluding the
end of optional parameters tag.

2014-10-25 227

Addendum for Q.764 Conformance

cc_opt_offset
Indicates the offset of the options from the beginning of the block.

Rules

Rules for call reference:

1. The ISUP provider will indicate a unique call reference to the CCS user which is used to
associate response and request primitives with the call setup indication.

2. Provider call references will always be indicated.

3. Provider call references are only valid until a call failure or release indication has been issued
by the CCS provider.

4. Provider call references are only valid for streams upon which the CC_SETUP_IND is issued, or
for streams upon which the call was accepted by the CCS user with a CC_SETUP_RES primitive.

5. Provider call references are unique across the provider.
Rules for call type:

1. The rules for call type in section CC_SETUP_REQ in this addendum also apply to the CC_SETUP_
IND. All Q.764 conforming CCS providers must support the following call types:

CC_CALL_TYPE_SPEECH, CC_CALL_TYPE_64KBS_UNRESTRICTED,
CC_CALL_TYPE_3_1kHZ_AUDIO, and CC_.CALL_TYPE_64KBS_PREFERRED.

2. Support for additional call types is optional and implementation-specific.
Rules for setup flags:
1. The rules for setup flags in section CC_SETUP_REQ in this addendum also apply to the CC_
SETUP_IND.
Rules for addresses:

1. Call control addresses in the CC_SETUP_IND are of scope ISUP_SCOPE_CT and identify the cir-
cuit(s) upon which the call setup is indicated.

2. For multi-rate calls, the call control address indicates the base circuit (numerically lowest Circuit
Identification Code) of the multi-rate call.

CC_SETUP_RES

Parameters

cc_call_ref Specifies the call reference of the CC_SETUP_IND to which the CCS user is responding.

cc_token_value
Specifies the token of a stream upon which to accept the call setup.

Rules

Rules for call reference:

1. The call reference specified by the CCS User must be a call reference which was previously
indicated by the CCS provider in an outstanding CC_SETUP_IND. Otherwise the CCS provider
will respond with a CC_ERROR_ACK primitive with error [CCBADCLR].

Rules for token value:

1. If the token is the token value of the stream upon which the corresponding CC_SETUP_IND
was received, or zero (0), then the call setup will be accepted on the stream upon which the
CC_SETUP_IND was received.

228 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

2. If the token is non-zero and different from the listening stream, the call setup will be accepted
on the specified stream.

CC_SETUP_CON

Parameters

cc_user_ref Indicates the CCS user call reference that was specified in the CC_SETUP_REQ. This call
reference is used by the CCS user to associated the CC_SETUP_CON with an outstanding
CC_SETUP_REQ primitive.

cc_call_ref Indicates the CCS provider call reference that is to be associated with the call. This
call reference is used by the CCS provider to identify the call and is to be used by the
CCS user in all subsequent primitives referencing the call.

cc_addr_length
Indicates the length of the identifier of the circuit upon which the call setup is con-
firmed.

cc_addr_offset
Indicates the offset of the identifier from the start of the block.

Rules
Rules for call reference:

1. The CCS user call reference will be the same as the call reference provided by the user in the
CC_SETUP_REQ primitive.

2. The CCS provider call reference will follow the rules of the CC_SETUP_IND in this Addendum.

Rules for addresses:

1. The call control address indicated in the CC_SETUP_CON is a ISUP_SCOPE_CT (circuit scoped) call
control address which identifies the circuit(s) upon which the outgoing call will be connected.

2. For multi-rate calls, the call control address specifies the base circuit (lowest numerical Circuit
Identification Code) for the multi-rate call.

CC_CALL_REATTEMPT_IND

Parameters

cc_user_ref Indicates the CCS user call reference for the call. This reference identifies the corre-
sponding CC_SETUP_REQ primitives to the CCS user for which the call reattempt need
be performed.

cc_reason Indicates the reason for the reattempt. The reason can be one of the following values:

ISUP_REATTEMPT_DUAL_SEIZURE
Indicates that the circuit was seized by a controlling exchange during the
initial setup of the call (i.e, before any backward message was received).

ISUP_REATTEMPT_RESET
Indicates that the circuit was reset during the initial setup of the call (i.e,
before any backward message was received).

2014-10-25 229

Addendum for Q.764 Conformance

ISUP_REATTEMPT_BLOCKING
Indicates that the circuit was blocked during the initial setup of the call
(i.e, before any backward message was received).

ISUP_REATTEMPT_T24_TIMEOUT
Indicates that COT failure occurred on the circuit (due to T24 timeout).

ISUP_REATTEMPT_UNEXPECTED
Indicates that an unexpected message was received for the call during the
initial setup of the call (i.e, before any backward message was received).

ISUP_REATTEMPT_COT_FAILURE
Indicates that COT failed on the circuit (due to transmission of COT
message indicating failure).

ISUP_REATTEMPT_CIRCUIT_BUSY
Indicates that the specified circuit was busy.

Rules

Rules for call reference:
1. The CCS user call reference is a call reference associated with an outstanding CC_SETUP_REQ
primitive to which the CCS provider is responding.
Rules for reason:
1. The Q.764 conforming CCS provider will provide one of the reasons listed above.
2. The ISUP_REATTEMPT_DUAL_SEIZURE reason will only be indicated if the CCS user rep-
resents a non-controlling exchange for the associated trunk group.

3. The ISUP_REATTEMPT_T24_TIMEOUT reason will only be indicated if the outgoing call
includes a continuity test and a positive CC_CONT_REPORT_REQ was not issued to the CCS
provider by a test stream within T24.

4. The ISUP_REATTEMPT_COT_FAILURE reason will only be indicated if the outgoing call
includes a continuity test and a negative CC_CONT_REPORT_REQ was issued to the CCS provider
by a test stream within T24.

5. The ISUP_REATTEMPT_CIRCUIT_BUSY reason will only be indicated if the stream issuing
the CC_SETUP_REQ primitive is bound to a circuit (ISUP_SCOPE_CT) and the circuit is busy with
another call.

CC_SETUP_COMPLETE_REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to
Q.764, if a CCS provider conforming to Q.764 receives a CC_SETUP_COMPLETE_REQ for a call refer-
ence in the CCS_ANSWERED state (CCS_.ICC_ANSWERED), the CCS provider will ignore the

primitive.
CC_SETUP_COMPLETE_IND

Rules

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to
Q.764, if a CCS provider conforming to Q.764 issues a CC_SETUP_COMPLETE_IND for a call reference
in the CCS_LANSWERED state, the CCS user may ignore the primitive.

230 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

Continuity Check Phase
CC_CONT_CHECK_REQ

Parameters

cc_addr_length
Specifies the length of the circuit test address (circuit) upon which the continuity check
is to be performed.

cc_addr_offset
Specifies the offset of the circuit test address from the start of the block.

Rules
Rules for addresses:

1. The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS
provider should respond with CC_ERROR_ACK with an error of [CCNOADDR].

2. The address provided must be of scope ISUP_SCOPE_CT and must provide the identifier of the
circuit upon which the CCS user is requesting a continuity check.

3. The specified circuit identifier must be equipped else the CCS provider should response with
CC_ERROR_ACK and an error of [CCBADADDR].

CC_CONT_CHECK_IND

Parameters

cc_call_ref Indicates the CCS provider call reference.

cc_addr_length
Indicates the length of the identifier of the circuit upon which the continuity check is
to be performed.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
Rules for call reference:
1.

Rules for addresses:

1. The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS
provider should respond with CC_ERROR_ACK with an error of [CCNOADDR].

2. The address provided must be of scope ISUP_SCOPE_CT and must provide the identifier of the
circuit upon which the CCS user is requesting a continuity check.

3. The specified circuit test address (circuit identifier) must be equipped else the CCS provider
should response with CC_ERROR_ACK and an error of [CCBADADDR].

2014-10-25 231

Addendum for Q.764 Conformance

CC_CONT_TEST_REQ

This primitive is only supported when the Loop Back Acknowledgement is used as a national option
under Q.764. For compatibility with CCS providers not supporting the national option, if such
a CCS provider receives a CC_CONT_TEST_REQ while waiting for a CC_CONT_REPORT_IND, the CCS
provider should silently discard the primitive.

Parameters

cc_call_ref Specifies the CCS provider call reference.

cc_addr_length
Indicates the length of the call control address (ISUP_SCOPE_CT circuit identifier) upon
which the continuity check is to be performed.

cc_addr_offset
Indicates the offset of the call control address from the start of the block.

Rules

Rules for addresses:

1. The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS
provider should respond with CC_ERROR_ACK with an error of [CCNOADDR].

2. The address provided must be the identifier of the circuit upon which the CCS user is requesting
a continuity check.

3. The specified circuit identifier must be equipped else the CCS provider should response with
CC_ERROR_ACK and an error of [CCBADADDR].

CC_CONT_TEST_IND

This primitive is only supported when the Loop Back Acknowledgement is used as a national option
under Q.764. For compatibility with CCS providers not supporting the national option, such a
CCS provider will issue a CC_CONT_TEST_IND in response to a CC_CONT_CHECK_REQ following the
CC_OK_ACK.

Parameters

cc_call_ref Specifies the CCS provider call reference.

cc_addr_length
Specifies the length of the identifier of the circuit upon which the continuity check is
to be performed.

cc_addr_offset
Specifies the offset of the address from the start of the block.

Rules
Rules for call reference:

1. The CCS provider assigned call reference is used to associate an outstanding continuity test
indication (CC_.CONT_CHECK_IND or call setup indication CC_SETUP_IND including a conti-
nuity test (ISUP_NCI_CONT_CHECK_REQUIRED).

Rules for addresses:

232 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

1. The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS
provider should respond with CC_ERROR_ACK with an error of [CCNOADDR].

2. The address provided must be the identifier of the circuit upon which the CCS user is requesting
a continuity check.

3. The specified circuit identifier must be equipped else the CCS provider should response with
CC_ERROR_ACK and an error of [CCBADADDR].

CC_CONT_REPORT_REQ

Parameters

cc_user_ref Specifies the CCS User assigned call reference.
cc_call_ref Specifies the CCS Provider assigned call reference.

cc_result Specifies the result of the continuity test, whether success or failure. For Q.764 con-
forming CCS provider, the result parameter can be one of the following values:

ISUP_COT_SUCCESS
Indicates that the continuity check test was successful.

ISUP_COT_FAILURE
Indicates that the continuity check test failed.

cc_addr_length
Specifies the length of the identifier of the circuit upon which the continuity check is
to be performed.

cc_addr_offset
Specifies the offset of the address from the start of the block.

Rules

Rules for addresses:

1. The parameter cc_addr_length cannot be zero: i.e, an address must be provided or the CCS
provider should respond with CC_ERROR_ACK with an error of [CCNOADDR].

2. The address provided must be the identifier of the circuit upon which the CCS user is requesting
a continuity check.

3. The specified circuit identifier must be equipped else the CCS provider should response with
CC_ERROR_ACK and an error of [CCBADADDR].

CC_CONT_REPORT_IND

Parameters

cc_call_ref Indicates the CCS provider assigned call reference.

cc_result Indicates the result of the continuity test, whether success or failure. For Q.764 con-
forming CCS provider, the result parameter can be one of the following values:

ISUP_COT_SUCCESS
Indicates that the continuity check test was successful.

ISUP_COT_FAILURE
Indicates that the continuity check test failed.

2014-10-25 233

Addendum for Q.764 Conformance

Rules

Rules for call reference:

1.

Call Establishment Primitives

CC_MORE_INFO_REQ

Rules

Rules for issuing primitive:

1.

This primitive is not directly supported by Q.764 conforming CCS providers. For compatibility
with Q.931 conforming CCS providers, if the Q.764 conforming CCS provider receives a CC_
MORE_INFO_REQ in state CCS_WRES_SIND, it should invoke any interworking procedures and
silently discard the primitive.

CC_MORE_INFO_IND

Rules

Rules for issuing primitive:

1.

This primitive may optionally be issued by a Q.764 conforming CCS provider in the overlap
signalling mode, if the appropriate timer has expired and the CCS provider has not received
an indication that the provided address is complete.

CC_INFORMATION_REQ

Parameters

cc_call_ref Specifies the CCS provider assigned call reference for the call.

cc_subn_length

Specifies the length of the subsequent number. For Q.764 conforming CCS providers,
the format of the called party address is the format of the Subsequent Number param-
eter (without the parameter type or length octets) as specified in Q.763.

cc_subn_offset

Specifies the offset of the subsequent number from the beginning of the block.

Rules

Rules for issuing primitive:

1.

234

This primitive will only be issued before any CC_PROCEEDING_IND, CC_ALERTING_IND, CC_
PROGRESS_IND, or CC_IBI_IND has occurred on the stream while in the CCS_WCON_SREQ state. If
not, the CCS provider should respond with a CC_ERROR_ACK primitive with error [CCOUTSTATE].
This primitive must not be issued if the preceding CC_SETUP_REQ contained a called party
address which was complete (i.e, contains a ST code following the digits). If it is, the CCS
provider should respond with a CC_ERROR_ACK with error [CCBADADDR].

This primitive must not be issued if the trunk group or circuit to which the stream is bound is
configured for en bloc operation. If it is, the CCS provider should respond with a CC_ERROR_ACK
with error [CCNOTSUPP].

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

CC_INFORMATION_IND

Parameters

cc_call_ref Indicates the CCS provider assigned call reference.

cc_subn_length
Indicates the length of the subsequent number. For Q.764 conforming CCS providers,
the format of the subsequent number is the format of the Subsequent Number param-
eter (without the parameter type or length octets) as specified in Q.763.
cc_subn_offset
Indicates the offset of the subsequent number from the beginning of the block.

Rules

Rules for issuing primitive:

1. This primitive will only be issued by the CCS provider before any CC_PROCEEDING_REQ, CC_
ALERTING_REQ, CC_PROGRESS_REQ, or CC_IBI_REQ has been received in state CCS_WCON_SREQ.

2. This primitive will not be issued by the CCS provider if the preceding CC_SETUP_REQ contained
a complete called party address (i.e, contains an ST code following the digits), or if the trunk
group or circuit is configured for en bloc operation.

CC_INFO_TIMEOUT_IND

Rules

Rules for issuing primitive:

1. If the Q.764 conforming CCS provider encounters interworking on a call and is not expecting
an address complete message, and timer T11 expires, the CCS provider will issue this primitive
to the CCS user.

2. Upon receipt of this primitive, it is the CCS user’s responsibility to determine whether the
address digits are sufficient and to issue a CC_SETUP_RES or CC_REJECT_REQ primitive.

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to
Q.764, if the CCS user receives a CC_INFO_TIMEOUT_IND

CC_PROCEEDING_REQ

Parameters

cc_flags Specifies the options associated with the call. Indicates the flags associated with the
primitive. For Q.764 conforming CCS providers, call flags can be an of the following:
Q.764 conforming CCS provider must support the following flags:

The following flags correspond to bits in the Backward Call Indicators parameter of
Q.763:

ISUP_BCI_NO_CHARGE

ISUP_BCI_CHARGE
When one of these flags is set, it indicates that the call is not to be
charged, or the call is to be charged. Otherwise, it indicates that there is
no indication with regard to charging.

2014-10-25 235

Addendum for Q.764 Conformance

Rules

ISUP_BCI_SUBSCRIBER_FREE

ISUP_BCI_CONNECT_FREE
When one of these flags is set, it indicates that the terminating subscriber
is free, or that the connection is free. Otherwise, no indication is given.

ISUP_BCI_ORDINARY_SUBSCRIBER

ISUP_BCI_PAYPHONE
When one of these flags is set, it indicates that the call has terminated to
an ordinary subscriber, or that the call has terminated to a pay phone.

ISUP_BCI_PASS_ALONG_E2E_METHOD_AVAILABLE
ISUP_BCI_SCCP_E2E_METHOD_AVAILABLE
When one of these flags is set, either the pass along end-to-end method
is available, or the SCCP end-to-end method is available. Otherwise, no
end-to-end method is available and only link-by-link method is available.

ISUP_BCI_INTERWORKING_ENCOUNTERED
When this flag is set, interworking has been encountered on the call.
Otherwise, to interworking has been encountered on the call.

ISUP_BCI_E2E_INFORMATION_AVAILABLE
When this flag is set, end-to-end information is now available. Otherwise,
no end-to-end information is available.

ISUP_BCI_ISDN_USER_PART_ALL_THE_WAY
When this flag is set, ISDN User Part has been used all the way on the
call, Otherwise, ISDN User Part has not be used all the way.

ISUP_BCI_HOLDING_REQUESTED
When this flag is set, holding is requested. Otherwise, holding is not
requested.

ISUP_BCI_TERMINATING_ACCESS_ISDN
When this flag is set, the terminating access is ISDN. Otherwise, the
terminating access is non-ISDN.

ISUP_BCI_IC_ECHO_CONTROL_DEVICE
When set, this flag indicates that an incoming half echo control device is
included on the connection. Otherwise, it indicates that no incoming half
echo control device is included in the connection.

ISUP_BCI_SCCP_CLNS_METHOD_AVAILABLE

ISUP_BCI_SCCP_CONS_METHOD_AVAILABLE

ISUP_BCI_SCCP_ALL_METHODS_AVAILABLE
When one of these flags is set, either the connectionless SCCP method
is available, the connection oriented SCCP method is available, or both
methods are available. Otherwise, no SCCP method is indicated as avail-
able.

Rules for issuing primitive:

1. This primitive can only be issued by the CCS user before any CC_ALERTING_REQ, CC_PROGRESS_
REQ or CC_IBI_REQ has been issued while in state CCS_WRES_SIND.

236

Version 1.1 Rel. 7.20141001

Call Control

Interface (CCI) Addendum for Q.764 Conformance

CC_PROCEEDING_IND

Rules

Rules for issuing primitive:

1. This primitive will only be issued by the CCS provider before any CC_ALERTING_IND, CC_
PROGRESS_IND or CC_IBI_IND has been issued while in state CCS_WCON_SREQ.

CC_ALERTING_REQ

Rules

Rules for issuing primitive:

1. This primitive can only be issued by the CCS user before any CC_PROGRESS_REQ or CC_IBI_REQ
has been issued while in state CCS_WRES_SIND.

CC_ALERTING_IND

Rules

Rules for issuing primitive:

1. This pri

mitive will only be issued by the CCS provider before any CC_PROGRESS_IND or CC_

IBI_IND has been issued while in state CCS_WCON_SREQ.

CC_PROGRESS_REQ

Parameters

cc_event

2014-10-25

Indicates the progress event. For Q.764 conforming CCS providers, this can be one of
the following:

ISUP_EVNT_ALERTING
Indicates that the called party is being alerted. This event is indicated
only if a CC_.CALL_PROCEEDING_IND primitive has already been re-
ceived.

ISUP_EVNT_PROGRESS
Indicates that the call is progressing with the specified optional parame-
ters.

ISUP_EVNT_IBI
This event is indicated only by the CC_IBI_IND primitive and will not
appear here.

ISUP_EVNT_CALL_FORWARDED_ON_BUSY
This event indicates that the call has been forwarded on busy and the
optional parameters (if any) contain the attributes of the forwarding (e.g.,
redirecting number, etc.).

ISUP_EVNT_CALL_FORWARDED_ON_NO_ANSWER
This event indicates that the call has been forwarded on no answer and
the optional parameters (if any) contain the attributes of the forwarding
(e.g., redirecting number, etc.).

237

Addendum for Q.764 Conformance

ISUP_EVNT_CALL_FORWARDED_UNCONDITIONAL
This event indicates that the call has been forwarded unconditionally and
the optional parameters (if any) contain the attributes of the forwarding
(e.g., redirecting number, etc.).

cc_flags Indicates the options flags.

ISUP_EVNT_PRESENTATION_RESTRICTED
When set, this flag indicates that the event indication is not to be pre-
sented to the caller. Otherwise, the event may be presented to the caller.

Rules

Rules for issuing primitive:

1. This primitive can only be issued by the CCS user before any CC_IBI_REQ has been issued
while in state CCS_WRES_SIND.

Rules for progress event:

1. Q.764 conforming CCS providers must support the complete list of progress events listed above.

2. When this primitive is issued with the event ISUP_EVNT_ALERTING, it must follow the rules
for the primitive CC_ALERTING_REQ.

3. When this primitive is issued with the event ISUP_EVNT_IBI, it must follow the rules for the
primitive CC_IBI_REQ.
Rules for progress flags:

1. The flag ISUP_EVNT_PRESENTATION_RESTRICTED cannot be set when the event is
ISUP_EVNT_ALERTING, ISUP_EVNT_PROGRESS or ISUP_EVNT_IBI.

CC_PROGRESS_IND

Parameters

cc_event Indicates the progress event. The event can be any of the events listed in this addendum
under CC_PROGRESS_REQ.

cc_flags Indicates the options flags.

ISUP_EVNT_PRESENTATION_RESTRICTED
When set, this flag indicates that the event indication is not to be pre-
sented to the caller. Otherwise, the event may be presented to the caller.

Rules

Rules for issuing primitive:

1. This primitive will only be issued by the CCS provider before any CC_IBI_IND has been issued
while in state CCS_WCON_SREQ.

Rules for progress event:

1. Q.764 conforming CCS providers must support the complete list of progress events listed above.

2. This primitive will not be issued by the CCS provider with event ISUP_EVNT_ALERTING or
event ISUP_EVNT_IBI: instead, a CC_ALERTING_IND or CC_IBI_IND event will be issued.

Rules for progress flags:

1. The flag ISUP_EVNT_PRESENTATION_RESTRICTED cannot be set when the vent is
ISUP_EVNT_PROGRESS.

238 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

CC_IBI_REQ

Rules

CC_IBI_IND

Rules

Call Established Primitives
CC_SUSPEND_REQ

Parameters

cc_flags Specifies options associated with the suspend.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the suspend was network origi-
nated. When this flag is not set, it indicates that the suspend was ISDN
subscriber initiated.

Rules

Rules for issuing primitive:

1. For Q.764 conforming CCS providers, suspend can be requested by independently either via
local provider or the remote provider. A call can be:

e Not Suspended

e Locally Suspended

e Remotely Suspended

e Locally and Remotely Suspended

2. Requests to locally suspend a call which is already locally suspended should be ignored by the
CCS provider.

CC_SUSPEND_IND

Parameters

cc_flags Specifies options associated with the suspend.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the suspend was network origi-
nated. When this flag is not set, it indicates that the suspend was ISDN
subscriber initiated.

Rules

Rules for issuing primitive:

1. For Q.764 conforming CCS providers, suspend can be requested by independently either via
local provider or the remote provider. A call can be:

2014-10-25 239

Addendum for Q.764 Conformance

Not Suspended
Locally Suspended

Remotely Suspended
e Locally and Remotely Suspended

2. Indications of remote suspension of a call which is already remotely suspended will not be issued
by the CCS provider.

CC_SUSPEND_RES

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming
to Q.764, if the CCS provider receives a CC_SUSPEND_RES in the CCS_WRES_SUSIND or CCS_
SUSPENDED states, the CCS provider should ignore the CC_SUSPEND_RES primitive and move directly
to the CCS_SUSPENDED state if it has not already done so.

CC_SUSPEND_REJECT_REQ

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to
Q.764, if the CCS provider receives a CC_SUSPEND_REJECT_REQ in the CCS_WRES_SUSIND or
CCS_SUSPENDED states, the CCS provider should reply with a CC_ERROR_ACK primitive with error
CCNOTSUPP.

CC_RESUME_REQ

Parameters

cc_flags Specifies options associated with the resume.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the resume was network originated.
When this flag is not set, it indicates that the resume was ISDN subscriber

initiated.
Rules
CC_RESUME_IND
Parameters
cc_flags Specifies options associated with the resume.

CC_SUSRES_NETWORK_INITIATED
When this flag is set, it indicates that the resume was network originated.
When this flag is not set, it indicates that the resume was ISDN subscriber
initiated.

240 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

Rules
CC_RESUME_RES

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming
to Q.764, if the CCS provider receives a CC_RESUME_RES in the CCS_WRES_SUSIND or
CCS_ANSWERED states, the CCS provider should ignore the CC_RESUME_RES primitive and move
directly to the CCS_RESUMEED state if it has not already done so.

CC_RESUME_REJECT_REQ

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming
to Q.764, if the CCS provider receives a CC_RESUME_REJECT_REQ in the CCS_WRES_SUSIND or
CCS_ANSWERED states, the CCS provider should reply with a CC_ERROR_ACK primitive with error
CCNOTSUPP.

Call Termination Primitives
CC_REJECT_REQ

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to
Q.764, if the CCS provider receives a CC_REJECT_REQ in the CCS_WRES_SIND (CCS_ICC_WAIT_COT
or CCS_ICC_WAIT_ACM) states, the provider should perform an automatic release procedure and
move to the CCS_WAIT_RLC state.

CC_CALL_FAILURE_IND

Parameters

cc_cause Indicates the cause of the failure. The cc_cause can have one of the following values:

ISUP_CALL_FAILURE_COT_FAILURE
Indicates that the continuity check on the circuit failed. This applies to
incoming calls only.

ISUP_CALL_FAILURE_RESET

ISUP_CALL_FAILURE_RECV_RLC
Indicates that the circuit was not completely released by the distant end.
This applies to incoming calls only.

ISUP_CALL_FAILURE_BLOCKING
Indicates that the circuit was blocked during call setup. This applies to
incoming calls only.

2014-10-25 241

Addendum for Q.764 Conformance

ISUP_CALL_FAILURE_T2_TIMEOUT

ISUP_CALL_FAILURE_T3_TIMEQUT

ISUP_CALL_FAILURE_T6_TIMEQUT
Indicates that the call was suspended beyond the allowable period. This
applies to all established calls.

ISUP_CALL_FAILURE_T7_TIMEQOUT
Indicates that there was no response to the call setup request. This applies
to outgoing calls only.

ISUP_CALL_FAILURE_T8_TIMEOUT
Indicates that the call failed waiting for a continuity check report from
the distant end. This applies to incoming calls only.

ISUP_CALL_FAILURE_T9_TIMEQOUT
Indicates that the call failed while waiting for the distant end to answer.
This applies to outgoing calls only.

ISUP_CALL_FAILURE_T35_TIMEOUT
Indicates that additional information (digits) were not received from the
caller within a sufficient period. This applies to incoming calls only.

ISUP_CALL_FAILURE_T38_TIMEQUT
Indicates that the call was suspended beyond the allowable period. This
applies to all established calls.

ISUP_CALL_FAILURE_CIRCUIT_BUSY

Rules
CC_DISCONNECT_REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS providers conforming to
Q.764, if the CCS provider receives a CC_DISCONNECT_REQ, the provider should respond with CC_
ERROR_ACK with the error CCNOTSUPP.

CC_RELEASE_REQ

Parameters

cc_cause Indicates the cause of the release. Cause can be one of the following values:

CC_CAUS_UNALLOCATED_NUMBER
(no description)

CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK
(no description)

CC_CAUS_NO_ROUTE_TO_DESTINATION
(no description)

CC_CAUS_SEND_SPECIAL_INFO_TONE
(no description)

242 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CC_CAUS_MISDIALLED_TRUNK_PREFIX
(no description)

CC_CAUS_PREEMPTION
(no description)

CC_CAUS_PREEMPTION_CCT_RESERVED
(no description)

CC_CAUS_NORMAL_CALL_CLEARING
(no description)

CC_CAUS_USER_BUSY
(no description)

CC_CAUS_NO_USER_RESPONDING
(no description)

CC_CAUS_NO_ANSWER
(no description)

CC_CAUS_SUBSCRIBER_ABSENT
(no description)

CC_CAUS_CALL_REJECTED
(no description)

CC_CAUS_NUMBER_CHANGED
(no description)

CC_CAUS_REDIRECT

(no description)

CC_CAUS_OUT_OF_ORDER
(no description)

CC_CAUS_ADDRESS_INCOMPLETE
(no description)

CC_CAUS_FACILITY_REJECTED
(no description)

CC_CAUS_NORMAL_UNSPECIFIED
(no description)

CC_CAUS_NO_CCT_AVAILABLE
(no description)

CC_CAUS_NETWORK_OUT_OF _ORDER
(no description)

CC_CAUS_TEMPORARY_FAILURE
(no description)

CC_CAUS_SWITCHING_EQUIP_CONGESTION
(no description)

CC_CAUS_ACCESS_INFO_DISCARDED
(no description)

2014-10-25

Addendum for Q.764 Conformance

243

Addendum for Q.764 Conformance

244

CC_CAUS_REQUESTED_CCT_UNAVAILABLE
(no description)

CC_CAUS_PRECEDENCE_CALL_BLOCKED
(no description)

CC_CAUS_RESOURCE_UNAVAILABLE
(no description)

CC_CAUS_NOT_SUBSCRIBED
(no description)

CC_CAUS_OGC_BARRED_WITHIN_CUG
(no description)

CC_CAUS_ICC_BARRED WITHIN_CUG
(no description)

CC_CAUS_BC_NOT_AUTHORIZED
(no description)

CC_CAUS_BC_NOT_AVAILABLE
(no description)

CC_CAUS_INCONSISTENCY
(no description)

CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE
(no description)

CC_CAUS_BC_NOT_IMPLEMENTED

(no description)

CC_CAUS_FACILITY_NOT_IMPLEMENTED
(no description)

CC_CAUS_RESTRICTED_BC_ONLY
(no description)

CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED
(no description)

CC_CAUS_USER_NOT_MEMBER_QOF_CUG
(no description)

CC_CAUS_INCOMPATIBLE_DESTINATION
(no description)
CC_CAUS_NON_EXISTENT_CUG
(no description)

CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION
(no description)

CC_CAUS_INVALID_MESSAGE
(no description)

CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED
(no description)

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CC_CAUS_PARAMETER_NOT_IMPLEMENTED

(no description)

CC_CAUS_RECOVERY_ON_TIMER_EXPIRY
(no description)

CC_CAUS_PARAMETER_PASSED_ON
(no description)

CC_CAUS_MESSAGE_DISCARDED
(no description)

CC_CAUS_PROTOCOL_ERROR
(no description)

CC_CAUS_INTERWORKING
(no description)

CC_CAUS_UNALLOCATED_DEST_NUMBER
(no description)

CC_CAUS_UNKNOWN_BUSINESS_GROUP
(no description)

CC_CAUS_EXCHANGE_ROUTING_ERROR
(no description)

CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26

(no description)

CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND
(no description)

CC_CAUS_PREEMPTION
(no description)

CC_CAUS_PRECEDENCE_CALL_BLOCKED
(no description)

CC_CAUS_CALL_TYPE_INCOMPATIBLE
(no description)

CC_CAUS_GROUP_RESTRICTIONS
(no description)

Rules
CC_RELEASE_IND

Parameters

Addendum for Q.764 Conformance

cc_cause Indicates the cause of the release. Cause can be one of the cause value listed in this

addendum under CC_RELEASE_REQ.

Rules

2014-10-25

245

Addendum for Q.764 Conformance

Management Primitives
CC_RESTART_REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS provider conforming to
Q.764, if the CCS provider conforming to Q.764 receives a CC_RESTART_REQ, the provider should
respond with CC_ERROR_ACK with the error CCNOTSUPP.

CC_RESET_REQ

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_RESET_IND

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules

CC_RESET_RES

246 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_RESET_CON

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_BLOCKING_REQ

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented
or hardware failure oriented blocking is to be performed. If both or neither
of these flags are set, the primitive will fail with error [CCBADFLAG].

2014-10-25 247

Addendum for Q.764 Conformance

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_BLOCKING_IND

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented
or hardware failure oriented blocking is to be performed. If both or neither
of these flags are set, the primitive will fail with error [CCBADFLAG].

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_BLOCKING_RES

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented
or hardware failure oriented blocking is to be performed. If both or neither
of these flags are set, the primitive will fail with error [CCBADFLAG].

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

248 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_BLOCKING_CON

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented
or hardware failure oriented blocking is to be performed. If both or neither
of these flags are set, the primitive will fail with error [CCBADFLAG].

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_UNBLOCKING_REQ

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented
or hardware failure oriented blocking is to be performed. If both or neither
of these flags are set, the primitive will fail with error [CCBADFLAG].

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

2014-10-25 249

Addendum for Q.764 Conformance

Rules
CC_UNBLOCKING_IND

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented
or hardware failure oriented blocking is to be performed. If both or neither
of these flags are set, the primitive will fail with error [CCBADFLAG].

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_UNBLOCKING_RES

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented
or hardware failure oriented blocking is to be performed. If both or neither
of these flags are set, the primitive will fail with error [CCBADFLAG].

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules

250 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

CC_UNBLOCKING_CON

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

ISUP_MAINTENANCE_ORIENTED

ISUP_HARDWARE_FAILURE_ORIENTED
When one of these flags is set it indicates that either maintenance oriented
or hardware failure oriented blocking is to be performed. If both or neither
of these flags are set, the primitive will fail with error [CCBADFLAG].

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_QUERY_REQ

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_QUERY_IND

Parameters

cc_flags Indicates the options flags.

2014-10-25 251

Addendum for Q.764 Conformance

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_QUERY_RES

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules
CC_QUERY_CON

Parameters

cc_flags Indicates the options flags.

ISUP_GROUP
When set, this flag indicates that the operation is to be performed on
a group of call control addresses and that any circuit identifier in the
specified call control address is to be interpreted by the CCS provider as
a circuit group identifier.

cc_addr_length
Indicates the length of the address which consists of a circuit identifier.

cc_addr_offset
Indicates the offset of the address from the start of the block.

Rules

252 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

Q.764 Header File Listing

#ifndef __SS7_ISUPI_H__
#define __SS7_ISUPI_H__

/*
* ISUP addresss
*/

typedef struct isup_addr {

cc_ulong scope;
cc_ulong id;
cc_ulong cic;

} isup_addr_t;

#define ISUP_SCOPE_CT
#define ISUP_SCOPE_CG
#define ISUP_SCOPE_TG
#define ISUP_SCOPE_SR
#define ISUP_SCOPE_SP
#define ISUP_SCOPE_DF
#define ISUP_SCOPE_CIC

/*

* Definitions for CCI for Q.764 Conforming CCS Providers.

*/

enum {

/*
/*
/*
/*
/*
/*
/*

Addendum for Q.764 Conformance

/* the scope of the identifier */
/* the identifier within the scope */
/* circuit identification code within the scope */

circuit scope */

circuit group scope */
trunk group scope */

signalling relation scope */
signalling point scope */

default scope */

for unidentified cic addresses */

ISUP_INCOMING_INTERNATIONAL_EXCHANGE = 0x00000001UL,

ISUP_SUSPEND_NATIONALLY_PERFORMED = 0x00000002UL,

};

enum {

CMS_IDLE = O,

CMS_WCON_BLREQR,
CMS_WRES_BLIND,
CMS_WACK_BLRES,
CMS_WCON_UBREQ,
CMS_WRES_UBIND,
CMS_WACK_UBRES,
CMS_WCON_RESREQ,
CMS_WRES_RESIND,
CMS_WACK_RESRES,
CMS_WCON_QRYREQ,
CMS_WRES_QRYIND,
CMS_WACK_QRYRES,

enum {
CKS_IDLE = 0,
CKS_WIND_CONT,
CKS_WRES_CONT,
CKS_WIND_CTEST,
CKS_WREQ_CTEST,
CKS_WIND_CCREP,

2014-10-25

253

Addendum for Q.764 Conformance

};

/*

CKS_WREQ_CCREP,
CKS_WCON_RELREQ,
CKS_WRES_RELIND,

* Circuit States:

*/
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

254

CTS_ICC 0x00000010
CTS_0GC 0x00000020
CTS_COT 0x00000040
CTS_LPA 0x00000080
CTS_COR 0x00000100
CTS_MASK 0x0000000f

CTS_DIRECTION(__val)
CTS_CONT_CHECK (__val)
CTS_MESSAGE(__val)

CTS_IDLE
CTS_WAIT_IAM
CTS_WAIT_CCR
CTS_WAIT_LPA
CTS_WAIT_SAM
CTS_WAIT_ACM
CTS_WAIT_ANM
CTS_ANSWERED
CTS_SUSPENDED
CTS_WAIT_RLC
CTS_SEND_RLC

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000a

CTS_ICC_WAIT_COT_CCR
CTS_OGC_WAIT_COT_CCR
CTS_ICC_WAIT_LPA_CCR
CTS_OGC_WAIT_LPA_CCR
CTS_ICC_WAIT_CCR
CTS_OGC_WAIT_CCR
CTS_ICC_WAIT_COR_SAM
CTS_OGC_WAIT_COR_SAM
CTS_ICC_WAIT_COT_SAM
CTS_OGC_WAIT_COT_SAM
CTS_ICC_WAIT_LPA_SAM
CTS_OGC_WAIT_LPA_SAM
CTS_ICC_WAIT_SAM
CTS_OGC_WAIT_SAM
CTS_ICC_WAIT_COR_ACM
CTS_OGC_WAIT_COR_ACM
CTS_ICC_WAIT_COT_ACM
CTS_OGC_WAIT_COT_ACM
CTS_ICC_WAIT_LPA_ACM
CTS_OGC_WAIT_LPA_ACM
CTS_ICC_WAIT_ACM
CTS_OGC_WAIT_ACM
CTS_ICC_WAIT_ANM
CTS_OGC_WAIT_ANM
CTS_ICC_ANSWERED

A A AN A A A A A A A A A AAAA A AAAAAAAAAAAA

CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC
CTS_0GC
CTS_ICC

CTS_COT
CTS_COT
CTS_LPA
CTS_LPA

(__val & (CTS_ICC|CTS_0GC))
(__val & (CTS_COT|CTS_LPA|CTS_COR))
(__val & CTS_MASK)

CTS_WAIT_CCR
CTS_WAIT_CCR
CTS_WAIT_CCR
CTS_WAIT_CCR

CTS_WAIT_CCR)
CTS_WAIT_CCR)

CTS_COR
CTS_COR
CTS_COT
CTS_COT
CTS_LPA
CTS_LPA

CTS_WAIT_SAM
CTS_WAIT_SAM
CTS_WAIT_SAM
CTS_WAIT_SAM
CTS_WAIT_SAM
CTS_WAIT_SAM

CTS_WAIT_SAM)
CTS_WAIT_SAM)

CTS_COR
CTS_COR
CTS_COT
CTS_COT
CTS_LPA
CTS_LPA

CTS_WAIT_ACM
CTS_WAIT_ACM
CTS_WAIT_ACM
CTS_WAIT_ACM
CTS_WAIT_ACM
CTS_WAIT_ACM

CTS_WAIT_ACM)
CTS_WAIT_ACM)
CTS_WAIT_ANM)
CTS_WAIT_ANM)
CTS_ANSWERED)

PN N N N —

NN N N

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

Addendum for Q.764 Conformance

#define CTS_OGC_ANSWERED (CTS_OGC | CTS_ANSWERED)

#define CTS_ICC_SUSPENDED (CTS_ICC | CTS_SUSPENDED)

#define CTS_0GC_SUSPENDED (CTS_OGC | CTS_SUSPENDED)

#define CTS_ICC_WAIT_RLC (CTS_ICC | CTS_WAIT_RLC)

#define CTS_OGC_WAIT_RLC (CTS_OGC | CTS_WAIT_RLC)

#define CTS_ICC_SEND_RLC (CTS_ICC | CTS_SEND_RLC)

#define CTS_OGC_SEND_RLC (CTS_OGC | CTS_SEND_RLC)

/*

* Circuit, Group and MTP Flags
*/

#define CCTF_LOC_M_BLOCKED 0x00000001UL

#define CCTF_REM_M_BLOCKED 0x00000002UL

#define CCTF_LOC_H_BLOCKED 0x00000004UL

#define CCTF_REM_H_BLOCKED 0x00000008UL

#define CCTF_LOC_M_BLOCK_PENDING 0x00000010UL

#define CCTF_REM_M_BLOCK_PENDING 0x00000020UL

#define CCTF_LOC_H_BLOCK_PENDING 0x00000040UL

#define CCTF_REM_H_BLOCK_PENDING 0x00000080UL

#define CCTF_LOC_M_UNBLOCK_PENDING 0x00000100UL

#define CCTF_REM_M_UNBLOCK_PENDING 0x00000200UL

#define CCTF_LOC_H_UNBLOCK_PENDING 0x00000400UL

#define CCTF_REM_H_UNBLOCK_PENDING 0x00000800UL

#define CCTF_LOC_RESET_PENDING 0x00001000UL

#define CCTF_REM_RESET_PENDING 0x00002000UL

#define CCTF_LOC_QUERY_PENDING 0x00004000UL

#define CCTF_REM_QUERY_PENDING 0x00008000UL

#define CCTF_ORIG_SUSPENDED 0x00010000UL

#define CCTF_TERM_SUSPENDED 0x00020000UL

#define CCTF_UPT_PENDING 0x00040000UL

#define CCTF_LOC_S_BLOCKED 0x00080000UL

#define CCTF_LOC_G_BLOCK_PENDING 0x00100000UL

#define CCTF_REM_G_BLOCK_PENDING 0x00200000UL

#define CCTF_LOC_G_UNBLOCK_PENDING 0x00400000UL

#define CCTF_REM_G_UNBLOCK_PENDING 0x00800000UL

#define CCTF_COR_PENDING 0x01000000UL

#define CCTF_COT_PENDING 0x02000000UL

#define CCTF_LPA_PENDING 0x04000000UL

#define CCTM_OUT_OF_SERVICE C\
CCTF_LOC_S_BLOCKED | \
CCTF_REM_M_BLOCKED | \
CCTF_REM_H_BLOCKED | \
CCTF_REM_M_BLOCK_PENDING | \
CCTF_REM_H_BLOCK_PENDING | \
CCTF_REM_G_BLOCK_PENDING | \
CCTF_LOC_RESET_PENDING | \
CCTF_REM_RESET_PENDING | \
0\

)
#define CCTM_CONT_CHECK O\

2014-10-25

CCTF_COR_PENDING | \
CCTF_COT_PENDING | \
CCTF_LPA_PENDING | \
0\

255

Addendum for Q.764 Conformance

/*
Cause values for CC_CALL_REATTEMPT_IND
*/
/*
Cause values -- Q.764 conforming
*/
#define ISUP_REATTEMPT_DUAL_SIEZURE 1UL
#define ISUP_REATTEMPT_RESET 2UL
#define ISUP_REATTEMPT_BLOCKING 3UL
#define ISUP_REATTEMPT_T24_TIMEOUT 4UL
#define ISUP_REATTEMPT_UNEXPECTED 5UL
#define ISUP_REATTEMPT_COT_FAILURE 6UL
#define ISUP_REATTEMPT_CIRCUIT_BUSY 7UL
/*
Call types for CC_SETUP_REQ and CC_SETUP_IND
*/
/*
Call types -- Q.764 Conforming
*/
#define ISUP_CALL_TYPE_SPEECH 0x00000000UL
#define ISUP_CALL_TYPE_64KBS_UNRESTRICTED 0x00000002UL
#define ISUP_CALL_TYPE_3_1kHZ_AUDIO 0x00000003UL
#define ISUP_CALL_TYPE_64KBS_PREFERRED 0x00000006UL
#define ISUP_CALL_TYPE_2x64KBS_UNRESTRICTED 0x00000007UL
#define ISUP_CALL_TYPE_384KBS_UNRESTRICTED 0x00000008UL
#define ISUP_CALL_TYPE_1536KBS_UNRESTRICTED 0x00000009UL
#define ISUP_CALL_TYPE_1920KBS_UNRESTRICTED 0x0000000aUL
/*
Call flags for CC_SETUP_REQ and CC_SETUP_IND
*/
/*
Call flags -- Q.764 Conforming
*/
#define ISUP_NCI_ONE_SATELLITE_CCT 0x00000001UL
#define ISUP_NCI_TWO_SATELLITE_CCT 0x00000002UL
#define ISUP_NCI_SATELLITE_MASK 0x00000003UL
#define ISUP_NCI_CONT_CHECK_REQUIRED 0x00000004UL
#define ISUP_NCI_CONT_CHECK_PREVIOQUS 0x00000008UL
#define ISUP_NCI_CONT_CHECK_MASK 0x0000000cUL
#define ISUP_NCI_OG_ECHO_CONTROL_DEVICE 0x00000010UL
/*
Call flags for CC_SETUP_REQ and CC_SETUP_IND
*/
/*
Call flags -- Q.764 Conforming
*/
#define ISUP_FCI_INTERNATIONAL_CALL 0x00000100UL
#define ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAIL 0x00000200UL
#define ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE 0x00000400UL
#define ISUP_FCI_INTERWORKING_ENCOUNTERED 0x00000800UL
#define ISUP_FCI_E2E_INFORMATION_AVAILABLE 0x00001000UL
#define ISUP_FCI_ISDN_USER_PART_ALL_THE_WAY 0x00002000UL
#define ISUP_FCI_ISDN_USER_PART_NOT_REQUIRED 0x00004000UL

256

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

#define
#define
#define
#define
/*

Call

*/

/*

Call

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

Flags for CC_CONT_REPORT_REQ and CC_CONT_REPORT_IND

*/
/*

ISUP_FCI_ISDN_USER_PART_REQUIRED
ISUP_FCI_ORIGINATING_ACCESS_ISDN
ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE
ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE

0x00008000UL
0x00010000UL
0x00020000UL
0x00040000UL

flags for CC_SETUP_REQ and CC_SETUP_IND

flags -- Q.764 Conforming

ISUP_CPC_MASK 0x££000000UL
ISUP_CPC_UNKNOWN 0x00000000UL
ISUP_CPC_OPERATOR_FRENCH 0x01000000UL
ISUP_CPC_OPERATOR_ENGLISH 0x02000000UL
ISUP_CPC_OPERATOR_GERMAN 0x03000000UL
ISUP_CPC_OPERATOR_RUSSIAN 0x04000000UL
ISUP_CPC_OPERATOR_SPANISH 0x05000000UL
ISUP_CPC_OPERATOR_LANGUAGE_6 0x06000000UL
ISUP_CPC_OPERATOR_LANGUAGE_7 0x07000000UL
ISUP_CPC_OPERATOR_LANGUAGE_8 0x08000000UL
ISUP_CPC_OPERATOR_CODE_9 0x09000000UL
ISUP_CPC_SUBSCRIBER_ORDINARY 0x0a000000UL
ISUP_CPC_SUBSCRIBER_PRIORITY 0x0b0O0000OUL
ISUP_CPC_VOICE_BAND_DATA 0x0c000000UL
ISUP_CPC_TEST_CALL 0x0d000000UL
ISUP_CPC_SPARE 0x0e000000UL
ISUP_CPC_PAYPHONE 0x0£000000UL

Flags -- Q.764 Conforming

*/

#define ISUP_COT_FAILURE 0x00000000UL
#define ISUP_COT_SUCCESS 0x00000001UL

/*

Addendum for Q.764 Conformance

Flags for CC_PROCEEDING, CC_ALERTING, CC_PROGRESS, CC_IBI

*/
/*

Flags -- Q.764 Conforming

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

ISUP_BCI_NO_CHARGE 0x00000001UL
ISUP_BCI_CHARGE 0x00000002UL
ISUP_BCI_CHARGE_MASK 0x00000003UL
ISUP_BCI_SUBSCRIBER_FREE 0x00000004UL
ISUP_BCI_CONNECT_FREE 0x00000008UL
ISUP_BCI_CPS_MASK 0x0000000cUL
ISUP_BCI_ORDINARY_SUBSCRIBER 0x00000010UL
ISUP_BCI_PAYPHONE 0x00000020UL
ISUP_BCI_CPI_MASK 0x00000030UL
ISUP_BCI_PASS_ALONG_E2E_METHOD_AVAIL 0x00000040UL
ISUP_BCI_SCCP_E2E_METHOD_AVAILABLE 0x00000080UL
ISUP_BCI_E2E_MASK 0x000000cOUL
ISUP_BCI_INTERWORKING_ENCOUNTERED 0x00000100UL

2014-10-25

257

Addendum for Q.764 Conformance

#define ISUP_BCI_E2E_INFORMATION_AVAILABLE 0x00000200UL
#define ISUP_BCI_ISDN_USER_PART_ALL_THE_WAY 0x00000400UL
#define ISUP_BCI_HOLDING_REQUESTED 0x00000800UL
#define ISUP_BCI_TERMINATING_ACCESS_ISDN 0x00001000UL
#define ISUP_BCI_IC_ECHO_CONTROL_DEVICE 0x00002000UL
#define ISUP_BCI_SCCP_CLNS_METHOD_AVAILABLE 0x00004000UL
#define ISUP_BCI_SCCP_CONS_METHOD_AVAILABLE 0x00008000UL
#define ISUP_BCI_SCCP_METHOD_MASK 0x0000c000UL
#define ISUP_OBCI_INBAND_INFORMATION_AVAILABLE 0x00010000UL
#define ISUP_0BCI_CALL_DIVERSION_MAY_OCCUR 0x00020000UL
#define ISUP_OBCI_ADDITIONAL_INFO_IN_SEG 0x00040000UL
#define ISUP_0BCI_MLPP_USER 0x00080000UL
/*
Events for CC_PROGRESS_REQR and CC_PROGRESS_IND
*/
/*
Events -- Q.764 Conforming
*/
#define ISUP_EVNT_PRES_RESTRICT 0x80
#define ISUP_EVNT_ALERTING 0x01 /* alerting */
#define ISUP_EVNT_PROGRESS 0x02 /* progress */
#define ISUP_EVNT_IBI 0x03 /* in-band info or approp pattern avail */
#define ISUP_EVNT_CFB 0x04 /* call forwarded busy */
#define ISUP_EVNT_CFNA 0x05 /* call forwarded no reply */
#define ISUP_EVNT_CFU 0x06 /* call forwarded unconditional */
#define ISUP_EVNT_MASK 0x7£
/*
Cause values CC_CALL_FAILURE_IND -- Q.764 Conforming
*/
#define ISUP_CALL_FAILURE_COT_FAILURE 1UL
#define ISUP_CALL_FAILURE_RESET 2UL
#define ISUP_CALL_FAILURE_RECV_RLC 3UL
#define ISUP_CALL_FAILURE_BLOCKING 4UL
#define ISUP_CALL_FAILURE_T2_TIMEQUT 5UL
#define ISUP_CALL_FAILURE_T3_TIMEOUT 6UL
#define ISUP_CALL_FAILURE_T6_TIMEQUT 7UL
#define ISUP_CALL_FAILURE_T7_TIMEOQUT 8UL
#define ISUP_CALL_FAILURE_T8_TIMEQUT 9UL

#define ISUP_CALL_FAILURE_T9_TIMEQOUT 10UL
#define ISUP_CALL_FAILURE_T35_TIMEOUT 110L
#define ISUP_CALL_FAILURE_T38_TIMEOUT 120L
#define ISUP_CALL_FAILURE_CIRCUIT_BUSY 13UL

/*

* (Q.850 Cause Values

*/

/*

Normal class

*/
#define CC_CAUS_UNALLOCATED_NUMBER
#define CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK
#define CC_CAUS_NO_ROUTE_TO_DESTINATION
#define CC_CAUS_SEND_SPECIAL_INFO_TONE
#define CC_CAUS_MISDIALLED_TRUNK_PREFIX

258

Unallocated (unassigned) number */

No route to specified transit network */
No route to destination */

Send special information tone */
Misdialled trunk prefix */

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

#define
#define

CC_CAUS_PREEMPTION
CC_CAUS_PREEMPTION_CCT_RESERVED

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CC_CAUS_NORMAL_CALL_CLEARING
CC_CAUS_USER_BUSY
CC_CAUS_NO_USER_RESPONDING
CC_CAUS_NO_ANSWER
CC_CAUS_SUBSCRIBER_ABSENT
CC_CAUS_CALL_REJECTED
CC_CAUS_NUMBER_CHANGED
CC_CAUS_REDIRECT
CC_CAUS_OUT_OF _ORDER
CC_CAUS_ADDRESS_INCOMPLETE

#define
#define
/*
Resource Unavailable Class
*/
#define
#define
#define
#define
#define
#define

CC_CAUS_FACILITY_REJECTED
CC_CAUS_NORMAL_UNSPECIFIED

CC_CAUS_NO_CCT_AVAILABLE
CC_CAUS_NETWORK_OUT_OF _ORDER
CC_CAUS_TEMPORARY_FAILURE

CC_CAUS_ACCESS_INFO_DISCARDED
CC_CAUS_REQUESTED_CCT_UNAVAILABLE

#define CC_CAUS_PRECEDENCE_CALL_BLOCKED
#define CC_CAUS_RESOURCE_UNAVAILABLE
/*
Service or Option Unavaialble Class
*/
#define
#define
#define
#define
#define

CC_CAUS_NOT_SUBSCRIBED
CC_CAUS_OGC_BARRED_WITHIN_CUG
CC_CAUS_ICC_BARRED WITHIN_CUG
CC_CAUS_BC_NOT_AUTHORIZED
CC_CAUS_BC_NOT_AVAILABLE

#define CC_CAUS_INCONSISTENCY

#define

/*
Service or Option Not Implemented Class
*/
#define CC_CAUS_BC_NOT_IMPLEMENTED
#define CC_CAUS_FACILITY_NOT_IMPLEMENTED
#define CC_CAUS_RESTRICTED_BC_ONLY

CC_CAUS_SWITCHING_EQUIP_CONGESTION

CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE

16
17
18
19
20
21
22
23
27
28

29
31

34
38
41
42
43
44

46
47

50
53
55
57
58

62

63

65

69
70

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*

/*

/*

/*

/*
/*

#define CC_CAUS_SERVICE_OPTION_NOT_IMPLEMENTED 79

/*

Addendum for Q.764 Conformance

Preemption */

Preemption - circuit reserved for
reuse */

Normal call clearing */

User busy */

No user responding */

No answer from user (user alerted) */
Subscriber absent */

Call rejected */

Number changed */

Redirect to new destination */
Desitination out of order */
Invalid number format (address
incomplete) */

Facility rejected */

Normal unspecified */

No circuit/channel available */
Network out of order */

Temporary failure */

Switching equipment congestion */
Access information discarded */
Requested circuit/channel not
available */

Precedence call blocked */

Resource unavailable, unspecified */

Requested facility not subscribed */
Outgoing calls barred within CUG */
Incoming calls barred within CUG */
Bearer capability not authorized */
Bearer capability not presently
available */

Inconsistency in designated outgoing
access information and subscriber
class */

Service or option not available,
unspecified */

Bearer capability not implemented */
Requested facility not implemented */
Only restricted digital information
bearer capability is available */
/* Service or option not
implemented, unspecified */

Invalid Message (e.g., Parameter out of Range) Class

*/
#define CC_CAUS_USER_NOT_MEMBER_OF_CUG
#define CC_CAUS_INCOMPATIBLE_DESTINATION

2014-10-25

87 /* User not member of CUG */
88 /* Incompatible destination */

259

Addendum for Q.764 Conformance

#define CC_CAUS_NON_EXISTENT_CUG 90 /* Non-existent CUG */
#define CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION 91 /* Invalid transit network
selection */
#define CC_CAUS_INVALID_MESSAGE 95 /* Invalid message, unspecified */
/*
Protocol Error (e.g., Unknwon Message) Class
*/
#define CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED 97 /* Message typ non-existent or not
implemented. */
#define CC_CAUS_PARAMETER_NOT_IMPLEMENTED 99 /#* Information element/Parameter
non-existent or not implemented */
#tdefine CC_CAUS_RECOVERY_ON_TIMER_EXPIRY 102 /* Recovery on timer expiry */

#define CC_CAUS_PARAMETER_PASSED_ON 103 /* Parameter non-existent or not
implemented - passed on */
#define CC_CAUS_MESSAGE_DISCARDED 110 /* Message with unrecognized parameter
discarded */
#define CC_CAUS_PROTOCOL_ERROR 111 /* Protocol error, unspecified */
/*
Interworking Class
*/
#define CC_CAUS_INTERWORKING 127 /% Interworking, unspecified */
/*
* ANSI Standard Causes
*/
/*
Normal Class
*/
#define CC_CAUS_UNALLOCATED_DEST_NUMBER 23 /* Unallocated destination number */
#define CC_CAUS_UNKNOWN_BUSINESS_GROUP 24 /* Unknown business group */
#define CC_CAUS_EXCHANGE_ROUTING_ERROR 25 /* Exchange routing error */
#define CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26 /* Misrouted call to a ported
number */
#define CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND 27 /* Number portability Query on Release
(QoR) number not found. */
/*
Resource Unavailable Class
*/
#define CC_CAUS_RESQURCE_PREEMPTION 45 /* Preemption. */
#define CC_CAUS_PRECEDENCE_CALL_BLOCKED 46 /* Precedence call blocked. */
/*
Service or Option Not Available Class
*/
#define CC_CAUS_CALL_TYPE_INCOMPATIBLE 51 /% Call type incompatible with service
request */
#define CC_CAUS_GROUP_RESTRICTIONS 54 /x Call blocked due to group restrictions
*/
/*
Management flags -- Q.764 Conforming
*/
#define ISUP_GROUP 0x00010000UL
#define ISUP_MAINTENANCE_ORIENTED 0x00000000UL
#define ISUP_HARDWARE_FAILURE_ORIENTED 0x00000001UL
/*
Management flags -- ANSI T1.113 Conforming
*/

260 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for Q.764 Conformance

#define ISUP_BLOCKING_WITHOUT_RELEASE 0x00000000UL
#define ISUP_BLOCKING_IMMEDIATE_RELEASE 0x00000001UL
#define ISUP_SOFTWARE_FAILURE_ORIENTED 0x00000002UL

#define ISUP_SRIS_MASK 0x3
#define ISUP_SRIS_NETWORK_INITIATED 0x1
#define ISUP_SRIS_USER_INITIATED 0x2
/*

Maintenance indications -- Q.764 Conforming

*/

#define ISUP_MAINT_T5_TIMEOUT 3UL /* Q.752 12.5 on occrence */
#define ISUP_MAINT_T13_TIMEOUT 4UL /* Q.752 12.16 1st and delta */
#define ISUP_MAINT_T15_TIMEOUT BUL /* Q.752 12.17 1st and delta */
#define ISUP_MAINT_T17_TIMEOUT 6UL /* Q.752 12.1 1st and delta */
#define ISUP_MAINT_T19_TIMEOUT TUL /* Q.752 12.18 1st and delta */
#define ISUP_MAINT_T21_TIMEOUT 8UL /* Q.752 12.19 1st and delta */
#define ISUP_MAINT_T23_TIMEOUT 9UL /* Q.752 12.2 1st and delta */
#define ISUP_MAINT_T25_TIMEOUT 10UL
#define ISUP_MAINT_T26_TIMEOUT 11UL
#define ISUP_MAINT_T27_TIMEOUT 12UL
#define ISUP_MAINT_T28_TIMEOUT 13UL
#define ISUP_MAINT_T36_TIMEOUT 14UL
#define ISUP_MAINT_UNEXPECTED_CGBA 18UL /* Q.752 12.12 1st and delta */
#define ISUP_MAINT_UNEXPECTED_CGUA 16UL /* Q.752 12.13 1st and delta */
#define ISUP_MAINT_UNEXPECTED_MESSAGE 17UL /* Q.752 12.21 1st and delta */
#define ISUP_MAINT_UNEQUIPPED_CIC 18UL

#define ISUP_MAINT_SEGMENTATION_DISCARDED 19UL
#define ISUP_MAINT_USER_PART_UNEQUIPPED 20UL

#define ISUP_MAINT_USER_PART_UNAVAILABLE 21UL /* Q.752 10.1, 10.8 on occrence */
#define ISUP_MAINT_USER_PART_AVAILABLE 22UL /* Q.752 10.3, 10.9 on occrence */
#define ISUP_MAINT_USER_PART_MAN_MADE_BUSY 23UL /* Q.752 10.2 on occrence */ /* XXX *x/
#define ISUP_MAINT_USER_PART_CONGESTED 24UL /* Q.752 10.5, 10.11 on occrence */
#tdefine ISUP_MAINT_USER_PART_UNCONGESTED 25UL /* Q.752 10.6, 10.12 on occrence */
#define ISUP_MAINT_MISSING_ACK_IN_CGBA 26UL /* Q.752 12.8 1st and delta */

#tdefine ISUP_MAINT_MISSING_ACK_IN_CGUA 27UL /* Q.752 12.9 1st and delta */

#define ISUP_MAINT_ABNORMAL_ACK_IN_CGBA 28UL /* Q.752 12.10 1st and delta */

#define ISUP_MAINT_ABNORMAL_ACK_IN_CGUA 29UL /* Q.752 12.11 1st and delta */

#tdefine ISUP_MAINT_UNEXPECTED_BLA 30UL /* Q.752 12.14 1st and delta */

#define ISUP_MAINT_UNEXPECTED_UBA 31UL /* Q.752 12.15 1st and delta */

#tdefine ISUP_MAINT_RELEASE_UNREC_INFO 32UL /* Q.752 12.22 1st and delta */ /* XXX */
#define ISUP_MAINT_RELEASE_FAILURE 33UL /* Q.752 12.23 1st and delta */ /x XXX */
#define ISUP_MAINT_MESSAGE_FORMAT_ERROR 34UL /* Q.752 12.20 1st and delta */ /* XXX */
#endif /* __SS7_ISUPI_H__ */

2014-10-25 261

Call Control Interface (CCI) Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

This addendum describes the formats and rules that are specific to ETSI EN 300 356-1 V3.2.2. The
addendum must be used along with the generic CCI as defined in the main document, and the Q.764
conformance defined in [Addendum for Q.764 Conformance], page 219. when implementing a CCS
provider that will be configured with the EN 300 356-1 call processing layer.

Primitives and Rules for ETSI EN 300 356-1 V3.2.2 Conformance

The following are the additional rules that apply to the CCI primitives for ETSI EN 300 356-1
V3.2.2 compatibility.

Local Management Primitives
Call Setup Primitives
CC_SETUP_REQ
Parameters

Flags

Rules

CC_SETUP_IND

Parameters

cc_call_type
Specifies the call type to be set up. In addition to Q.764 values, for EN 300 356-1
V3.2.2 conforming CCS providers, the call type can also be one of the values listed
under "Call Type" below.

Call Type

The following call types are defined for EN 300 356-1 V3.2.2 conforming CCS providers in addition
to the Q.931 values shown in [Addendum for Q.931 Conformance], page 191.

CC_CALL_TYPE_3x64KBS_UNRESTRICTED
The call type is 3 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 3
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_4x64KBS_UNRESTRICTED
The call type is 4 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 4
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_b5x64KBS_UNRESTRICTED
The call type is 5 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 5
x 64 kbit/s unrestricted digital information".

2014-10-25 263

Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

CC_CALL_TYPE_6x64KBS_UNRESTRICTED
The call type is 6 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of 384
kbit/s unrestricted digital information. This call type can be synonymous with

CC_CALL_TYPE_384KBS_UNRESTRICTED.

CC_CALL_TYPE_7x64KBS_UNRESTRICTED
The call type is 7 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 7
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_8x64KBS_UNRESTRICTED
The call type is 8 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 8
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_9x64KBS_UNRESTRICTED
The call type is 9 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 9
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_10x64KBS_UNRESTRICTED
The call type is 10 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 10
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_11x64KBS_UNRESTRICTED
The call type is 11 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 11
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_12x64KBS_UNRESTRICTED
The call type is 12 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 12
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_13x64KBS_UNRESTRICTED
The call type is 13 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 13
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_14x64KBS_UNRESTRICTED
The call type is 14 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 14
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_15x64KBS_UNRESTRICTED
The call type is 15 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 15
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_16x64KBS_UNRESTRICTED
The call type is 16 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 16
x 64 kbit/s unrestricted digital information".

264 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

CC_CALL_TYPE_17x64KBS_UNRESTRICTED
The call type is 17 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 17
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_18x64KBS_UNRESTRICTED
The call type is 18 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 28
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_19x64KBS_UNRESTRICTED
The call type is 19 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 19
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_20x64KBS_UNRESTRICTED
The call type is 20 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 20
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_21x64KBS_UNRESTRICTED
This call type corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement
of "reserved for 21 x 64 kbit/s unrestricted digital information". The call type is 21 x
64 kbit/s unrestricted digital information.

CC_CALL_TYPE_22x64KBS_UNRESTRICTED
The call type is 22 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 22
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_23x64KBS_UNRESTRICTED
The call type is 23 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 23
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_24x64KBS_UNRESTRICTED
The call type is 24 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "1536
kbit/s unrestricted digital information". This call type can be synonymous with
CC_CALL_TYPE_1536KBS_UNRESTRICTED.

CC_CALL_TYPE_25x64KBS_UNRESTRICTED
The call type is 25 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 25
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_26x64KBS_UNRESTRICTED
The call type is 26 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 26
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_27x64KBS_UNRESTRICTED
The call type is 27 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 27
x 64 kbit/s unrestricted digital information".

2014-10-25 265

Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

CC_CALL_TYPE_28x64KBS_UNRESTRICTED
The call type is 28 x 64 kbit/s unrestricted digital information. This call type corre-
sponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "reserved for 28
x 64 kbit/s unrestricted digital information".

CC_CALL_TYPE_29x64KBS_UNRESTRICTED
The call type is 29 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of "1920
kbit/s unrestricted digital information". This call type can be synonymous with
CC_CALL_TYPE_1920KBS_UNRESTRICTED.

Rules
Rules for call type:

1. Only multi-rate connection types for 384 kbit/s (6 x 64 kbit/s), 1536 kbit/s (24 x 64 kbit/s) and
1920 kbit/s (29 x 64 kbit/s) are supported. For EN 300 356-1 V3.2.2 compliant CCS providers.

ETSI EN 300 356-1 V3.2.2 Header File Listing

266 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

Mapping of CCI Primitives to Q.931

Appendix A Mapping of CCI Primitives to Q.931

The mapping of CCI primitives to Q.931 primitives is shown in Table A.1. For the most part, this
mapping is a one to one mapping of service primitives, with the exception of Setup Response and

Setup Confirm.

CCI Primitive

Q.931 Primitive

CC_INFO_REQ
CC_INFO_ACK
CC_BIND_REQ
CC_BIND_ACK
CC_UNBIND_REQ
CC_ADDR_REQ
CC_ADDR_ACK
CC_OK_ACK
CC_ERROR_ACK

CC_SETUP_REQ
CC_SETUP_IND
CC_MORE_INFO_REQ
CC_MORE_INFO_IND
CC_INFORMATION_REQ
CC_INFORMATION_IND
CC_INFO_TIMEOUT_IND
CC_SETUP_RES
CC_SETUP_CON
CC_SETUP_COMPLETE_REQ
CC_SETUP_COMPLETE_IND

Setup Request

Setup Indication

More Info Request

More Info Indication

Information Request

Information Indication

Timeout Indication

Proceeding, Alerting, Progress Request; Setup Response
Proceeding, Alerting, Progress Indication; Setup Confirm
Setup Complete Request

Setup Complete Indication

CC_PROCEEDING_REQ
CC_PROCEEDING_IND
CC_ALERTING_REQ
CC_ALERTING_IND
CC_PROGRESS_REQ
CC_PROGRESS_IND
CC_CONNECT_REQ
CC_CONNECT_IND

Proceeding Request
Proceeding Indication
Alerting Request
Alerting Indication
Progress Request
Progress Indication
Setup Response
Setup Confirm

CC_SUSPEND_REQ
CC_SUSPEND_IND
CC_SUSPEND_RES
CC_SUSPEND_CON
CC_SUSPEND_REJECT_REQ
CC_SUSPEND_REJECT_IND
CC_RESUME_REQ
CC_RESUME_IND
CC_RESUME_RES
CC_RESUME_CON
CC_RESUME_REJECT_REQ
CC_RESUME_REJECT_IND

Suspend Request, Notify Request
Suspend Indication, Notify Indication
Suspend Response

Suspend Confirm

Suspend Reject Request

Suspend Reject Indication

Resume Request, Notify Request
Resume Indication, Notify Indication
Resume Response

Resume Confirm

Resume Reject Request

Resume Reject Indication

CC_CALL_REATTEMPT_IND
CC_CALL_FAILURE_IND
CC_REJECT_REQ
CC_REJECT_IND
CC_DISCONNECT_REQ
CC_DISCONNECT_IND
CC_RELEASE_REQ
CC_RELEASE_IND
CC_RELEASE_RES

Error Indication, Status Indication, Restart Indication
Reject Request, Release Complete Request

Reject Indication, Release Complete Indication
Disconnect Request

Disconnect Indication

Release Request

Release Indication

Release Complete Request

Table A.1: Mapping of CCI primitives to Q.931 Primitives

In Q.931 the Setup Response and Setup Confirm primitives and issued only once the voice channel
is connected. In OpenSS7 CCI, the CC_SETUP_RES and CC_SETUP_CON primitives are used to accept

2014-10-25

267

Appendix A: Mapping of CCI Primitives to Q.931

the addressing and assign a stream and correspond to the first backward message (i.e, Processing,
Alerting or Progress Request or Indication; and Setup Indication or Confirm).

268 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

Mapping of CCI Primitives to Q.764

Appendix B Mapping of CCI Primitives to Q.764

The mapping of CCI primitives to Q.764 primitives is shown in Table B.1. For the most part this is a
one to one mapping of service primitives, with the exception of Setup Response and Setup Confirm.

CCI Primitive

Q.764 Primitive

CC_INFO_REQ
CC_INFO_ACK
CC_BIND_REQ
CC_BIND_ACK
CC_UNBIND_REQ
CC_ADDR_REQ
CC_ADDR_ACK
CC_OK_ACK
CC_ERROR_ACK

CC_SETUP_REQ
CC_SETUP_IND
CC_MORE_INFO_REQ
CC_MORE_INFO_IND
CC_INFORMATION_REQ
CC_INFORMATION_IND
CC_INFO_TIMEOUT_IND
CC_SETUP_RES
CC_SETUP_CON

Setup Request
Setup Indication

Information Request

Information Indication

Proceeding, Alerting, Progress Request; Setup Response
Proceeding, Alerting, Progress Indication; Setup Confirm

CC_PROCEEDING_REQ
CC_PROCEEDING_IND
CC_ALERTING_REQ
CC_ALERTING_IND
CC_PROGRESS_REQ
CC_PROGRESS_IND
CC_CONNECT_REQ
CC_CONNECT_IND

Proceeding Request
Proceeding Indication
Alerting Request
Alerting Indication
Progress Request
Progress Indication
Setup Response
Setup Confirm

CC_SUSPEND_REQ
CC_SUSPEND_IND
CC_RESUME_REQ
CC_RESUME_IND

Suspend Request
Suspend Indication
Resume Request
Resume Indication

CC_CALL_REATTEMPT_IND

CC_CALL_FAILURE_IND
CC_REJECT_REQ
CC_REJECT_IND
CC_RELEASE_REQ
CC_RELEASE_IND
CC_RELEASE_RES
CC_RELEASE_CON

Reattempt Indication
Failure Indication
Release Request
Release Indication
Release Request
Release Indication
Release Response
Release Confirm

CC_RESET_REQ
CC_RESET_IND
CC_RESET_RES
CC_RESET_CON
CC_BLOCKING_REQ
CC_BLOCKING_IND
CC_BLOCKING_RES
CC_BLOCKING_CON
CC_UNBLOCKING_REQ
CC_UNBLOCKING_IND
CC_UNBLOCKING_RES

Reset Request

Reset Indication
Reset Response
Reset Confirm
Blocking Request
Blocking Indication
Blocking Response
Blocking Confirm
Unblocking Request
Unblocking Indication
Unblocking Response

Table B.1: Mapping of CCI primitives to Q.764 Primitives

In Q.764 the Setup Response and Setup Confirm primitives and issued only once the voice channel
is connected. In OpenSS7 CCI, the CC_SETUP_RES and CC_SETUP_CON primitives are used to accept

2014-10-25

269

Appendix B: Mapping of CCI Primitives to Q.764

the addressing and assign a stream and correspond to the first backward message (i.e, Processing,
Alerting or Progress Request or Indication; and Setup Indication or Confirm).

270 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) State/Event Tables

Appendix C State/Event Tables

2014-10-25 271

Call Control Interface (CCI) Primitive Precedence Tables

Appendix D Primitive Precedence Tables

2014-10-25 273

Call Control Interface (CCI)

Appendix E CCI Header File Listing

#ifndef
#define

typedef
typedef
typedef
typedef

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

__SS7_CCI_H__
__SS7_CCI_H__

Imi_long cc_long;
Imi_ulong cc_ulong;
1mi_ushort cc_ushort;
1mi_uchar cc_uchar;

CC_INFO_REQ
CC_OPTMGMT_REQ
CC_BIND_REQ
CC_UNBIND_REQ
CC_ADDR_REQ
CC_SETUP_REQ
CC_MORE_INFO_REQ
CC_INFORMATION_REQ
CC_CONT_CHECK_REQ
CC_CONT_TEST_REQ
CC_CONT_REPORT_REQ
CC_SETUP_RES
CC_PROCEEDING_REQ
CC_ALERTING_REQ
CC_PROGRESS_REQ
CC_IBI_REQ
CC_DISCONNECT_REQ
CC_CONNECT_REQ
CC_SETUP_COMPLETE_REQ
CC_FORWXFER_REQ
CC_SUSPEND_REQ
CC_SUSPEND_RES
CC_SUSPEND_REJECT_REQ
CC_RESUME_REQ
CC_RESUME_RES
CC_RESUME_REJECT_REQ
CC_REJECT_REQ
CC_RELEASE_REQ
CC_RELEASE_RES
CC_NOTIFY_REQ
CC_RESTART_REQ
CC_RESET_REQ
CC_RESET_RES
CC_BLOCKING_REQ
CC_BLOCKING_RES
CC_UNBLOCKING_REQ
CC_UNBLOCKING_RES
CC_QUERY_REQ
CC_QUERY_RES
CC_STOP_REQ

CC_OK_ACK
CC_ERROR_ACK
CC_INFO_ACK
CC_BIND_ACK

2014-10-25

0 ~NOo Ok WNN - O

©

10

12
13
14
15
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

64
65
66
67

/*

/*
/*
/*

/*

/*
/*

/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

ISDN

ISUP
ISUP
ISUP

(same as CC_DISCONNECT_REQ in ISDN) */

ISDN
ISUP

ISDN
ISDN

ISDN
ISDN
ISDN

ISUP
ISDN
ISDN
ISUP
ISUP
ISUP
ISUP
ISUP
ISUP
ISUP
ISUP
ISUP

only

only
only
only

only
only

only
only

only
only
only

only
only
only
only
only
only
only
only
only
only
only
only

*/
*/
*/

*/
*/

*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

CCI Header File Listing

275

Appendix E: CCI Header File Listing

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

CC_OPTMGMT_ACK
CC_ADDR_ACK
CC_CALL_REATTEMPT_IND
CC_SETUP_IND
CC_MORE_INFO_IND
CC_INFORMATION_IND
CC_CONT_CHECK_IND
CC_CONT_TEST_IND
CC_CONT_REPORT_IND
CC_SETUP_CON
CC_PROCEEDING_IND
CC_ALERTING_IND
CC_PROGRESS_IND

CC_IBI_IND

CC_DISCONNECT_IND
CC_CONNECT_IND
CC_SETUP_COMPLETE_IND
CC_FORWXFER_IND
CC_SUSPEND_IND
CC_SUSPEND_CON
CC_SUSPEND_REJECT_IND
CC_RESUME_IND
CC_RESUME_CON
CC_RESUME_REJECT_IND
CC_REJECT_IND
CC_CALL_FAILURE_IND
CC_RELEASE_IND
CC_RELEASE_CON
CC_NOTIFY_IND
CC_RESTART_CON
CC_STATUS_IND
CC_ERROR_IND

CC_DATALINK_FAILURE_IND

CC_INFO_TIMEOUT_IND
CC_RESET_IND
CC_RESET_CON
CC_BLOCKING_IND
CC_BLOCKING_CON
CC_UNBLOCKING_IND
CC_UNBLOCKING_CON
CC_QUERY_IND
CC_QUERY_CON
CC_STOP_IND
CC_MAINT_IND
CC_START_RESET_IND

* Interface state

*/

enum {

276

CCS_UNBND,
CCS_IDLE,
CCS_WIND_SETUP,
CCS_WREQ_SETUP,

68
69
70
71
72
73
74
75
76
7
78
79
80

81

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

/*

/*
/*

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

ISUP only */
recv IAM x/
ISDN only */
recv SAM */
ISUP only */
ISUP only */
ISUP only */

recv ACM w/ no indication if proceeding not sent before */Jj
recv ACM w/ subscriber free indication */

recv ACM w/ no indication and ATP parameter and calll
proceeding sent */

recv ACM or CPG w/ inband info (same as

CC_DISCONNECT_IND in ISDN) */

ISDN only */
ISUP only */

ISDN only */
ISDN only */

ISDN only */
ISDN only */
ISDN only */
ISUP only (ERROR_IND?) */

ISDN only */
ISDN only */
ISDN only */
ISDN only (CALL_FAILURE_IND?) */
ISDN only */

ISUP only */
ISUP only */
ISUP only */
ISUP only */
ISUP only */
ISUP only */
ISUP only */
ISUP only */
ISUP only */
ISUP only */
ISUP only */

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

};

CCS_WREQ_MORE,
CCS_WIND_MORE,
CCS_WREQ_INFO,
CCS_WIND_INFO,
CCS_WACK_INFO,
CCS_WCON_SREQ,
CCS_WRES_SIND,
CCS_WREQ_CCREP,
CCS_WIND_CCREP,
CCS_WREQ_PROCEED,
CCS_WIND_PROCEED,
CCS_WACK_PROCEED,
CCS_WREQ_ALERTING,
CCS_WIND_ALERTING,
CCS_WACK_ALERTING,
CCS_WREQ_PROGRESS,
CCS_WIND_PROGRESS,
CCS_WACK_PROGRESS,
CCS_WREQ_IBI,
CCS_WIND_IBI,
CCS_WACK_IBI,
CCS_WREQ_CONNECT,
CCS_WIND_CONNECT,
CCS_WCON_CREQ,
CCS_WACK_FORWXFER,
CCS_WCON_SUSREQ,
CCS_CONNECTED,
CCS_SUSPENDED,
CCS_WIND_RELEASE,
CCS_WCON_RELREQ,
CCS_WRES_RELIND,
CCS_UNUSABLE,

typedef struct CC_ok_ack {

cc_ulong

cc_ulong

cc_ulong

cc_ulong
} CC_ok_ack_t;

cc_primitive;
cc_correct_prim;
cc_state;
cc_call_ref;

typedef struct CC_error_ack {

cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong
} CC_error_ack_t;

enum {
CCSYSERR

cc_primitive;
cc_error_primitive;
cc_error_type;
cc_unix_error;
cc_state;
cc_call_ref;

=O,

CCOUTSTATE,
CCBADADDR,
CCBADDIGS,

CCBADOPT,

2014-10-25

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

always CC_OK_ACK */

CCI Header File Listing

primitive being acknowledged */

current state */
call reference */

always CC_ERROR_ACK */
primitive in error */

CCI error code */

UNIX system error code */

current state */
call reference */

277

Appendix E: CCI Header File Listing

CCNOADDR,
CCADDRBUSY,
CCBADCLR,
CCBADTOK,
CCBADFLAG,
CCNOTSUPP,
CCBADPRIM,
CCACCESS,
};

typedef struct CC_info_req {
cc_ulong cc_primitive;
} CC_info_req_t;

typedef struct CC_info_ack {
cc_ulong cc_primitive;
/* FIXME ... more ... */
} CC_info_ack_t;

typedef struct CC_bind_req {
cc_ulong cc_primitive;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
cc_ulong cc_setup_ind;
cc_ulong cc_bind_flags;
} CC_bind_req_t;

/*
Flags associated with CC_BIND_REQ
*/
#define CC_DEFAULT_LISTENER
#define CC_TOKEN_REQUEST
#define CC_MANAGEMENT
#define CC_TEST
#define CC_MAINTENANCE
#define CC_MONITOR

typedef struct CC_bind_ack {
cc_ulong cc_primitive;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
cc_ulong cc_setup_ind;
cc_ulong cc_token_value;
} CC_bind_ack_t;

typedef struct CC_unbind_req {
cc_ulong cc_primitive;
} CC_unbind_req_t;

typedef struct CC_addr_req {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
} CC_addr_req_t;

typedef struct CC_addr_ack {
cc_ulong cc_primitive;

278

/* always CC_INFO_REQ */

/* always CC_INFO_ACK x/

/* always CC_BIND_REQ */
/* length of address */
/* offset of address */

/* req # of setup inds to be queued */

/* bind options flags */

0x000000001UL
0x000000002UL
0x000000004UL
0x000000008UL
0x000000010UL
0x000000020UL

/* always CC_BIND_ACK */
/* length of address */
/* offset of address */
/* setup indications */
/* setup response token value */

/* always CC_UNBIND_REQ */

/* always CC_ADDR_REQ */
/* call reference */

/* always CC_ADDR_ACK */

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

cc_ulong cc_bind_length;

cc_ulong cc_bind_offset;

cc_ulong cc_call_ref;

cc_ulong cc_conn_length;

cc_ulong cc_conn_offset;
} CC_addr_ack_t;

typedef struct CC_optmgmt_req {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
cc_ulong cc_opt_length;
cc_ulong cc_opt_offset;
cc_ulong cc_opt_flags;
} CC_optmgmt_req_t;

typedef struct CC_optmgmt_ack {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
cc_ulong cc_opt_length;
cc_ulong cc_opt_offset;
cc_ulong cc_opt_flags;
} CC_optmgmt_ack_t;

typedef struct CC_setup_req {
cc_ulong cc_primitive;
cc_ulong cc_user_ref;
cc_ulong cc_call_type;
cc_ulong cc_call_flags;
cc_ulong cc_cdpn_length;
cc_ulong cc_cdpn_offset;
cc_ulong cc_opt_length;
cc_ulong cc_opt_offset;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;

} CC_setup_req_t;

typedef struct CC_call_reattempt_ind {

cc_ulong cc_primitive;
cc_ulong cc_user_ref;
cc_ulong cc_reason;

} CC_call_reattempt_ind_t;

typedef struct CC_setup_ind {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
cc_ulong cc_call_type;
cc_ulong cc_call_flags;
cc_ulong cc_cdpn_length;
cc_ulong cc_cdpn_offset;
cc_ulong cc_opt_length;
cc_ulong cc_opt_offset;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;

} CC_setup_ind_t;

typedef struct CC_setup_res {

2014-10-25

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

CCI Header File Listing

length of bound address */
offset of bound address */
call reference */

length of connected address */
offset of connected address */

always CC_OPTMGMT_REQ */
call reference */

length of option values */
offset of option values */
option flags */

always CC_OPTMGMT_ACK */
call reference */

length of option values */
offset of option values */
option flags */

always CC_SETUP_REQ */

user call reference */

call type */

call flags */

called party number length */
called party number offset */
optional parameters length */
optional parameters offset */
connect to address length */
connect to address offset */

always CC_CALL_REATTEMPT_IND */
user call reference */
reason for reattempt */

always CC_SETUP_IND */

call reference */

call type */

call flags */

called party number length */
called party number offset */
optional parameters length */
optional parameters offset */
connecting address length */
connecting address offset */

279

Appendix E: CCI Header File Listing

cc_ulong cc_primitive;

cc_ulong cc_call_ref;

cc_ulong cc_token_value;
} CC_setup_res_t;

typedef struct CC_setup_con {
cc_ulong cc_primitive;
cc_ulong cc_user_ref;
cc_ulong cc_call_ref;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_setup_con_t;

typedef struct CC_cont_check_req {
cc_ulong cc_primitive;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;

} CC_cont_check_req_t;

typedef struct CC_cont_check_ind {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;

} CC_cont_check_ind_t;

typedef struct CC_cont_test_req {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
cc_ulong cc_token_value;
} CC_cont_test_req_t;

typedef struct CC_cont_test_ind {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_cont_test_ind_t;

typedef struct CC_cont_report_req {
cc_ulong cc_primitive;
cc_ulong cc_user_ref;
cc_ulong cc_call_ref;
cc_ulong cc_result;

} CC_cont_report_req_t;

typedef struct CC_cont_report_ind {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
cc_ulong cc_result;

} CC_cont_report_ind_t;

typedef struct CC_more_info_req {
cc_ulong cc_primitive;
cc_ulong cc_call_ref;
cc_ulong cc_opt_length;

280

/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*

always CC_SETUP_RES */
call reference */
call response token value */

always CC_SETUP_CON */

user call reference */

call reference */

connecting address length */
connecting address offset */

always CC_CONT_CHECK_REQ */
adress length */
adress offset */

always CC_CONT_CHECK_IND */
call reference */
adress length */
adress offset */

always CC_CONT_TEST_REQ */
call reference */
token value */

always CC_CONT_TEST_IND */
call reference */
adress length */
adress offset */

always CC_CONT_REPORT_REQ */
user call reference */

call reference */

result of continuity check */

always CC_CONT_REPORT_IND */
call reference */
result of continuity check */

always CC_MORE_INFO_REQ */
call reference */
optional parameter length */

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Header File Listing

cc_ulong cc_opt_offset; /* optional parameter offset */
} CC_more_info_req_t;

typedef struct CC_more_info_ind {

cc_ulong cc_primitive; /* always CC_MORE_INFO_IND */
cc_ulong cc_user_ref; /* user call reference */
cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_ind_t;

typedef struct CC_information_req {

cc_ulong cc_primitive; /* always CC_INFORMATION_REQ */
cc_ulong cc_user_ref; /* call reference */

cc_ulong cc_subn_length; /% subsequent number length */
cc_ulong cc_subn_offset; /* subsequent number offset */
cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_information_req_t;

typedef struct CC_information_ind {

cc_ulong cc_primitive; /* always CC_INFORMATION_IND */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_subn_length; /* subsequent number length */
cc_ulong cc_subn_offset; /* subsequent number offset */
cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /% optional parameter offset */

} CC_information_ind_t;

typedef struct CC_info_timeout_ind {
cc_ulong cc_primitive; /* always CC_INFO_TIMEQUT_IND */
cc_ulong cc_call_ref; /* call reference */

} CC_info_timeout_ind_t;

typedef struct CC_proceeding_req {

cc_ulong cc_primitive; /* always CC_PROCEEDING_REQ */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_flags; /* proceeding flags */

cc_ulong cc_opt_length; /% optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_req_t;

typedef struct CC_proceeding_ind {

cc_ulong cc_primitive; /* always CC_PROCEEDING_IND */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_flags; /* proceeding flags */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_ind_t;

typedef struct CC_alerting_req {

cc_ulong cc_primitive; /* always CC_ALERTING_REQ */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_flags; /* alerting flags */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /% optional parameter offset */

} CC_alerting_req_t;

2014-10-25 281

Appendix E: CCI Header File Listing

typedef struct CC_alerting_ind {

cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong

cc_primitive;
cc_call_ref;
cc_flags;
cc_opt_length;
cc_opt_offset;

} CC_alerting_ind_t;

typedef struct CC_progress_req {

cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong

cc_primitive;
cc_call_ref;
cc_event;
cc_flags;
cc_opt_length;
cc_opt_offset;

} CC_progress_req_t;

typedef struct CC_progress_ind {

cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong

cc_primitive;
cc_call_ref;
cc_event;
cc_flags;
cc_opt_length;
cc_opt_offset;

} CC_progress_ind_t;

typedef struct CC_ibi_req {

cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong
} CC_ibi_req_t;

cc_primitive;
cc_call_ref;
cc_flags;
cc_opt_length;
cc_opt_offset;

typedef struct CC_ibi_ind {

cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong
} CC_ibi_ind_t;

cc_primitive;
cc_call_ref;
cc_flags;
cc_opt_length;
cc_opt_offset;

typedef struct CC_connect_req {

cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong

cc_primitive;
cc_call_ref;
cc_flags;
cc_opt_length;
cc_opt_offset;

} CC_connect_req_t;

typedef struct CC_connect_ind {

cc_ulong
cc_ulong
cc_ulong
cc_ulong

282

cc_primitive;
cc_call_ref;
cc_flags;
cc_opt_length;

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*

always CC_ALERTING_IND */
call reference */
alerting flags */
optional parameter length
optional parameter offset

always CC_PROGRESS_REQ */
call reference */
progress event */
progress flags */
optional parameter length
optional parameter offset

always CC_PROGRESS_IND */
call reference */
progress event */
progress flags */
optional parameter length
optional parameter offset

always CC_IBI_REQ */

call reference */

ibi flags */

optional parameter length
optional parameter offset

always CC_IBI_IND */

call reference */

ibi flags */

optional parameter length
optional parameter offset

always CC_CONNECT_REQ */

call reference */

connect flags */

optional parameter length
optional parameter offset

always CC_CONNECT_IND */
call reference */

connect flags */

optional parameter length

Version 1.1 Rel. 7.20141001

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/

Call Control Interface (CCI)

cc_ulong
} CC_connect_ind_

typedef struct CC_setup_complete_req {

cc_ulong
cc_ulong
cc_ulong
cc_ulong
} CC_setup_comple

typedef struct CC_setup_complete_ind

cc_ulong
cc_ulong
cc_ulong
cc_ulong
} CC_setup_comple

typedef struct CC_forwxfer_req {

cc_ulong
cc_ulong
cc_ulong
cc_ulong

cc_opt_offset;
t;

cc_primitive;
cc_call_ref;
cc_opt_length;
cc_opt_offset;
te_req_t;

cc_primitive;
cc_call_ref;
cc_opt_length;
cc_opt_offset;
te_ind_t;

cc_primitive;
cc_call_ref;
cc_opt_length;
cc_opt_offset;

} CC_forwxfer_req_t;

typedef struct CC_forwxfer_ind {

cc_ulong
cc_ulong
cc_ulong
cc_ulong

cc_primitive;
cc_call_ref;
cc_opt_length;
cc_opt_offset;

} CC_forwxfer_ind_t;

typedef struct CC
cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong
} CC_suspend_req_

typedef struct CC
cc_ulong
cc_ulong
cc_ulong
cc_ulong
cc_ulong
} CC_suspend_ind_

typedef struct CC
cc_ulong
cc_ulong
cc_ulong
cc_ulong
} CC_suspend_res_

typedef struct CC
cc_ulong

2014-10-25

_suspend_req {
cc_primitive;
cc_call_ref;
cc_flags;
cc_opt_length;
cc_opt_offset;
t;

_suspend_ind {
cc_primitive;
cc_call_ref;
cc_flags;
cc_opt_length;
cc_opt_offset;

t’

_suspend_res {
cc_primitive;
cc_call_ref;
cc_opt_length;
cc_opt_offset;
t;

_suspend_con {
cc_primitive;

/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*

optional parameter offset

always CC_SETUP_COMPLETE_REQ */

call reference */
optional parameter length
optional parameter offset

always CC_SETUP_COMPLETE_IND */

call reference */
optional parameter length
optional parameter offset

always CC_FORWXFER_REQ */
call reference */

optional parameter length
optional parameter offset

always CC_FORWXFER_IND */
call reference */

optional parameter length
optional parameter offset

always CC_SUSPEND_REQ */

call reference */

suspend flags */

optional parameter length
optional parameter offset

always CC_SUSPEND_IND */

call reference */

suspend flags */

optional parameter length
optional parameter offset

always CC_SUSPEND_RES x*/
call reference */
optional parameter length
optional parameter offset

always CC_SUSPEND_CON */

CCI Header File Listing

*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

283

Appendix E: CCI Header File Listing

cc_ulong cc_call_ref; /* call reference */
cc_ulong cc_opt_length; /% optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_con_t;

typedef struct CC_suspend_reject_req {

cc_ulong cc_primitive; /* always CC_SUSPEND_REJECT_REQ */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_req_t;

typedef struct CC_suspend_reject_ind {

cc_ulong cc_primitive; /* always CC_SUSPEND_REJECT_IND */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /% optional parameter offset */

} CC_suspend_reject_ind_t;

typedef struct CC_resume_req {

cc_ulong cc_primitive; /* always CC_RESUME_REQ */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_flags; /* suspend flags */

cc_ulong cc_opt_length; /% optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_req_t;

typedef struct CC_resume_ind {

cc_ulong cc_primitive; /* always CC_RESUME_IND */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_flags; /* suspend flags */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_ind_t;

typedef struct CC_resume_res {

cc_ulong cc_primitive; /* always CC_RESUME_RES x*/
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_res_t;

typedef struct CC_resume_con {

cc_ulong cc_primitive; /* always CC_RESUME_CON */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_opt_length; /% optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_con_t;

typedef struct CC_resume_reject_req {

cc_ulong cc_primitive; /* always CC_RESUME_REJECT_REQ */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */

284 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Header File Listing

cc_ulong cc_opt_offset; /* optional parameter offset */
¥ CC_resume_reject_req_t;

typedef struct CC_resume_reject_ind {

cc_ulong cc_primitive; /* always CC_RESUME_REJECT_IND */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /% optional parameter offset */

} CC_resume_reject_ind_t;

typedef struct CC_reject_req {

cc_ulong cc_primitive; /* always CC_REJECT_REQ */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_req_t;

typedef struct CC_reject_ind {

cc_ulong cc_primitive; /* always CC_REJECT_IND */
cc_ulong cc_user_ref; /* user call reference */
cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_ind_t;

typedef struct CC_error_ind {
cc_ulong cc_primitive; /* always CC_ERROR_IND */
cc_ulong cc_call_ref; /* call reference */

} CC_error_ind_t;

typedef struct CC_call_failure_ind {

cc_ulong cc_primitive; /* always CC_CALL_FAILURE_IND x*/
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_reason; /* reason for failure */
cc_ulong cc_cause; /* cause to use in release */

} CC_call_failure_ind_t;

typedef struct CC_disconnect_req {

cc_ulong cc_primitive; /* always CC_DISCONNECT_REQ */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_req_t;

typedef struct CC_disconnect_ind {

cc_ulong cc_primitive; /* always CC_DISCONNECT_IND */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_ind_t;

typedef struct CC_release_req {

2014-10-25 285

Appendix E: CCI Header File Listing

cc_ulong cc_primitive; /* always CC_RELEASE_REQ */
cc_ulong cc_user_ref; /* user call reference */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_release_req_t;

typedef struct CC_release_ind {

cc_ulong cc_primitive; /* always CC_RELEASE_IND x*/
cc_ulong cc_user_ref; /* user call reference */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_cause; /* cause value */

cc_ulong cc_opt_length; /% optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_release_ind_t;

typedef struct CC_release_res {

cc_ulong cc_primitive; /* always CC_RELEASE_RES x*/
cc_ulong cc_user_ref; /* user call reference */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_release_res_t;

typedef struct CC_release_con {

cc_ulong cc_primitive; /* always CC_RELEASE_CON x*/
cc_ulong cc_user_ref; /* user call reference */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /% optional parameter offset */

} CC_release_con_t;

typedef struct CC_notify_req {

cc_ulong cc_primitive; /* always CC_NOTIFY_REQ */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /% optional parameter offset */

} CC_notify_req_t;

typedef struct CC_notify_ind {

cc_ulong cc_primitive; /* always CC_NOTIFY_IND */
cc_ulong cc_call_ref; /* call reference */

cc_ulong cc_opt_length; /* optional parameter length */
cc_ulong cc_opt_offset; /* optional parameter offset */

} CC_notify_ind_t;

typedef struct CC_restart_req {

cc_ulong cc_primitive; /* always CC_RESTART_REQ */
cc_ulong cc_flags; /* restart flags */
cc_ulong cc_addr_length; /* adddress length */
cc_ulong cc_addr_offset; /* adddress offset */

} CC_restart_req_t;

typedef struct CC_restart_con {
cc_ulong cc_primitive; /* always CC_RESTART_CON x*/

286 Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

cc_ulong cc_flags;

cc_ulong cc_addr_length;

cc_ulong cc_addr_offset;
} CC_restart_con_t;

typedef struct CC_status_ind {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_status_ind_t;

typedef struct CC_datalink_failure_ind {

cc_ulong cc_primitive;

cc_ulong cc_user_ref;

cc_ulong cc_call_ref;
} CC_datalink_failure_ind_t;

typedef struct CC_reset_req {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_reset_req_t;

typedef struct CC_reset_ind {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_reset_ind_t;

typedef struct CC_reset_res {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_reset_res_t;

typedef struct CC_reset_con {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_reset_con_t;

typedef struct CC_blocking_req {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_blocking_req_t;

typedef struct CC_blocking_ind {

cc_ulong cc_primitive;
cc_ulong cc_flags;

2014-10-25

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*

CCI Header File Listing

restart flags */
adddress length */
adddress offset */

always CC_STATUS_IND */
status flags */
adddress length */
adddress offset */

always CC_DATALINK_FAILURE_IND */
user call reference */
call reference */

always CC_RESET_REQ */
reset flags */

address length */
address offset */

always CC_RESET_IND */
reset flags */

address length */
address offset */

always CC_RESET_RES */
reset flags */

address length */
address offset */

always CC_RESET_CON */
reset flags */

address length */
address offset */

always CC_BLOCKING_REQ */
blocking flags */
address length */
address offset */

always CC_BLOCKING_IND */
blocking flags */

287

Appendix E: CCI Header File Listing

cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_blocking_ind_t;

typedef struct CC_blocking res {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_blocking_res_t;

typedef struct CC_blocking con {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_blocking_con_t;

typedef struct CC_unblocking_req {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;

} CC_unblocking_req_t;

typedef struct CC_unblocking_ind {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;

} CC_unblocking_ind_t;

typedef struct CC_unblocking res {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;

} CC_unblocking_ res_t;

typedef struct CC_unblocking_con {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;

} CC_unblocking_con_t;

typedef struct CC_query_req {
cc_ulong cc_primitive;
cc_ulong cc_flags;
cc_ulong cc_addr_length;
cc_ulong cc_addr_offset;
} CC_query_req_t;

typedef struct CC_query_ind {

cc_ulong cc_primitive;
cc_ulong cc_flags;

288

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*

address length */
address offset */

always CC_BLOCKING_RES */
blocking flags */
address length */
address offset */

always CC_BLOCKING_CON */
blocking flags */
address length */
address offset */

always CC_UNBLOCKING_REQ */
unblocking flags */

address length */

address offset */

always CC_UNBLOCKING_IND */
unblocking flags */

address length */

address offset */

always CC_UNBLOCKING_RES */
blocking flags */
address length */
address offset */

always CC_UNBLOCKING_CON */
unblocking flags */

address length */

address offset */

always CC_QUERY_REQ */
query flags */

address length */
address offset */

always CC_QUERY_IND */
query flags */

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Header File Listing

cc_ulong cc_addr_length; /* address length */
cc_ulong cc_addr_offset; /* address offset */
} CC_query_ind_t;

typedef struct CC_query_res {

cc_ulong cc_primitive; /* always CC_QUERY_RES */
cc_ulong cc_flags; /* blocking flags */
cc_ulong cc_addr_length; /* address length */
cc_ulong cc_addr_offset; /* address offset */

} CC_query_res_t;

typedef struct CC_query_con {

cc_ulong cc_primitive; /* always CC_QUERY_CON */
cc_ulong cc_flags; /* query flags */
cc_ulong cc_addr_length; /* address length */
cc_ulong cc_addr_offset; /* address offset */

} CC_query_con_t;

typedef struct CC_maint_ind {

cc_ulong cc_primitive; /* always CC_MAINT_IND */
cc_ulong cc_reason; /* reason for indication */
cc_ulong cc_call_ref; /* call reference */
cc_ulong cc_addr_length; /* length of address */
cc_ulong cc_addr_offset; /* length of address */

} CC_maint_ind_t;

union CC_primitives {
cc_ulong cc_primitive;
CC_ok_ack_t ok_ack;
CC_error_ack_t error_ack;
CC_info_req_t info_req;
CC_info_ack_t info_ack;
CC_bind_req_t bind_req;
CC_bind_ack_t bind_ack;
CC_unbind_req_t unbind_req;
CC_addr_req_t addr_req;
CC_addr_ack_t addr_ack;
CC_optmgmt_req_t optmgmt_req;
CC_optmgmt_ack_t optmgmt_ack;
CC_setup_req_t setup_req;
CC_call_reattempt_ind_t call_reattempt_ind;
CC_setup_ind_t setup_ind;
CC_setup_res_t setup_res;
CC_setup_con_t setup_con;
CC_cont_check_req_t cont_check_req;
CC_cont_check_ind_t cont_check_ind;
CC_cont_test_req_t cont_test_req;
CC_cont_test_ind_t cont_test_ind;
CC_cont_report_req_t cont_report_req;
CC_cont_report_ind_t cont_report_ind;
CC_more_info_req_t more_info_req;
CC_more_info_ind_t more_info_ind;
CC_information_req_t information_req;
CC_information_ind_t information_ind;
CC_proceeding_req_t proceeding_req;
CC_proceeding_ind_t proceeding_ind;

2014-10-25 289

Appendix E: CCI Header File Listing

290

CC_alerting_req_t alerting_req;
CC_alerting_ind_t alerting_ind;
CC_progress_req_t progress_req;
CC_progress_ind_t progress_ind;
CC_ibi_req_t ibi_req;

CC_ibi_ind_t ibi_ind;

CC_connect_req_t connect_req;
CC_connect_ind_t connect_ind;
CC_setup_complete_req_t setup_complete_req;
CC_setup_complete_ind_t setup_complete_ind;
CC_forwxfer_req_t forwxfer_req;
CC_forwxfer_ind_t forwxfer_ind;
CC_suspend_req_t suspend_req;
CC_suspend_ind_t suspend_ind;
CC_suspend_res_t suspend_res;
CC_suspend_con_t suspend_con;
CC_suspend_reject_req_t suspend_reject_req;
CC_suspend_reject_ind_t suspend_reject_ind;
CC_resume_req_t resume_req;

CC_resume_ind_t resume_ind;

CC_resume_res_t resume_res;

CC_resume_con_t resume_con;
CC_resume_reject_req_t resume_reject_req;
CC_resume_reject_ind_t resume_reject_ind;
CC_reject_req_t reject_req;

CC_reject_ind_t reject_ind;

CC_error_ind_t error_ind;
CC_call_failure_ind_t call_failure_ind;
CC_disconnect_req_t disconnect_req;
CC_disconnect_ind_t disconnect_ind;
CC_release_req_t release_req;
CC_release_ind_t release_ind;
CC_release_res_t release_res;
CC_release_con_t release_con;
CC_restart_req_t restart_req;
CC_restart_con_t restart_con;
CC_status_ind_t status_ind;

CC_datalink_failure_ind_t datalink_failure_ind;

CC_reset_req_t reset_req;
CC_reset_ind_t reset_ind;
CC_reset_res_t reset_res;
CC_reset_con_t reset_con;
CC_blocking_req_t blocking_req;
CC_blocking_ind_t blocking_ind;
CC_blocking_res_t blocking_res;
CC_blocking_con_t blocking_con;
CC_unblocking_req_t unblocking_req;
CC_unblocking_ind_t unblocking_ind;
CC_unblocking_res_t unblocking_res;
CC_unblocking_con_t unblocking_con;
CC_query_req_t query_req;
CC_query_ind_t query_ind;
CC_query_res_t query_res;
CC_query_con_t query_con;
CC_maint_ind_t maint_ind;

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) CCI Header File Listing

#endif /* __SS7T_CCI_H__ */

2014-10-25 291

Call Control Interface (CCI) Glossary

Glossary

Signalling Data Link Service Data Unit
A grouping of SDL user data whose boundaries are preserved from one end of the
signalling data link connection to the other.

Data transfer
The phase in connection and connectionless modes that supports the transfer of data
between to signalling data link users.

SDL provider
The signalling data link layer protocol that provides the services of the signalling data
link interface.

SDL user The user-level application or user-level or kernel-level protocol that accesses the services
of the signalling data link layer.

Local management
The phase in connection and connectionless modes in which a SDL user initializes a
stream and attaches a PPA address to the stream. Primitives in this phase generate
local operations only.

PPA The point at which a system attaches itself to a physical communications medium.

PPA identifier
An identifier of a particular physical medium over which communication transpires.

2014-10-25 293

Call Control Interface (CCI) Acronyms

Acronyms

ITU-T International Telecommunications Union - Telecom Sector
PPA Physical Point of Attachment

SDLI Signalling Data Link Interface

SDL SDU Signalling Data Link Service Data Unit

SDL Signalling Data Link

2014-10-25 295

Call Control Interface (CCI) References

References

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.

ITU-T Recommendation X.210, (Geneva, 1993), “Information Technology — Open Systems
Interconnection — Basic reference model: Conventions for the definition of OSI services,”
ISO/IEC 10731:1994.

ITU-T Recommendation X.217, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Service definition for the Association Control Service Element,” ISO/IEC
8649:1996.

ITU-T Recommendation X.227, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Connection-oriented protocol for the Association Control Service Element:
Protocol Specification,” ISO/IEC 8650-1.

ITU-T Recommendation X.237, (Geneva, 1995), “Information Technology — Open Systems In-
terconnection — Connectionless protocol for the Association Control Service Element: Protocol
Specification,” ISO/IEC 10035-1 : 1995.

ITU-T Recommendation X.216, (Geneva, 1994), “Information Technology — Open Systems
Interconnection — Presentation service definition,” ISO/IEC 8822:1994.

ITU-T Recommendation X.226, (Geneva, 1994), “Information Technology — Open Systems In-
terconnection — Connection-oriented presentation protocol: Protocol specification,” ISO/IEC
8823-1:1994.

ITU-T Recommendation X.236, (Geneva, 1995), “Information Technology — Open Systems In-
terconnection — Connectionless presentation protocol: Protocol specification,” ISO/IEC 9576-
1:1995.

ITU-T Recommendation X.215, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Session service definition,” ISO/IEC 8326:1996.

ITU-T Recommendation X.225, (Geneva, 1995), “Information Technology — Open Systems In-
terconnection — Connection-oriented session protocol: Protocol specification,” ISO/IEC 8327-
1:1996.

ITU-T Recommendation X.235, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Connectionless session protocol: Protocol specification,” ISO/IEC 9548-
1:1995.

ITU-T Recommendation X.214, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Transport service definition,” ISO/IEC 8072:1996.

ITU-T Recommendation X.224
ITU-T Recommendation Q.700
ITU-T Recommendation Q.701
ITU-T Recommendation Q.702
ITU-T Recommendation Q.703
ITU-T Recommendation Q.704
Geoffrey Gerrien, “CDI - Application Program Interface Guide,” Gcom, Inc., March 1999.

ITU-T Recommendation Q.771, (Geneva, 1993), “Signalling System No. 7 — Functional de-
scription of transaction capabilities,” (White Book).

2014-10-25 297

Call Control Interface (CCI) Licenses

Licenses

All code presented in this manual is licensed under the [GNU Affero General Public License],
page 299. The text of this manual is licensed under the [GNU Free Documentation License], page 309,
with no invariant sections, no front-cover texts and no back-cover texts. Please note, however, that
it is just plain wrong to modify statements of, or attribute statements to, the Author or OpenSS7
Corporation.

GNU Affero General Public License

The GNU Affero General Public License.
Version 3, 19 November 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for software and other kinds of
works, specifically designed to ensure cooperation with the community in the case of network server
software.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, our General Public Licenses are intended to guarantee
your freedom to share and change all versions of a program—to make sure it remains free software
for all its users.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights with two steps: (1) assert
copyright on the software, and (2) offer you this License which gives you legal permission to copy,
distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that improvements made in alternate versions
of the program, if they receive widespread use, become available for other developers to incorpo-
rate. Many developers of free software are heartened and encouraged by the resulting cooperation.
However, in the case of software used on network servers, this result may fail to come about. The
GNU General Public License permits making a modified version and letting the public access it on
a server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in such cases, the
modified source code becomes available to the community. It requires the operator of a network
server to provide the source code of the modified version running there to the users of that server.
Therefore, public use of a modified version, on a publicly accessible server, gives the public access
to the source code of the modified version.

An older license, called the Affero General Public License and published by Affero, was designed to
accomplish similar goals. This is a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

2014-10-25 299

http://fsf.org/

Licenses texi/agpl3.texi

Terms and Conditions

0.

300

Definitions.
“This License” refers to version 3 of the GNU Affero General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-
conductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities
as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with
that Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means a
major essential component (kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to produce the work, or an
object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s System Li-
braries, or general-purpose tools or generally available free programs which are used unmodified
in performing those activities but which are not part of the work. For example, Correspond-
ing Source includes interface definition files associated with source files for the work, and the

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Licenses

source code for shared libraries and dynamically linked subprograms that the work is specif-
ically designed to require, such as by intimate data communication or control flow between
those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered work

is covered by this License only if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-
nological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice; keep intact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a relevant
date.

2014-10-25 301

Licenses texi/agpl3.texi

302

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section
7 additional terms, to the whole of the work, and all its parts, regardless of how they are
packaged. This License gives no permission to license the work in any other way, but it
does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms of
this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by the Corresponding Source fixed on a durable physical
medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Corresponding Source for all
the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object code is a network
server, the Corresponding Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it is available
for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Licenses

where the object code and Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue
to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access
to a network may be denied when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-
ceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or can
give appropriate copyright permission.

2014-10-25 303

Licenses texi/agpl3.texi

304

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material; or

Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who conveys
the material (or modified versions of it) with contractual assumptions of liability to the
recipient, for any liability that these contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the mean-
ing of section 10. If the Program as you received it, or any part of it, contains a notice stating
that it is governed by this License along with a term that is a further restriction, you may
remove that term. If a license document contains a further restriction but permits relicensing
or conveying under this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive such relicensing
or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Licenses

9.

10.

11.

Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other
than this License grants you permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a patent against the
party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to

2014-10-25 305

Licenses texi/agpl3.texi

12.

13.

14.

306

downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of
the parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a
party to an arrangement with a third party that is in the business of distributing software,
under which you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in connection with copies
of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless
you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-
dict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not convey it at all.
For example, if you agree to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could satisfy both those terms
and this License would be to refrain entirely from conveying the Program.

Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the Program, your modified
version must prominently offer all users interacting with it remotely through a network (if
your version supports such interaction) an opportunity to receive the Corresponding Source
of your version by providing access to the Corresponding Source from a network server at no
charge, through some standard or customary means of facilitating copying of software. This
Corresponding Source shall include the Corresponding Source for any work covered by version
3 of the GNU General Public License that is incorporated pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU General Public License
into a single combined work, and to convey the resulting work. The terms of this License will
continue to apply to the part which is the covered work, but the work with which it is combined
will remain governed by version 3 of the GNU General Public License.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU Affero
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Licenses

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU Affero General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that numbered version or of
any later version published by the Free Software Foundation. If the Program does not specify
a version number of the GNU Affero General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Affero
General Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow
a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

2014-10-25 307

Licenses

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively state the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License

along with this program. If not, see http://www.gnu.org/licenses/.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a network, you should also make sure that
it provides a way for users to get its source. For example, if your program is a web application, its
interface could display a “Source” link that leads users to an archive of the code. There are many
ways you could offer source, and different solutions will be better for different programs; see section
13 for the specific requirements.
You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU AGPL, see http://wuw.gnu.org/licenses/.

308 Version 1.1 Rel. 7.20141001

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Call Control Interface (CCI) Licenses

GNU Free Documentation License

GNU FREE DOCUMENTATION LICENSE
Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

2014-10-25 309

http://fsf.org/

Licenses texi/fdl13.texi

310

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain Ascil without markup, Tex-
info input format, LaTgX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Licenses

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Usein the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

=

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

2014-10-25 311

Licenses texi/fdl13.texi

312

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that
the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI) Licenses

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.

2014-10-25 313

Licenses texi/fdl13.texi

10.

11.

314

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

Version 1.1 Rel. 7.20141001

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Call Control Interface (CCI) Licenses

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . . Texts.”
line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

2014-10-25 315

Call Control Interface (CCI)

Index

C

CC_ADDR_ACK ..ottt 18
CC_ADDR_ACK . .ottt e e 58
CC_ADDR_ACK . .ottt 59
CC_addr_ack_tcoiiiiniiiiiiiii i 59
cc_addr_length..... 60, 63, 73, 77, 80, 83, 85, 88

152, 153, 154, 156, 157, 159, 160, 162, 163,
165, 166, 168, 169, 171, 172, 174, 175, 177
178, 179, 181, 184, 191, 194, 201, 214, 219,
222, 223, 224, 227, 229, 231, 232, 233, 246,
247, 248, 249, 250, 251, 252
cc_addr_offset..... 60, 63, 73, 77, 80, 83, 85, 88

152, 153, 154, 156, 157, 159, 160, 162, 163,
165, 166, 168, 169, 171, 172, 174, 175, 177
178, 179, 181, 184, 191, 194, 201, 214, 219,
222, 223, 224, 227, 229, 231, 232, 233, 246,
247, 248, 249, 250, 251, 252

CC_ADDR_REQ ... v it 18
CC_ADDR_REQ.....civiiii it 58, 59
CC_addr_req_tcovvurriiiiiiiiiiienn 58
CC_ALERTING_IND......cotititinininennnnnn 26
CC_ALERTING_INDcovvunnn.. 43, 104, 204
CC_ALERTING_INDovveeennnnn.. 234, 237, 238
CC_alerting_ind_t 104
CC_ALERTING_REQ.......covtiiiiiiiininnnn. 26
CC_ALERTING_REQou.n.. 43, 102, 204
CC_ALERTING_REQ.........cvvuienennen... 235, 236
CC_ALERTING_REQ....... ...t 237
CC_ALERTING_REQ....... ..o, 238
CC_alerting_req_t 102
CC_BIND_ACK ..ttt et e 19
CC_BIND_ACK.... 59, 61, 63, 64, 77, 78, 85, 86, 181,
182
CC_BIND_ACK ..ottt e et e ee e 195
CC_BIND_ACK ..ttt e et et e e 222
CC_BIND_ACK ..ottt i e 224
CC_bind_ack_tcoviiiii i 63
cc_bind_flagscoiiiiiiiiiiiii. 60, 222
cc_bind_length................ 59
cc_bind_offset........coiiiiiiiiiiii 59
CC_BIND REQ.....cviniiiiiiiiiiniaanann. 19, 60
CC_BIND_REQ..... 61, 63, 64, 73, 78, 80, 85, 86, 88
152, 153, 154, 160, 166, 172, 181, 182, 184
CC_BIND_REQ......ooviiiiiiiinnen.. 194, 222
CC_BIND_REQooiiiiii it i i 224
CC_bind_req_t......covvruiiiiiiiiiiiiiinn 60
CC_BLOCKING_CON........covitiiiinnenn. 51, 161
CC_BLOCKING_CON......oovtiiiiiiineeeen. 165
CC_BLOCKING_CON........cvviiineninnnnnn 167, 173
CC_BLOCKING_CON.......ovtiiiiinienennnnn. 249
CC_blocking_con_t 165
CC_BLOCKING_IND......oviiiitinieinenennnnnn 51

2014-10-25

Index
CC_BLOCKING_IND......otiiiriinnnennnnn. 162
CC_BLOCKING_IND.........cvvnvvunn.. 163, 169, 175
CC_BLOCKING_IND......ovviitiiinnnnnnnnn 248
CC_blocking ind_t 162
CC_BLOCKING_REQ.......cviiiiniiinnnn, 51
CC_BLOCKING_REQ........covvvirernenenn.. 160, 247
CC_blocking req_t 160
CC_BLOCKING_RES...... ...t 51
CC_BLOCKING_RES.........cciiiiininnnn.. 163, 248
CC_blocking res_t 163
CC_CALL_FAILURE_IND .. 31, 46, 74, 75, 93, 96, 112
CC_CALL_FAILURE_IND............... 141, 212, 241
CC_call_failure_ind_t..............ccuounn. 141
cc_call_flags..... 72, 76, 195, 199, 201, 225, 227
CC_CALL_REATTEMPT_IND.........cviiiiinnnnnn. 24
CC_CALL_REATTEMPT_IND.........coviiinenennnn. 25
CC_CALL_REATTEMPT_IND................ 36, 37, 41
CC_CALL_REATTEMPT_IND........... 74, 75, 82, 141
CC_CALL_REATTEMPT_IND................. 202, 229
CC_call_reattempt_ind_t..................... 82
cc_call_ref..... 58, 59, 66, 69, 71, 76, 78, 80, 85,

86, 88, 89, 91, 92, 97, 98, 99, 101, 102, 104,
105, 107, 108, 110, 111, 113, 114, 116, 117
119, 120, 122, 123, 125, 126, 128, 129, 131,
132, 134, 135, 137, 138, 141, 142, 144, 145,
147, 149, 151, 178, 181, 182, 184, 185, 187
227, 228, 229, 231, 232, 233, 234, 235
cc_call_type.. 72, 76, 195, 199, 200, 224, 227, 263
CC_CALL_TYPE_10x64KBS_UNRESTRICTED .. 197, 264
CC_CALL_TYPE_11x64KBS_UNRESTRICTED .. 197, 264
CC_CALL_TYPE_128KBS_UNRESTRICTED 196

CC_CALL_TYPE_12x64KBS_UNRESTRICTED .. 197, 264
CC_CALL_TYPE_13x64KBS_UNRESTRICTED.. 197, 264
CC_CALL_TYPE_14x64KBS_UNRESTRICTED .. 197, 264
CC_CALL_TYPE_1536KBS_UNRESTRICTED ... 196, 225
CC_CALL_TYPE_15x64KBS_UNRESTRICTED .. 197, 264
CC_CALL_TYPE_16x64KBS_UNRESTRICTED.. 197, 264
CC_CALL_TYPE_17x64KBS_UNRESTRICTED .. 198, 265
CC_CALL_TYPE_18x64KBS_UNRESTRICTED .. 198, 265
CC_CALL_TYPE_1920KBS_UNRESTRICTED ... 196, 225
CC_CALL_TYPE_19x64KBS_UNRESTRICTED .. 198, 265
CC_CALL_TYPE_20x64KBS_UNRESTRICTED.. 198, 265
CC_CALL_TYPE_21x64KBS_UNRESTRICTED .. 198, 265
CC_CALL_TYPE_22x64KBS_UNRESTRICTED.. 198, 265
CC_CALL_TYPE_23x64KBS_UNRESTRICTED .. 198, 265
CC_CALL_TYPE_24x64KBS_UNRESTRICTED.. 198, 265
CC_CALL_TYPE_25x64KBS_UNRESTRICTED .. 198, 265
CC_CALL_TYPE_26x64KBS_UNRESTRICTED.. 198, 265
CC_CALL_TYPE_27x64KBS_UNRESTRICTED .. 198, 265
CC_CALL_TYPE_28x64KBS_UNRESTRICTED.. 199, 266
CC_CALL_TYPE_29x64KBS_UNRESTRICTED .. 199, 266

CC_CALL_TYPE_2x64KBS_UNRESTRICTED ... 196, 225

317

Index

CC_CALL_TYPE_3_1kHZ_AUDIO 196, 224
CC_CALL_TYPE_30x64KBS_UNRESTRICTED....... 199
CC_CALL_TYPE_384KBS_UNRESTRICTED 196, 225
CC_CALL_TYPE_3x64KBS_UNRESTRICTED ... 196, 263
CC_CALL_TYPE_4x64KBS_UNRESTRICTED ... 196, 263
CC_CALL_TYPE_5x64KBS_UNRESTRICTED ... 196, 263
CC_CALL_TYPE_64KBS_PREFERRED.............. 225
CC_CALL_TYPE_64KBS_UNRESTRICTED. 196, 224
CC_CALL_TYPE_6x64KBS_UNRESTRICTED ... 197, 264
CC_CALL_TYPE_7x64KBS_UNRESTRICTED ... 197, 264
CC_CALL_TYPE_8x64KBS_UNRESTRICTED ... 197, 264
CC_CALL_TYPE_9x64KBS_UNRESTRICTED ... 197, 264
CC_CALL_TYPE_SPEECH 196, 224
CC_CAUS_ACCESS_INFO_DISCARDED........ 209, 243
CC_CAUS_ADDRESS_INCOMPLETE 209, 243
CC_CAUS_BC_NOT_AUTHORIZED 210, 244
CC_CAUS_BC_NOT_AVAILABLE.............. 210, 244
CC_CAUS_BC_NOT_IMPLEMENTED 210, 244
CC_CAUS_CALL_REJECTED 209, 243
CC_CAUS_CALL_TYPE_INCOMPATIBLE. 211, 245
CC_CAUS_EXCHANGE_ROUTING_ERROR....... 211, 245
CC_CAUS_FACILITY_NOT_IMPLEMENTED 210, 244
CC_CAUS_FACILITY_REJECTED 209, 243
CC_CAUS_GROUP_RESTRICTIONS 211, 245
CC_CAUS_ICC_BARRED WITHIN_CUG 210, 244
CC_CAUS_INCOMPATIBLE_DESTINATION 210, 244
CC_CAUS_INCONSISTENCYc..... 210, 244
CC_CAUS_INTERWORKING 211, 245
CC_CAUS_INVALID_MESSAGE............... 210, 244
CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION
..................................... 210, 244
CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND 211, 245
CC_CAUS_MESSAGE_DISCARDED 210, 245
CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED.... 210,
244
CC_CAUS_MISDIALLED_TRUNK_PREFIX...... 208, 243
CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26
..................................... 211, 245
CC_CAUS_NETWORK_OUT_OF __ORDER......... 209, 243
CC_CAUS_NO_ANSWER\ 209, 243
CC_CAUS_NO_CCT_AVAILABLE.............. 209, 243
CC_CAUS_NO_ROUTE_TO_DESTINATION...... 208, 242
CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK 208,
242
CC_CAUS_NO_USER_RESPONDING 209, 243
CC_CAUS_NON_EXISTENT_CUG.............. 210, 244
CC_CAUS_NORMAL_CALL_CLEARING 208, 243
CC_CAUS_NORMAL_UNSPECIFIED 209, 243
CC_CAUS_NOT_SUBSCRIBED................ 209, 244
CC_CAUS_NUMBER_CHANGED................ 209, 243
CC_CAUS_0GC_BARRED_WITHIN_CUG........ 210, 244
CC_CAUS_OUT_OF _ORDER 209, 243
CC_CAUS_PARAMETER_NOT_IMPLEMENTED ... 210, 245
CC_CAUS_PARAMETER_PASSED_ON 210, 245
CC_CAUS_PRECEDENCE_CALL_BLOCKED. 209, 211
244, 245

318

CC_CAUS_PREEMPTION........... 208, 211, 243, 245
CC_CAUS_PREEMPTION_CCT_RESERVED...... 208, 243
CC_CAUS_PROTOCOL_ERROR................ 211, 245
CC_CAUS_RECOVERY_ON_TIMER_EXPIRY 210, 245
CC_CAUS_REDIRECTccoveenn... 209, 243
CC_CAUS_REQUESTED_CCT_UNAVAILABLE ... 209, 244
CC_CAUS_RESOURCE_UNAVAILABLE......... 209, 244
CC_CAUS_RESTRICTED_BC_ONLY 210, 244
CC_CAUS_SEND_SPECTAL_INFO_TONE....... 208, 242
CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED
..................................... 210, 244

CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE.... 210
244

CC_CAUS_SUBSCRIBER_ABSENT 209, 243
CC_CAUS_SWITCHING_EQUIP_CONGESTION.. 209, 243
CC_CAUS_TEMPORARY_FAILURE 209, 243
CC_CAUS_UNALLOCATED_DEST_NUMBER...... 211, 245
CC_CAUS_UNALLOCATED_NUMBER 208, 242
CC_CAUS_UNKNOWN_BUSINESS_GROUP....... 211, 245
CC_CAUS_USER_BUSY............. ...t 209, 243
CC_CAUS_USER_NOT_MEMBER_OF_CUG....... 210, 244

cc_cause... 126, 128, 135, 137, 138, 140, 141, 142,
144, 145, 147, 206, 207, 208, 211, 212, 213
241, 242, 245

cc_cdpn_length 72, 76, 199, 201, 226, 227
cc_cdpn_offset 73, 76, 199, 201, 226, 227
CC_CHANNEL.vtitt it 194, 195
CC_CHANNEL_GROUP.............cciiien.. 194, 195
cc_conn_length............ooiiiiiiiiiiiiii, 59
cc_conn_offset.............. i, 59
CC_CONNECT_IND......iiiiiininei e 27
CC_CONNECT_INDccoiiiiiiiinenen.. 43, 113
CC_CONNECT_IND.....ovtiiiiii i 114
CC_connect_ind_t............... 113
CC_CONNECT_REQ ...\t ii ettt ei e 26
CC_CONNECT_REQcvvvviiieinenen., 43, 111
CC_comnect_reg_t............................ 111
CC_CONT_CHECK_IND......ottiiimeenniannennnn 39
CC_CONT_CHECK_IND................. 85, 86, 87, 91
CC_CONT_CHECK_INDcoiiiinininnennens 181
CC_CONT_CHECK_IND................. 182, 183, 187
CC_CONT_CHECK_INDooviieninennennann 231
CC_cont_check_ind_t 85, 181
CC_CONT_CHECK_REQ.......... 39, 83, 179, 202, 231
CC_CONT_CHECK_REQovvviiiiiiiiiian. 232
CC_cont_check_req_t 83, 179
CC_CONT_REPORT_IND.........cccvvuennn. 39, 41, 43
CC_CONT_REPORT_IND........ovvnininennnn.. 85, 87
CC_CONT_REPORT_INDcvniiiiineananannn 91
CC_CONT_REPORT_INDcovvvinenn. 181, 183
CC_CONT_REPORT_INDcvvvriiiiiinennnnn 187
CC_CONT_REPORT_INDcvvvriiiiiiinnnnn 232
CC_CONT_REPORT_INDcvvviiiiiinennnn 233
CC_cont_report_ind_t................... 91, 187
CC_CONT_REPORT_REQcceeenen.... 39, 41, 43
CC_CONT_REPORT_REQ.......... 74, 88, 89, 184, 185

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CC_CONT_REPORT_REQvvvrnnnnnnnnnn 203
CC_CONT_REPORT_REQoovvrviinnennn.. 230
CC_CONT_REPORT_REQovvvrvivnnenann.. 233
CC_cont_report_req_t................... 89, 185
CC_CONT_TEST_IND......cotuiimiiiiinnnnnnn 38
CC_CONT_TEST_IND.......ccovvirinininannn.. 39, 41
CC_CONT_TEST_IND... 84, 88, 89, 91, 180, 184, 185,
187, 232
CC_cont_test_dind_t...................... 88, 184
CC_CONT_TEST_REQ......cvviiniiiiininnnnnn 38
CC_CONT_TEST_REQ......cvvviiriiienennn.. 39, 41
CC_CONT_TEST_REQ................ 85, 86, 181, 182
CC_CONT_TEST_REQ......c.vtniiiiinnnann, 202
CC_CONT_TEST_REQ........vtniiiiinnnann. 232
CC_cont_test_req_t...................... 86, 182
cc_correct_prim...........l 71
CC_DEFAULT_LISTENER 50, 51, 61, 62, 194, 195,
222, 223
CC_DISCONNECT_IND......cvuiiiimiinieenenen. 27
CC_DISCONNECT_IND......covuiiimiinieenennn. 32
CC_DISCONNECT_INDcviiiinineeanan.. 112
CC_DISCONNECT_INDcoiiiiiiineeenenn. 144
CC_DISCONNECT_INDo'iiiiiiieeenenann. 208
CC_DISCONNECT_INDvieeeiiieeeennnnnn. 212
CC_disconnect_ind_t................co.oo... 144
CC_DISCONNECT _REQ......covviiniiiiinnennnn.. 24
CC_DISCONNECT _REQ........cvvvevuinvnenn. 26, 31
CC_DISCONNECT _REQ........cvvviiuinininnn. 32, 36
CC_DISCONNECT_REQ 63, 98, 142, 208
CC_DISCONNECT_REQcviiiiinineenan.. 212
CC_DISCONNECT_REQccovviieeean.... 242
CC_disconnect_reg_t.........ccooiuuiiennnnn. 142

CC_ERROR_ACK. ... 21, 58, 61, 64, 65, 67, 69, 73, 74
78, 84, 87, 90, 93, 96, 100, 102, 106, 109, 112
115, 118, 121, 123, 127, 130, 133, 136, 139,
143, 146, 150, 155, 158, 161, 164, 167, 170,
173, 176, 180, 183, 186, 189, 193, 205, 221,
228, 231, 232, 233, 234, 240, 241, 242, 246

CC_error_ack_t.....ovviiniiiniin i 69
cc_error_primitive 69
CC_error_typecoviiiiiiiiiiiiiiiin... 69
cc_event ..., 105, 107, 237, 238

cc_flags.... 99, 101, 102, 104, 105, 107, 108, 110,
111, 113, 120, 122, 129, 131, 152, 153, 154,
156, 157, 159, 160, 162, 163, 165, 166, 168,
169, 171, 172, 174, 175, 177, 205, 206, 207
213, 214, 235, 238, 239, 240, 246, 247, 248,
249, 250, 251, 252

CC_FORWXFER_IND........oiiiiiineananan.. 119
CC_forwxfer_ind_t 119
CC_forwxfer_req tooivveiinnnnnn... 117
CCO_IBI _IND. ..ttt et 27
CC_IBI_INDcovvvvnnnn... 32, 43, 110, 205
CC_IBI_IND.........ovvvvvenannnn... 234, 237, 238
CC_IBI _IND ..ttt e et ee i 239
CC_ibi_dnd_t...... ..., 110

2014-10-25

Index
CC_IBI_REQ. ...ttt 26
CC_IBI_REQ......ovviuviinnnnn.. 32, 43, 108, 205
CC_IBI_REQ.......covvvvnvenn.. 235, 236, 237, 238
CC_IBI_REQ ...t vviieietitie et 239
CC_ibi_req_t....covvinniiiiiiiiiiiiiiiiia 108
CC_INFO _ACK ..ttt et 18
CC_INFO_ACK ..ttt e e 56
CO_INFO_ACK ..., 57, 194, 222
CC_info_ack_t ... 57
CC_INFO_REQ.....ovvriiiiniiiiiiinennn, 18, 56
CC_INFO_REQcoviiiii et ie e 57
CC_info_req_t........ ... i 56
CC_INFO_TIMEQUT_IND........coiuiiiununnnn. 24, 36
CC_INFO_TIMEQOUT_IND............ 93, 98, 204, 235
CC_info_timeout_ind_t....................... 98
CC_INFORMATION_IND........ovvvinennenannn 24, 36
CC_INFORMATION_INDcvriiiiineenennnnn 93
CC_INFORMATION_INDcvtiiieineenennnnn 97
CC_INFORMATION_INDcvvviiininennnnn. 201
CC_INFORMATION_INDcovvuvenenn. 203, 235
CC_information_ind_t........................ 97
CC_INFORMATION_REQ.........ccoviinenen... 24, 36
CC_INFORMATION_REQccoiiiininninnnn.. 94
CC_INFORMATION_REQccviiiiniienenn.. 95
CC_INFORMATION_REQ.........vviriiinnnnnnn. 200
CC_INFORMATION_REQcouvinan.. 203, 234
CC_information_req_t...............ccuuunn. 95
CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS"..... 199
CC_MAINT _IND. ...ttt 34, 61
CC_MAINT _IND ...ttt ettt e ieeeeieee 178
CC_MAINT _IND ...ttt eie et ie e 222
CC_maint_dind_t........... 178
CC_MAINTENANCE 61, 62, 77, 223
CC_MANAGEMENT 61, 62, 77, 222, 223
CC_MORE_INFO_IND........cviiiininnnnannn.. 24, 36
CC_MORE_INFO_IND.......oiiiiiinnnnannnn. 94, 200
CC_MORE_INFO_IND.......covvirininnnnnnn 203, 234
CC_more_info_ind_t 94
CC_MORE_INFO_REQ........ovviiiinnennnnn.. 24, 36
CC_MORE_INFO_REQ......ccvvriinininnenn.. 92, 201
CC_MORE_INFO_REQ. ... oot 203
CC_MORE_INFO_REQ.......cviiirnininnn. 204, 234
CC_more_info_req_t, 92
CC_OK _ACK . .ttt et 20

CC_OK_ACK.... 65, 66, 71, 78, 90, 96, 100, 102, 106,
109, 114, 115, 117, 123, 127, 130, 133, 136,
139, 143, 150, 158, 163, 169, 175, 186, 232

CC_OK_ACK_t o iii ittt 71
cc_opt_flagsiiiiiiiiii 66
cc_opt_length...... 66, 73, 76, 92, 94, 95, 97, 99,

101, 102, 104, 105, 107, 108, 110, 111, 113
114, 116, 117, 119, 120, 122, 123, 125, 126,
128, 129, 131, 132, 134, 135, 137, 138, 140,
141, 142, 144, 145, 147, 149, 151, 193, 221, 227
cc_opt_offset...... 66, 73, 76, 92, 94, 95, 97, 99,
101, 102, 104, 105, 107, 108, 110, 111, 113,

319

Index

114, 116, 117, 119, 120, 122, 123, 125, 126,
128, 129, 131, 132, 134, 135, 137, 138, 140,
141, 142, 144, 145, 147, 149, 151, 193, 221, 228

CC_optmgmt_ack_t.......cooviiunnnnnnnnn. 68
CC_OPTMGMT_REQo eit et e et 20
CC_OPTMGMT_REQcvvi i 66, 72
CC_OPTMGMT_REQcovviieiinnn, 195, 224
CC_optmgmt_req_t.........cooiiiiiiiinnnn. 66

cc_primitive.... 56, 57, 58, 59, 60, 63, 65, 66, 69
71, 72, 76, 78, 80, 82, 83, 85, 86, 88, 89, 91, 92
94, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108,
110, 111, 113, 114, 116, 117, 119, 120, 122
123, 125, 126, 128, 129, 131, 132, 134, 135
137, 138, 140, 141, 142, 144, 145, 147, 149,
151, 152, 153, 154, 156, 157, 159, 160, 162
163, 165, 166, 168, 169, 171, 172, 174, 175
177, 178, 179, 181, 182, 184, 185, 187

CC_PROCEEDING_IND.........coiiiiiniiinnnn. 26
CC_PROCEEDING_IND.................. 43, 101, 204
CC_PROCEEDING_INDcoiiinninnn.... 234
CC_PROCEEDING_INDcoviniininennennnn. 237
CC_proceeding_ind_t........................ 101
CC_PROCEEDING_REQ........coviiuniiiniiinennn. 26
CC_PROCEEDING REQ................... 43, 99, 204
CC_PROCEEDING_REQcoiiiniin. 235
CC_proceeding req_t............ooooiiiii., 99
CC_PROGRESS_IND.........ciiiiiiiiiiiiinnn, 26
CC_PROGRESS_INDoooun. 43, 107, 205
CC_PROGRESS_IND............ccoviinninnt. 234, 237
CC_PROGRESS_IND......coiuiuiiiiiiiiiinannnnn 238
CC_progress_ind_tccovvuunnin... 107
CC_PROGRESS_REQ.......coviiiiiiiiiinennnn. 26
CC_PROGRESS_REQccovuvun... 43, 105, 204
CC_PROGRESS_REQ 235, 236, 237, 238
CC_progress_req_t 105
CC_QUERY_CON ...t 53
CC_QUERY_CONo, 177, 252
CC_query_Con_t......oooviunnnnnnnnnnnnnnnnn. 177
CC_QUERY_INDouutttiiiiiieeeiiiieeennn 53
CC_QUERY_INDooiiiiiiiininn. 174, 251
CC_query_ind_t.........ooiiiiiiiiinnnnnn. 174
CC_QUERY_REQccoviiiiiiiii i, 52
CC_QUERY_REQcoiiiiiin.. 172, 251
CC_query_req_t.......covviiiiiiiiiin., 172
CC_QUERY_RES i 53
CC_QUERY_RES, 175, 252
CC_qUery_TesS_t.....covvriinnnnnnnnnnnnnnnnns 175
CC_TreasOll......ccuuuuuenenn. 82, 141, 178, 212, 229
CC_REJECT_INDovuniiiiiiiiiiiiaeennnen 30
CC_REJECT_INDoiiuiiiiiiiiiieaaennnnn 45
CC_REJECT_IND.......ioiiniiiiiiiiiinennnn 140
CC_REJECT_IND......oiuiiniiiiiiiiiaennann 208
CC_REJECT_IND......oiuiiniiiiiieeaennann 211
CC_reject_ind_t............................. 140
CC_REJECT_REQ.........cooiiiiiiiiiiiiin. 30
CC_REJECT_REQ.............. 31, 45, 138, 204, 208

320

CC_REJECT_REQ......oviiiiiieeeiiiaaan, 211
CC_REJECT_REQovvviiiiinennnnnn. 235, 241
CC_reject_req_t..........ooiiiiiiiiiiiia... 138
CC_RELEASE........ooviiiiiinnenann. 28, 29, 30, 44
CC_RELEASE. i e e 45
CC_RELEASE _CON.....vtitttiiiiee e 32
CC_RELEASE _CON ...ttt iiiaaeen 46
CC_RELEASE _CON.....o'iitiiiieeiiiaaeenn 47
CC_RELEASE_CON......ottiiieiiiiiieeeennn. 146
CC_RELEASE_CONooviiiiieennnnnnn. 151, 213
CC_release_COn_t.....c.ovvirviniinennnnannnn. 151
CC_RELEASE_INDccoiiiiiniiennnnn.. 23, 31
CC_RELEASE_IND........ciiiiiiii .. 32
CC_RELEASE _IND........ciiiiiiii .. 46
CC_RELEASE _IND........ciiniiiiiinannnnnn. 47
CC_RELEASE_IND..... 74, 75, 87, 96, 112, 121, 146,

147, 151, 161, 164, 167, 170, 173, 176, 183, 208
CC_RELEASE_IND.........coiiiiinnnnnnnn. 213, 245
CC_release_ind_t............ciiineennnnn.. 147
CC_RELEASE REQciviiiiiiinnan.. 23, 31
CC_RELEASE REQ......ciiiiiiiiiiiiiinennnn. 32
CC_RELEASE REQoiiiiiiiiinnn.. 35, 46
CC_RELEASE _REQ......cviiiiiiiiiiiinennn.. 47
CC_RELEASE_REQ.... 76, 85, 98, 138, 145, 149, 181,

208
CC_RELEASE REQ.......oviiiiiiininnnnn, 213, 242
CC_RELEASE _REQ..... ..ottt 245
CC_release_req_t.........coivvieiiinnnno. . 145
CC_RELEASE _RES......ciiiiiiiiiiieeiiianaannn 31
CC_RELEASE_RES.................. 32, 47, 149, 213
CC_release_Tes_t.......covvviiiiiinnennnnnn. 149
CC_RESETcoiiiiiiiiineennnnn 28, 29, 30, 44
CC_RESETttt e e e e e 45
CC_RESETttt e e e 47
CC_RESET_CON ...ttt iiiiee e 48
CC_RESET_CONoviiiiiiiee e iiiieeenn 49
CC_RESET_CONottiiieitiiiee i 155
CC_RESET_CONooviiiieeiiiiaaann, 159, 247
CC_reset_con_t......oviniiiiniiinnnnn, 159
CC_RESET_INDiitiiii it i 30
CC_RESET_IND.........oiiiiiiiiiiiiinnnn, 45, 48
CC_RESET_IND........c.iiiiiiiiiinnnn, 49, 156
CC_RESET_IND.................. 157, 161, 167, 173
CC_RESET _INDc0iiiiiiii i, 246
CC_reset_ind_t.......... ... 156
CC_RESET_REQ, 30
CC_RESET_REQ 45, 48, 152, 153, 154
CC_RESET_REQcoitiiiiiiiiiinnn, 246
CC_reset_req_t.......ooiiiiiiiiiinniinnn.. 154
CC_RESET _RES i 48
CC_RESET_RES.......ovvueeeeinnnnn... 49, 157, 246
CC_reset_res_t....oouiiiniiiiinan, 157
CC_RESTART . ..ottt e e 32
CC_RESTART _CON......oiiiiiiiiii i 34
CC_RESTART_CONoiiiiiinnnnn 153, 214
CC_restart_ind_t............ 153

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

CC_RESTART _REQ......cotiiiiii i 34
CC_RESTART_REQ........oovvniieeninnnnn.. 152, 213
CC_RESTART REQ.......cooniiuiiiiiiinnn.. 246
CC_restart_req_t...............oooiiiii.t. 152
cc_result............oiin 89, 91, 185, 187, 233
CC_RESUME_CON...........covvvvvvnnn.. 29, 134, 207
CC_resume_COomn_t....ovvrnneineninennnennnnnn 134
CC_RESUME_IND.............. 29, 44, 131, 207, 240
CC_resume_ind_t...........coviiiiininnnn... 131
CC_RESUME_REJECT_IND............... 29, 137, 208
CC_resume_reject_ind_t..................... 137
CC_RESUME_REJECT_REQ............... 29, 135, 207
CC_RESUME_REJECT_REQ.......... ... 241
CC_resume_reject_req t..................... 135
CC_RESUME_REQ.....evvveenennnnnn... 29, 30, 44
CC_RESUME_REQcoviuiriiiiiiianan.. 45
CC_RESUME_REQ ..., 129, 206, 240
CC_resume_req_t............................. 129
CC_RESUME_RES........covvvunnnnn... 29, 132, 207
CC_RESUME_RES ...t 241
CC_resume_res_t......ooviiineineinnennnnn. 132
CC_SETUP_COMPLETE_IND.........covvuvuinvnnn. 27
CC_SETUP_COMPLETE_IND.........covvuvuvnunnnn 43
CC_SETUP_COMPLETE_IND...........covvvnunn.. 112
CC_SETUP_COMPLETE_IND................. 116, 202
CC_SETUP_COMPLETE_IND...........ccovvuunn.. 230
CC_setup_complete_ind_t 116
CC_SETUP_COMPLETE_REQ........ oo, 26
CC_SETUP_COMPLETE_REQ........ oo, 43
CC_SETUP_COMPLETE_REQ..........c.ovenvan.. 113
CC_SETUP_COMPLETE_REQ................. 114, 202
CC_SETUP_COMPLETE_REQ...........ccvvnan.. 230
CC_setup_complete_req_t 114
CC_SETUP_CONo, 24, 36, 43

CC_SETUP_CON... 73, 74, 80, 82, 113, 126, 129, 132
135, 145, 147, 149, 151

CC_SETUP_CONttt 202
CC_SETUP_CON..........ccvvnnnn 225, 229, 267, 269
CC_setup_con_t..........oiiiiiiiiiiiinnnnn. 80
cc_setup_ind............ 60, 63, 64, 194, 222, 224
CC_SETUP_INDot 23
CC_SETUP_IND ..., 24, 30, 36
CC_SETUP_INDot 38
CC_SETUP_INDeeeieaaaennnn. 39, 41, 43

CC_SETUP_IND.... 45, 63, 76, 77, 78, 85, 86, 87, 92,
97, 98, 111, 126, 129, 132, 135, 138, 142, 145,
147, 149, 151, 181, 182, 183, 195

CC_SETUP_INDciiiiiiiiannann.. 200, 227
CC_SETUP_IND.......c''ueeeeeeen.., 228, 229, 232
CC_SETUP_INDitiiiinie i 263
CC_setup_ind_t................iiiiiiiiiaa, 76
CC_SETUP_REQottt 23
CC_SETUP_REQot itt i 24
CC_SETUP_REQot it it 35
CC_SETUP_REQooit it 36
CC_SETUP_REQ ottt ei e 38

2014-10-25

Index

CC_SETUP_REQ. ..., 41, 43
CC_SETUP_REQ.... 66, 72, 73, 74, 80, 82, 89, 91, 94
95, 140, 145, 147, 149, 151, 185, 187, 195

CC_SETUP_REQottt 199
CC_SETUP_REQooitiiii i, 201
CC_SETUP_REQottt 224
CC_SETUP_REQ 227, 228, 229, 230, 234, 235
CC_SETUP_REQottt 263
CC_setup_req_t........cooiiiiiiiiiiiiiinnnn. 72
CC_SETUP_RES i 23
CC_SETUP_RES i 24
CC_SETUP_RES i i 35
CC_SETUP_RES...... ...t 36, 43
CC_SETUP_RES ..., 61, 63, 76, 78
CC_SETUP_RESot 201
CC_SETUP_RES 204, 222, 228, 235, 267, 269
CC_setup_res_t........coiiiiiiiiiiiiiinnnnnn. 78
ce_state 69, 71
cc_subn_length.................. 95, 97, 234, 235
cc_subn_offset.................. 95, 97, 234, 235
CC_SUSPEND _CON . ..ottiie et etiiieee e iiaaeeann 28
CC_SUSPEND_CONcvttit et ieeieeieeanns 120
CC_SUSPEND_CONvttieieeiieennnn 125, 206
CC_suspend_con_t.................ooviinn... 125
CC_SUSPEND_IND............. 28, 44, 122, 206, 239
CC_suspend_ind_t............................ 122
CC_SUSPEND_REJECT_IND........c.covviuvunennnn. 28
CC_SUSPEND_REJECT_IND.........coveuvunenn. 121
CC_SUSPEND_REJECT_IND................. 128, 206
CC_suspend_reject_ind_t 128
CC_SUSPEND_REJECT_REQ........ccvvvvuvunvnnn. 27
CC_SUSPEND_REJECT_REQ................. 126, 206
CC_SUSPEND_REJECT_REQ.........covveuvunun.. 240
CC_suspend_reject_req_t 126
CC_SUSPEND_REQcvuiiiiniininnen.. 27
CC_SUSPEND_REQcvviiiiiinnen.. 30, 44
CC_SUSPEND_REQ......covuiiiineinnnen., 45
CC_SUSPEND_REQcvvviiiiininineann 120
CC_SUSPEND_REQcovvuiiiiiiininneann 205
CC_SUSPEND_REQcvtviiiii it 239
CC_suspend_req_t.........oovviiiininiiann.. 120
CC_SUSPEND_RESciiiiiiiiiii i 27
CC_SUSPEND_RES ...t 123, 206
CC_SUSPEND_REScoiiiiiiiiiiian 240
CC_suspend_res_t........covviiiiinnnennnnn.. 123
CC_SUSRES_NETWORK_INITIATED.......... 239, 240
CC_TEST...... 61, 62, 77, 85, 88, 181, 184, 222, 223
CC_TOKEN_REQ.......ueeeeennnn... 78, 86, 182
CC_TOKEN_REQUESTciviiinennn.. 61, 222
cc_token_value 63, 78, 86, 182, 228
CC_TRUNK_GROUPcoiiininnnnn. 194, 195
CC_UNBIND_REQcovnviiiiiiiiiinnn, 19, 65
CC_unbind_req_t............... 65
CC_UNBLOCKING_CON........itiiiiininineenann 52
CC_UNBLOCKING_CON..........ccvvivnunnn. 171, 251
CC_unblocking_con_t...............oouunnnn. 171

321

Index

CC_UNBLOCKING_IND........coviiuniiniinnennn. 52
CC_UNBLOCKING_IND............covvvnnn.. 168, 250
CC_unblocking ind_t........................ 168
CC_UNBLOCKING_REQ..........ociiiiniiinannn. 52
CC_UNBLOCKING_REQ...................... 166, 249
CC_unblocking req_t........................ 166
CC_UNBLOCKING_RES.............ooiiiiiiiiiann. 52
CC_UNBLOCKING_RES...................... 169, 250
CC_unblocking res_t........................ 169
[oToTIR VY o WD =% o o o PP 69

cc_user_ref.. 72, 80, 82, 89, 94, 95, 140, 145, 147,
149, 151, 185, 225, 229, 233

CC_WACK_AREQ . ..o 59

CCACCESS .. 62, 67, 70, 75, 84, 87, 93, 96, 100, 103,
106, 109, 112, 115, 127, 130, 133, 136, 139,
143, 146, 155, 158, 161, 164, 167, 170, 173,
176, 180, 183

CCADDRBUSYooeeeenn... 61, 62, 70, 75, 222

CCBADADDR. ... 61, 69, 73, 74, 84, 96, 155, 158, 161,
167, 173, 180, 231, 232, 233, 234

CCBADCLR. 58, 67, 70, 75, 78, 79, 86, 87, 90, 93,
96, 100, 103, 106, 109, 112, 115, 127, 130, 133,
136, 139, 142, 143, 146, 182, 183, 186, 228

CCBADDIGS . ..o e 70, 75

CCBADFLAG 62, 67, 70, 100, 103, 106, 109, 112
247, 248, 249, 250, 251

CCBADOPT. .. 67, 70, 75, 96, 100, 103, 106, 109, 112
115, 127, 130, 133, 136, 139, 143, 146, 193, 221

CCBADPRIM...... 62, 67, 70, 75, 79, 90, 93, 96, 100
103, 106, 109, 112, 115, 127, 130, 133, 136,
139, 143, 146, 186

CCBADTOK - . .o eee e et 70, 79
CCFLAGS « ..t 161, 167, 173
CCNOADDR. 62, 70, 73, 75, 84, 96, 155, 158, 160

161, 167, 172, 173, 180, 231, 232, 233
CCNOTSUPP. . 70, 84, 87, 93, 115, 127, 130, 133, 136,
139, 143, 146, 155, 158, 161, 167, 173, 180,

183, 205, 234, 240, 241, 242, 246
CCOUTSTATE .. 61, 65, 67, 69, 74, 79, 84, 87, 90, 93,
96, 100, 103, 106, 109, 112, 115, 118, 121, 123,
127, 130, 133, 136, 139, 143, 146, 150, 155, 158,
161, 164, 167, 170, 173, 176, 180, 183, 186, 234
CCS_ALERTING_REQ.veeeneeeneaenneanns. 78
CCS_CONNECT_REQ. ...\, 78
CCS_CONNECTED .. 113, 114, 116, 117, 119, 120, 122
126, 128, 129, 131, 132, 134

CCS_DISCONNECT_REQ'vveeeenneennn. 78
CCS_IBI_REQ « - eveneeeeee e 78
CCS_IDLE..... 34, 64, 65, 66, 74, 77, 82, 83, 85, 89,

91, 139, 140, 141, 145, 147, 148, 149, 151, 155,
156, 159, 161, 167, 173, 175, 177, 179, 181

185, 187

CCS_PROCEED_REQ., 78
CCS_PROGRESS_REQ.o, 78
CCS_SETUP\t 74

322

CCS_SUSPENDED .. 120, 122, 123, 125, 126, 128, 129
131, 132, 134, 135, 137, 240

COS_UNBNDot 61
CCS_WACK_AREQ 58
CCS_WACK_BREQ ..., 61, 64
CCS_WACK_OPTREQo, 66, 71
CCS_WACK_UREQ ... 65, 71
COS_WAIT_COR ..o 88
CCS_WCON_CREQ - .o 88, 184
CCS_WCON_RELREQo.... 145, 148, 151

CCS_WCON_SREQ.. 74, 80, 82, 91, 140, 141, 187, 234,
235, 237, 238

CCS_WCON_SUSREQ 125, 128, 134, 137
CCS_WCON_SUSREQ. 125, 128, 134, 137
CCS_WIND_ALERTING 101, 104, 110, 144
CCS_WIND_CCREP........covveeeeeen... 77, 91, 187
CCS_WIND_CONNECToovveeeeeeoo... 110, 144
COS_WIND_CTEST ..o 74
CCS_WIND_INFO ... @wwueeeeeenn.. 92, 97, 98
CCS_WIND_MORE....... 74, 82, 94, 95, 110, 141, 144
CCS_WIND_PROCEED.. 82, 95, 99, 101, 104, 110, 141,
144
CCS_WIND_PROGRESS 104, 107, 110, 144
CCS_WREQ_ALERTING 102, 108, 111, 142
CCS_WREQ_CCREP 74, 80, 82, 89, 185
CCS_WREQ_CONNECTccuuenn... 108, 111, 142
CCS_WREQ_CTEST ..o, 77, 91
CCS_WREQ_INFO............ 82, 94, 95, 98, 141, 144

CCS_WREQ_MORE.... 77, 81, 89, 92, 97, 99, 101, 102,
104, 108, 111, 142, 185
CCS_WREQ_PROCEED... 78, 81, 89, 97, 102, 108, 111,

142, 185
CCS_WREQ_PROGRESS 102, 105, 108, 111, 142
CCS_WRES_RELIND 145, 147, 148, 149

CCS_WRES_SIND....
241

CCSYSERR.. 58, 61, 65, 67, 69, 74, 78, 84, 87, 90, 93,
96, 100, 103, 106, 109, 112, 115, 118, 121, 124,
127, 130, 133, 136, 139, 143, 146, 150, 155,
158, 161, 164, 167, 170, 173, 176, 180, 183, 186

77, 78, 138, 234, 236, 237, 238

CoC. i 191, 219
G

getmsg(28) ...t 11
1

B 191, 219
isdn_addr_t ... 191
ISDN_SCOPE_CHcoiiiiiiiiiiinnnn. 13, 192
ISDN_SCOPE _DF......'oeeeeeeenn... 12, 192, 193
ISDN_SCOPE_EG......''eeeeeeeeeann... 12, 192, 193
ISDN_SCOPE_FG. ..., 12, 13, 192
ISDN_SCOPE_TGcoiiiiiiiiiiinnnn. 13, 192
ISDN_SCOPE_XG.......covvvniinniinn.. 12, 192, 193

Version 1.1 Rel. 7.20141001

Call Control Interface (CCI)

isup_addr_t ..., 219
ISUP_BCI_CHARGE........... ..o, 235
ISUP_BCI_CONNECT_FREE.............ccoonunn. 236
ISUP_BCI_E2E_INFORMATION_AVAILABLE....... 236
ISUP_BCI_HOLDING_REQUESTED................ 236
ISUP_BCI_IC_ECHO_CONTROL_DEVICE.......... 236
ISUP_BCI_INTERWORKING_ENCOUNTERED........ 236
ISUP_BCI_ISDN_USER_PART_ALL_THE_WAY...... 236
ISUP_BCI_NO_CHARGEccoviiiinn... 235
ISUP_BCI_ORDINARY_SUBSCRIBER.............. 236
ISUP_BCI_PASS_ALONG_E2E_METHOD_AVAILABLE
... 236
ISUP_BCI_PAYPHONEcciiiinnnnnn.. 236
ISUP_BCI_SCCP_ALL_METHODS_AVAILABLE...... 236
ISUP_BCI_SCCP_CLNS_METHOD_AVAILABLE...... 236
ISUP_BCI_SCCP_CONS_METHOD_AVAILABLE...... 236
ISUP_BCI_SCCP_E2E_METHOD_AVAILABLE....... 236
ISUP_BCI_SUBSCRIBER_FREE.................. 236
ISUP_BCI_TERMINATING_ACCESS_ISDN......... 236
ISUP_CALL_FAILURE_BLOCKING................ 241
ISUP_CALL_FAILURE_CIRCUIT_BUSY 242
ISUP_CALL_FAILURE_COT_FAILURE............. 241
ISUP_CALL_FAILURE_ERROR 212
ISUP_CALL_FAILURE_RECV_RLC................ 241
ISUP_CALL_FAILURE_RESET 241
ISUP_CALL_FAILURE_RESTART 212
ISUP_CALL_FAILURE_STATUS 212
ISUP_CALL_FAILURE_T2_TIMEOUT.............. 242
ISUP_CALL_FAILURE_T3_TIMEOUT.............. 242
ISUP_CALL_FAILURE_T35_TIMEQUT............. 242
ISUP_CALL_FAILURE_T38_TIMEQUT............. 242
ISUP_CALL_FAILURE_T6_TIMEOUT.............. 242
ISUP_CALL_FAILURE_T7_TIMEOUT.............. 242
ISUP_CALL_FAILURE_T8_TIMEOUT.............. 242
ISUP_CALL_FAILURE_T9_TIMEOUT.............. 242
ISUP_COT_FAILURE........ootiiiiieiineiinnnnnn 41
ISUP_COT_FAILURE........coiiiiiiineinnnnnnn 233
ISUP_COT_SUCCESS. ...t itittieeiie i iieennnn 39
ISUP_COT_SUCCESS. ...ciitiitiieeiie i 233
ISUP_EVNT_ALERTINGovinininnnnnn.. 237
ISUP_EVNT_CALL_FORWARDED_ON_BUSY......... 237

ISUP_EVNT_CALL_FORWARDED_ON_NO_ANSWER ... 237
ISUP_EVNT_CALL_FORWARDED_UNCONDITIONAL .. 238

ISUP_EVNT_IBI .. .ouuuenneaneaeeeens 237
ISUP_EVNT_PRESENTATION_RESTRICTED........ 238
ISUP_EVNT_PROGRESSuuvenneannnnn.. 237
ISUP_FCI_E2E_INFORMATION_AVAILABLE....... 226
ISUP_FCI_INTERNATIONAL_CALL............... 226
ISUP_FCI_INTERWORKING_ENCOUNTERED........ 226
ISUP_FCI_ISDN_USER_PART_ALL_THE_WAY...... 226
ISUP_FCI_ORIGINATING_ACCESS_ISDN......... 226
ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAILABLE
..................................... 226, 227
ISUP_FCI_SCCP_ALL_METHODS_AVAILABLE..... 226,
227
2014-10-25

Index
ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE..... 226
227
ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE..... 226
227
ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE.. 226, 227
ISUP_GROUP...... 246, 247, 248, 249, 250, 251, 252
ISUP_HARDWARE_FAILURE_ORIENTED...... 247, 248
249, 250, 251
ISUP_MAINTENANCE_ORIENTED .. 247, 248, 249, 250
251
ISUP_NCI_CONT_CHECK_PREVIQUS.......... 74, 225
ISUP_NCI_CONT_CHECK_PREVIOUS.............. 227
ISUP_NCI_CONT_CHECK_REQUIRED............... 38
ISUP_NCI_CONT_CHECK_REQUIRED........ 39, 41, 43
ISUP_NCI_CONT_CHECK_REQUIRED .. 74, 80, 86, 182,
225, 232
ISUP_NCI_CONT_CHECK_REQUIRED and.......... 227
ISUP_NCI_OG_ECHO_CONTROL_DEVICE.......... 225
ISUP_NCI_ONE_SATELLITE_CCT................ 225
ISUP_NCI_TWO_SATELLITE_CCT................ 225
ISUP_REATTEMPT_BLOCKING 230
ISUP_REATTEMPT_CIRCUIT_BUSY............... 230
ISUP_REATTEMPT_COT_FAILURE................ 230
ISUP_REATTEMPT_DUAL_SEIZURE............... 229
ISUP_REATTEMPT _RESETc.oiinion... 229
ISUP_REATTEMPT_T24_TIMEOUT................ 230
ISUP_REATTEMPT _UNEXPECTED 230
ISUP_SCOPE_CG.......c'vveee. .. 14, 15, 220, 223
ISUP_SCOPE_CT... 15, 220, 223, 228, 229, 230, 231,
232
ISUP_SCOPE DF..........cvvnnn.. 14, 220, 221, 223
ISUP_SCOPE_SP........ccvvunnn.. 14, 220, 221, 223
ISUP_SCOPE_SR........coovvnnnn.. 14, 15, 220, 223
ISUP_SCOPE_TG. ...\, 14, 220, 223
L
license, AGPL ..., 299
license, FDL........ ..o i 309
license, GNU Affero General Public License... 299
license, GNU Free Documentation License 309
M
Mo DAT A . e 178
M_ERROR . ..ot e 189
M_PCPROTO........ccvvvnnnnn. 56, 57, 63, 68, 69, T1

M_PROTO .. 58, 59, 60, 65, 66, 72, 73, 76, 77, 78, 80
82, 83, 85, 86, 88, 89, 91, 92, 93, 94, 95, 96, 97
98, 99, 100, 101, 102, 103, 104, 105, 106, 107
108, 109, 110, 111, 112, 113, 114, 116, 117, 119
120, 122, 123, 125, 126, 128, 129, 131, 132,
134, 135, 137, 138, 140, 141, 142, 144, 145
147, 149, 151, 152, 153, 154, 156, 157, 159
160, 162, 163, 165, 166, 168, 169, 171, 172,
174, 175, 177, 178, 179, 181, 182, 184, 185, 187

323

Index

P
putmsg(2s) ... 11

S

SCOPE « ot vttt i e e 191, 219
STREAMS. ..., 5,9, 10, 11, 189
struct CC_addr_acKk..........cooviiiiininnnnnn. 59
struct CC_addr_req............ooviiinnnnnn, 58
struct CC_alerting _ind..................... 104
struct CC_alerting req...........ccovvvvn.. 102
struct CC_bind_ack...........coviviuneunnn.n. 63
struct CC_bind_req............ccoiuiinnn. 60
struct CC_blocking_con..................... 165
struct CC_blocking_ind..................... 162
struct CC_blocking req...............cooun.. 160
struct CC_blocking res..................... 163
struct CC_call_failure_ind 141
struct CC_call_reattempt_ind............... 82
struct CC_connect_ind 113
struct CC_connect_req..............covunnn. 111
struct CC_cont_check_ind............... 85, 181
struct CC_cont_check_req............... 83, 179
struct CC_cont_report_ind.............. 91, 187
struct CC_cont_report_req.............. 89, 185
struct CC_cont_test_ind 88, 184
struct CC_cont_test_req................ 86, 182
struct CC_disconnect_ind................... 144
struct CC_disconnect_req............c.ooon.. 142
struct CC_error_ack...........covviinennnnnnn. 69
struct CC_forwxfer_ind..................... 119
struct CC_forwxfer_req..................... 117
struct CC_ibi_ind................ 110
struct CC_ibi_req............, 108
struct CC_info_ack.........covvviviinnnnann. 57
struct CC_info_req.............oooiiiiiiin, 56
struct CC_info_timeout_ind.................. 98
struct CC_information_ind................... 97
struct CC_information_req................... 95
struct CC_maint_ind 178
struct CC_more_info_ind..................... 94
struct CC_more_info_req..................... 92
struct CC_ok_aCK......ooviiieeiiinnennnnnn.. 71
struct CC_optmgmt_ack 68
struct CC_optmgmt_req..........ccovvvvven. 66

324

struct CC_proceeding_ind................... 101
struct CC_proceeding req.................... 99
struct CC_progress_ind..................... 107
struct CC_progress_Treq................o.uun. 105
struct CC_query_conccovvuuunnnn. 177
struct CC_query_indoouuan. 174
struct CC_query_reqcoovvuuuunnnnn. 172
struct CC_query_resoouuuunn.. 175
struct CC_reject_ind 140
struct CC_reject_req...............oovinn. 138
struct CC_release_con...............c.u.... 151
struct CC_release_ind...................... 147
struct CC_release_req...................... 145
struct CC_release_res............ccovunnn.. 149
struct CC_reset_concovvivinnennn. 159
struct CC_reset_ind, 156
struct CC_reset_req 154
struct CC_reset_resovvivinnennn. 157
struct CC_restart_ind...................... 153
struct CC_restart_req...................... 152
struct CC_resume_COomoveuvnrnrnn.. 134
struct CC_resume_ind 131
struct CC_resume_reject_ind............... 137
struct CC_resume_reject_req............... 135
struct CC_resume_req............cooonvnnnnn. 129
struct CC_resume_resccvvuvuunnn. 132
struct CC_setup_complete_ind.............. 116
struct CC_setup_complete_req.............. 114
struct CC_setup_con.......................... 80
struct CC_setup_ind...............ooiiinan. 76
struct CC_setup_req.........o.vvevnuuueeeannn. 72
struct CC_setup_res...........ccovvuuuuieannn. 78
struct CC_suspend_con 125
struct CC_suspend_ind 122
struct CC_suspend_reject_ind.............. 128
struct CC_suspend_reject_req.............. 126
struct CC_suspend_req...................... 120
struct CC_suspend_res 123
struct CC_unbind_req........................ 65
struct CC_unblocking_con................... 171
struct CC_unblocking_ind................... 168
struct CC_unblocking req................... 166
struct CC_unblocking res................... 169
struct isdn_addr............., 191
struct isup_addr....................Ll 219

Version 1.1 Rel. 7.20141001

	Preface
	Notice
	Abstract
	Purpose
	Intent
	Audience

	Revision History
	Version Control

	ISO 9000 Compliance
	Disclaimer
	U.S. Government Restricted Rights

	Acknowledgements

	Introduction
	Related Documentation
	Role

	Definitions, Acronyms, Abbreviations

	The Call Control Layer
	Model of the CCI
	CCI Services
	UNI
	Address Formats

	NNI
	Address Formats

	Local Management

	CCI Services Definition
	Local Management Services Definition
	Call Control Information Reporting Service
	CCS Address Service
	CCS User Bind Service
	CCS User Unbind Service
	Receipt Acknowledgement Service
	Options Management Service
	Error Acknowledgement Service

	User-Network Interface Services Definition
	Call Setup Phase
	User Primitives for Successful Call Setup
	Provider Primitives for Successful Call Setup

	Call Establishment Phase
	User Primitives for Successful Call Establishment
	Provider Primitives for Successful Call Establishment
	Provider Primitives for Successful Call Setup

	Call Established Phase
	Suspend Service
	Resume Service

	Call Termination Phase
	Call Reject Service
	Call Failure Service
	Call Release Service

	Call Management
	User Primitives for Call Management
	Provider Primitives for Call Management

	Network-Network Interface Services Definition
	Call Setup Phase
	User Primitives for Successful Call Setup
	Provider Primitives for Successful Call Setup

	Continuity Test Phase
	Continuity Test Successful
	Continuity Test Unsuccessful

	Call Establishment Phase
	User Primitives for Successful Call Establishment
	Provider Primitives for Successful Call Establishment

	Call Established Phase
	User Primitives for Established Calls
	Provider Primitives for Established Calls

	Call Termination Phase
	Call Reject Service
	Call Failure Service
	Call Release Service

	Circuit Management Services
	Reset Service
	Blocking Service
	Unblocking Service
	Query Service

	CCI Primitives
	Management Primitives
	Call Control Information Request
	Call Control Information Acknowledgement
	Protocol Address Request
	Protocol Address Acknowledgement
	Bind Protocol Address Request
	Bind Protocol Address Acknowledgement
	Unbind Protocol Address Request
	Call Processing Options Management Request
	Call Processing Options Management Acknowledgement
	Error Acknowledgement
	Successful Receipt Acknowledgements

	Primitive Format and Rules
	Call Setup Phase
	Call Control Setup Request
	Call Control Setup Indication
	Call Control Setup Response
	Call Control Setup Confirm
	Call Control Reattempt Indication

	Continuity Check Phase
	Call Control Continuity Check Request
	Call Control Continuity Check Indication
	Call Control Continuity Test Request
	Call Control Continuity Test Indication
	Call Control Continuity Report Request
	Call Control Continuity Report Indication

	Collecting Information Phase
	Call Control More Information Request
	Call Control More Information Indication
	Call Control Information Request
	Call Control Information Indication
	Call Control Information Timeout Indication

	Call Establishment Phase
	Call Control Proceeding Request
	Call Control Proceeding Indication
	Call Control Alerting Request
	Call Control Alerting Indication
	Call Control Progress Request
	Call Control Progress Indication
	Call Control In-Band Information Request
	Call Control In-Band Information Indication
	Call Control Connect Request
	Call Control Connect Indication
	Call Control Setup Complete Request
	Call Control Setup Complete Indication

	Call Established Phase
	Forward Transfer Request
	Forward Transfer Indication
	Call Control Suspend Request
	Call Control Suspend Indication
	Call Control Suspend Response
	Call Control Suspend Confirmation
	Call Control Suspend Reject Request
	Call Control Suspend Reject Confirmation
	Call Control Resume Request
	Call Control Resume Indication
	Call Control Resume Response
	Call Control Resume Confirmation
	Call Control Resume Reject Request
	Call Control Resume Reject Indication

	Call Termination Phase
	Call Control Reject Request
	Call Control Reject Indication
	Call Control Call Failure Indication
	Call Control Disconnect Request
	Call Control Disconnect Indication
	Call Control Release Request
	Call Control Release Indication
	Call Control Release Response
	Call Control Release Confirmation

	Management Primitive Formats and Rules
	Interface Management Primitives
	Interface Management Restart Request
	Interface Management Restart Confirmation

	Circuit Management Primitives
	Circuit Management Reset Request
	Circuit Management Reset Indication
	Circuit Management Reset Response
	Circuit Management Reset Confirmation
	Circuit Management Blocking Request
	Circuit Management Blocking Indication
	Circuit Management Blocking Response
	Circuit Management Blocking Confirmation
	Circuit Management Unblocking Request
	Circuit Management Unblocking Indication
	Circuit Management Unblocking Response
	Circuit Management Unblocking Confirmation
	Circuit Management Query Request
	Circuit Management Query Indication
	Circuit Management Query Response
	Circuit Management Query Confirmation

	Maintenance Primitives
	Maintenance Indication

	Circuit Continuity Test Primitives
	Circuit Continuity Check Request
	Circuit Continuity Check Indication
	Circuit Continuity Test Request
	Circuit Continuity Test Indication
	Circuit Continuity Report Request
	Circuit Continuity Report Indication

	Collecting Information Phase

	Diagnostics Requirements
	Non-Fatal Error Handling Facility
	Fatal Error Handling Facility

	Addendum for Q.931 Conformance
	Primitives and Rules for Q.931 Conformance
	Common Primitive Parameters
	Call Control Addresses
	Optional Information Elements

	Local Management Primitives
	CC_INFO_ACK
	CC_BIND_REQ
	CC_BIND_ACK
	CC_OPTMGMT_REQ

	Call Setup Primitives
	Call Type and Flags
	CC_SETUP_REQ
	CC_SETUP_IND
	CC_SETUP_RES
	CC_SETUP_CON
	CC_CALL_REATTEMPT_IND
	CC_SETUP_COMPLETE_REQ
	CC_SETUP_COMPLETE_IND

	Continuity Check Primitives
	CC_CONT_CHECK_REQ
	CC_CONT_TEST_REQ
	CC_CONT_REPORT_REQ

	Call Establishment Primitives
	CC_MORE_INFO_REQ
	CC_MORE_INFO_IND
	CC_INFORMATION_REQ
	CC_INFORMATION_IND
	CC_INFO_TIMEOUT_IND
	CC_PROCEEDING_REQ
	CC_PROCEEDING_IND
	CC_ALERTING_REQ
	CC_ALERTING_IND
	CC_PROGRESS_REQ
	CC_PROGRESS_IND
	CC_IBI_REQ
	CC_IBI_IND

	Call Established Primitives
	CC_SUSPEND_REQ
	CC_SUSPEND_IND
	CC_SUSPEND_RES
	CC_SUSPEND_CON
	CC_SUSPEND_REJECT_REQ
	CC_SUSPEND_REJECT_IND
	CC_RESUME_REQ
	CC_RESUME_IND
	CC_RESUME_RES
	CC_RESUME_CON
	CC_RESUME_REJECT_REQ
	CC_RESUME_REJECT_IND

	Call Termination Primitives
	Cause Values
	CC_REJECT_REQ
	CC_REJECT_IND
	CC_CALL_FAILURE_IND
	CC_DISCONNECT_REQ
	CC_DISCONNECT_IND
	CC_RELEASE_REQ
	CC_RELEASE_IND
	CC_RELEASE_RES
	CC_RELEASE_CON

	Management Primitives
	CC_RESTART_REQ
	CC_RESTART_CON

	Q.931 Header File Listing

	Addendum for Q.764 Conformance
	Primitives and Rules for Q.764 Conformance
	Common Primitive Parameters
	Call Control Addresses
	Optional Parameters

	Local Management Primitives
	CC_INFO_ACK
	CC_BIND_REQ
	CC_BIND_ACK
	CC_OPTMGMT_REQ

	Call Setup Primitives
	CC_SETUP_REQ
	CC_SETUP_IND
	CC_SETUP_RES
	CC_SETUP_CON
	CC_CALL_REATTEMPT_IND
	CC_SETUP_COMPLETE_REQ
	CC_SETUP_COMPLETE_IND

	Continuity Check Phase
	CC_CONT_CHECK_REQ
	CC_CONT_CHECK_IND
	CC_CONT_TEST_REQ
	CC_CONT_TEST_IND
	CC_CONT_REPORT_REQ
	CC_CONT_REPORT_IND

	Call Establishment Primitives
	CC_MORE_INFO_REQ
	CC_MORE_INFO_IND
	CC_INFORMATION_REQ
	CC_INFORMATION_IND
	CC_INFO_TIMEOUT_IND
	CC_PROCEEDING_REQ
	CC_PROCEEDING_IND
	CC_ALERTING_REQ
	CC_ALERTING_IND
	CC_PROGRESS_REQ
	CC_PROGRESS_IND
	CC_IBI_REQ
	CC_IBI_IND

	Call Established Primitives
	CC_SUSPEND_REQ
	CC_SUSPEND_IND
	CC_SUSPEND_RES
	CC_SUSPEND_REJECT_REQ
	CC_RESUME_REQ
	CC_RESUME_IND
	CC_RESUME_RES
	CC_RESUME_REJECT_REQ

	Call Termination Primitives
	CC_REJECT_REQ
	CC_CALL_FAILURE_IND
	CC_DISCONNECT_REQ
	CC_RELEASE_REQ
	CC_RELEASE_IND

	Management Primitives
	CC_RESTART_REQ
	CC_RESET_REQ
	CC_RESET_IND
	CC_RESET_RES
	CC_RESET_CON
	CC_BLOCKING_REQ
	CC_BLOCKING_IND
	CC_BLOCKING_RES
	CC_BLOCKING_CON
	CC_UNBLOCKING_REQ
	CC_UNBLOCKING_IND
	CC_UNBLOCKING_RES
	CC_UNBLOCKING_CON
	CC_QUERY_REQ
	CC_QUERY_IND
	CC_QUERY_RES
	CC_QUERY_CON

	Q.764 Header File Listing

	Addendum for ETSI EN 300 356-1 V3.2.2 Conformance
	Primitives and Rules for ETSI EN 300 356-1 V3.2.2 Conformance
	Local Management Primitives
	Call Setup Primitives
	CC_SETUP_REQ
	CC_SETUP_IND

	ETSI EN 300 356-1 V3.2.2 Header File Listing

	Mapping of CCI Primitives to Q.931
	Mapping of CCI Primitives to Q.764
	State/Event Tables
	Primitive Precedence Tables
	CCI Header File Listing
	Glossary
	Acronyms
	References
	Licenses
	GNU Affero General Public License
	Preamble
	How to Apply These Terms to Your New Programs

	GNU Free Documentation License

	Index

